
Architectural Design
CSCE 740 - Lecture 14 - 10/19/2015

Architectural Styles

Gregory Gay CSCE 740 - Fall 2015 2

Today’s Goals

● Define what “architecture” means when
discussing software development.

● Discuss methods of documenting and planning
software architecture (and why this is a good
practice).

● Discuss common architectural models.

Gregory Gay CSCE 740 - Fall 2015 3

What is Software Architecture?

“Software architecture is the fundamental
organization of a system, embodied in its
components, their relationships to one another
and the environment, and the principles
governing its design and evolution.”

- IEEE Definition

Gregory Gay CSCE 740 - Fall 2015 4

Architecture Parallels

● Architectural plans are the technical interface
between the customer and the contractor
building the building.
○ (and the software)

● A bad architectural design for a building
cannot be rescued by good construction.
○ (same for software)

● There are specialist types of building
architects and architecture styles.
○ (you get the point)

Gregory Gay CSCE 740 - Fall 2015 5

Why Explicitly Plan Architecture?

● Enable stakeholder communication
○ High-level presentation of the system.

● Enables system analysis
○ Can look for problems before coding.

● Enables large-scale reuse
○ Planning subsystems as independent entities allows

their reuse in other systems.
● Bad architectural design means bad security

○ Controlling access is the first line of defense.

Gregory Gay CSCE 740 - Fall 2015 6

How We Partition a System

● System Structuring
○ The system is decomposed into several

subsystems and communications between
those subsystems are identified.

● Control Modeling
○ A model of the control relationships between

the different parts of the system is established.
● Modular Decomposition

○ The subsystems are decomposed into
modules to structure the implementation.

Gregory Gay CSCE 740 - Fall 2015 7

Architectural Qualities

● Performance
○ Minimize communication using fewer, larger

components, stored on a local machine.
Consider opportunities for parallel execution.

● Security
○ Layer the architecture, with the most critical

components protected in the innermost layers.
● Safety

○ Encapsulate safety-related operations within a
small number of local components.

Gregory Gay CSCE 740 - Fall 2015 8

Architectural Qualities

● Availability
○ Include redundant components so that they

can be replaced or updated without stopping
operation.

● Maintainability
○ Design system with large number of self-

contained components that may readily be
changed. Separate data from consumers,
avoid shared data structures.

Gregory Gay CSCE 740 - Fall 2015 9

Architectural Qualities Conflict

These qualities often conflict. It is hard to achieve
multiple qualities at once.
● Using fewer subsystems improve

performance, but hurts maintainability.
● Introducing redundant data improves

availability, but makes security more difficult.
● Localizing safety-related features usually

introduces more communication between
subsystems, degrading performance.

Gregory Gay CSCE 740 - Fall 2015 10

System Structuring

System Structuring

● How we decompose the system into interacting
subsystems.

● Can be visualized as block diagrams presenting
an overview of the system structure.

Vision
System

Object
ID
System

Arm
Controller

Gripper
Controller

Packaging
Selection
System

Packing
System

ConveyorC
ontroller

Gregory Gay CSCE 740 - Fall 2015 12

Structuring Views

When structuring the system, consider:
● Static View

○ Logical view - given the services we want to offer, how
does it make sense to delegate responsibility? Relate
requirements to entities in the system.

● Dynamic View
○ Visualize entities communicating during runtime

execution. Useful for judging performance, security,
availability.

● Physical View
○ How hardware and software communicate and how

software is distributed across processors.
Gregory Gay CSCE 740 - Fall 2015 13

Example: The ASW

You are designing control software for an aircraft. In such
software, multiple behaviors are based on altitude. The
software interfaces with one of more altimeters, makes
autopilot decisions based on this information, and outputs
status information to a monitor that is viewed by the pilot. If
altitude drops below certain thresholds, the system will send
warnings to that monitor and, if autopilot is engaged, will
attempt to correct the plane’s orientation.

How would you architect the system?

Gregory Gay CSCE 740 - Fall 2015 14

Architectural Models

● Four common models: layered, shared
repository, client/server, pipe & filter

● The model used affects the performance,
robustness, availability, maintainability, etc. of
the system.

● Complex systems might not follow a single
model - mix and match.

Gregory Gay CSCE 740 - Fall 2015 15

Layered Model

● System functionality
organized into layers,
with each layer only
dependent on the
previous layer.

● Allows elements to
change independently.

● Supports incremental
development.

User Interface

Interface Management,
Authentication, Authorization

Core Business Logic
(Functionality)

System Support (OS interface,
Databases, etc.)

Gregory Gay CSCE 740 - Fall 2015 16

Copyright Management Example

Web-based Interface

Login, Forms and Query Manager, Print Manager

Search, Document Retrieval, Rights Management, Accounting

Search Index

Databases

Gregory Gay CSCE 740 - Fall 2015 17

Layered Model Characteristics

Disadvantages
● Clean separation

between layers is often
difficult.

● Performance can be a
problem because of
multiple layers of
processing between call
and return.

Advantages
● Allows replacement of

entire layers as long as
interface is maintained.

● When changes occur,
only the adjacent layer is
impacted.

● Redundant features
(authentication) in each
layer can enhance
security and
dependability.

Gregory Gay CSCE 740 - Fall 2015 18

The Repository Model

Subsystems often exchange and work with the
same data. This can be done in two ways:
● Each subsystem maintains its own database

and passes data explicitly to other
subsystems.

● Shared data is held in a central repository
and may be accessed by all subsystems.

Repository model is structured around the latter.

Gregory Gay CSCE 740 - Fall 2015 19

IDE Example

Project Information and
Code

Model
Editor

Code
Generator

Java Editor

Python
Editor

Report
Generator

Design
Analyzer

Design
Translator

Gregory Gay CSCE 740 - Fall 2015 20

Repository Model Characteristics

Disadvantages
● Single point of failure.
● Subsystems must agree

on a data model (inevitably
a compromise).

● Data evolution is difficult
and expensive.

● Communication may be
inefficient.

Advantages
● Efficient way to share

large amounts of data.
● Components can be

independent.
○ May be more secure.

● All data can be
managed consistently
(centralized backup,
security, etc)

Gregory Gay CSCE 740 - Fall 2015 21

Client-Server Architecture

Functionality organized into services, distributed
across a range of components:
● A set of servers that offer services.

○ Print server, file server, code compilation server, etc..
● Set of clients that call on these services.

○ Through locally-installed front-end.
● Network that allows clients to access these

services.
○ Distributed systems connected across the internet.

Gregory Gay CSCE 740 - Fall 2015 22

Film Library Example

Internet

Client 1 Client 2 ... Client N

Catalog
Server

Video
Server

Search
Server

HTML
Server

Gregory Gay CSCE 740 - Fall 2015 23

Client-Server Model Characteristics

Disadvantages
● Performance is

unpredictable (depends on
system and network).

● Each service is a point of
failure.

● Data exchange may be
inefficient (server -> client
-> server).

● Management problems if
servers owned by others.

Advantages
● Distributed architecture.
● Failure in one server

does not impact others.
● Makes effective use of

networked systems and
their CPUs. May allow
cheaper hardware.

● Easy to add new servers
or upgrade existing
servers.

Gregory Gay CSCE 740 - Fall 2015 24

Interactions Between Clients/Servers

● REST is a simple architecture for managing
interactions between clients and servers.

● Allows clients and servers to pass resources
around through requests and responses.

● Simple API that allows interactions tailored to
clients as diverse as phone apps and
websites.
○ Same API, up to client to present information.

Gregory Gay CSCE 740 - Fall 2015 25

HTTP

● Protocol used to send documents back and
forth on the internet.

● Clients initiate conversation, servers reply.
● Messages composed of header (metadata)

and body (data).
● The header is the most important part.

VERB resource HTTP/1.1
Host: example.com
...

Gregory Gay CSCE 740 - Fall 2015 26

HTTP Requests

Resources are URLs.
● Should be described using nouns.

○ Good: /clients/rbob
○ Bad: /clients/remove

● Everything needed to identify a resource
should be in the URL.

Actions described through HTTP verbs: GET,
DELETE, PUT, and POST.

Gregory Gay CSCE 740 - Fall 2015 27

HTTP Verbs
GET
● GET /clients/rbob
● Transmit the resource to the

client.
PUT
● PUT /clients/rbob
● Creates a resource on the

server.

Gregory Gay CSCE 740 - Fall 2015 28

DELETE
● DELETE /clients/rbob
● Remove a resource from the

server.
POST
● POST /clients/rbob
● Trigger processing on the

server.
○ Sometimes used like

PUT: POST for creation,
PUT for updates

○ Sometimes used to
trigger pre-set operations
on resources.

Pipe and Filter Architecture

Input is taken in by one component, processed,
and the output serves as input to the next
component.
● Each processing step is a data transformation.
● Transformations may execute sequentially or

in parallel.
● Data can be processed by item or in batches.
● From Unix command line:

○ cat file.txt | cut -d, -f 2 | sort -n |
uniq -c

Gregory Gay CSCE 740 - Fall 2015 29

Customer Invoicing Example

Process
Invoices

Identify
Payments

Issue Receipts

Find Payments
Due

Issue Payment
Reminder

Invoices Payments

Receipts

Reminders

Gregory Gay CSCE 740 - Fall 2015 30

Pipe and Filter Characteristics

Disadvantages
● Format for data

communication must be
agreed on. Each
transformation needs to
accept and output the right
format.

● Increases system
overhead.

● Can hurt reuse if code
doesn’t accept right data
structure.

Advantages
● Easy to understand

communication between
components.

● Supports subsystem
reuse.

● Can add features by
adding new subsystems
to the sequence.

Gregory Gay CSCE 740 - Fall 2015 31

Control Modeling

Control Models

● A model of the control relationships between the different
parts of the system is established.

● During execution, how do the subsystems work together
to respond to requests?
○ Centralized Control:

■ One subsystem has overall responsibility for control
and stops/starts other subsystems.

○ Event-Based Control:
■ Each subsystem can respond to events generated

by other subsystems or the environment.

Gregory Gay CSCE 740 - Fall 2015 33

Centralized Control: Call-Return

A central piece of code (Main) takes responsibility
for managing the execution of other subsystems.

Call-Return Model
● Applicable to

sequential systems.
● Top-down model

where control starts
at the top of a
subroutine and
moves downwards.

Main program

Subsystem 1 Subsystem 2

Method
1.1

Method
1.2

Method
2.1

Method
2.2

Gregory Gay CSCE 740 - Fall 2015 34

Centralized Control: Manager Model

System
Controller

Sensor
Processes

Actuator
Processes Manager Model

● Applicable to
concurrent systems.

● One system
component controls
the stopping,
starting, and
coordination of other
system processes.

Sensor
Processes

Sensor
Processes

Actuator
Processes
Actuator

Processes

Control
Processes

Control
Processes
Computation

Processes

User Interface

Fault HandlerFault HandlerFault Handler

Gregory Gay CSCE 740 - Fall 2015 35

Decentralized Control:
Event-Driven Systems

Control is driven by externally-generated events
where the timing of the event is out of control of
subsystems that process the event.
● Broadcast Model

○ An event is broadcast to all subsystems.
○ Any subsystem that needs to respond to the event

does do.
● Interrupt-Driven Model

○ Events processed by interrupt handler and passed to
proper component for processing.

Gregory Gay CSCE 740 - Fall 2015 36

Broadcast Model

An event is broadcast to all subsystems, and any
that can handle it respond.
● Subsystems can register interest in specific

events. When these occur, control is
transferred to the registered subsystems.

● Effective for distributed systems. When one
component fails, others can potentially
respond.

● However, subsystems don’t know when or if
an event will be handled.

Gregory Gay CSCE 740 - Fall 2015 37

Interrupt-Driven Model

Events processed by interrupt handler and
passed to proper component for processing.
● For each type of interrupt, define a handler

that listens for the event and coordinates
response.

● Each interrupt type associated with a memory
location. Handlers watch that address.

● Used to ensure fast response to an event.
● Complex to program and hard to validate.

Gregory Gay CSCE 740 - Fall 2015 38

Nuclear Plant Interrupt Example

Interrupt
Array

Temperature
Event Handler

Radiation
Event Handler

Fire Alarm
Event Handler

Fuel Event
Handler

Process 1 Process 2 Process 3 Process 4

Gregory Gay CSCE 740 - Fall 2015 39

Example: The ASW

You are designing control software for an aircraft. In such
software, multiple behaviors are based on altitude. The
software interfaces with one of more altimeters, makes
autopilot decisions based on this information, and outputs
status information to a monitor that is viewed by the pilot. If
altitude drops below certain thresholds, the system will send
warnings to that monitor and, if autopilot is engaged, will
attempt to correct the plane’s orientation.
● Perform system structuring. Try to use one or more of

the models covered.
● Perform control modeling. How should events be

handled?

Gregory Gay CSCE 740 - Fall 2015 40

ASW Solution

● Perform system structuring. Try to use one
or more of the models covered.

Option 1: Repository Model

Altimeter History
Repository

Monitor
Output

Autopilot
Control

Altimeter
Reading

Gregory Gay CSCE 740 - Fall 2015 41

ASW Solution

● Perform system structuring. Try to use one
or more of the models covered.

Option 2: Pipe and Filter

Autopilot
Control

Altimeter
Reading

Altimeter
Response

Monitor
Output

Gregory Gay CSCE 740 - Fall 2015 42

ASW Solution

● Perform control modeling. How should
events be handled?

Depends on how you answered the previous
question, but a natural option would be an
Interrupt-Driven Model.
Handlers for new altimeter readings, for error
flags triggered by altimeter processing code.

Gregory Gay CSCE 740 - Fall 2015 43

Modular Decomposition

The rest of design - subsystems need to be
decomposed into modules.
● How we get from a “system” to classes and

methods.
● We’ll start to talk about this next time.

Gregory Gay CSCE 740 - Fall 2015 44

Key Points

● The software architect is responsible for
deriving a system structure, a control model,
and a modular decomposition.

● Architectural models can help organize a
system.
○ But, Large systems rarely conform to one model.

● Models include layered, repository, client-
server, and pipe and filter models.

● Control models include centralized control and
event-driven models.

Gregory Gay CSCE 740 - Fall 2015 45

Next Time

● Object-oriented design and class diagrams
● Reading

○ Sommerville, chapter 6
○ Fowler UML, chapter 3

■ (or any resource on class diagrams)

● Homework: Project 3 is up.

Gregory Gay CSCE 740 - Fall 2015 46

