
First…
A little more about use cases.

Grocery Store System

Grocery Store System Diagram

Buy Item

Order Stock

Refund a
Purchased Item

Cashier

Manager

Update Inventory

Customer

Monitor Inventory

Log In

User
Database

Gregory Gay CSCE 740 - Fall 2015 2

Grocery Store System Scenario

● Scenario: Buy Item
● Actors:

○ Customer (initiator), Cashier
● Description:

○ The Customer arrives at the checkout with items to purchase.
○ For each item, the Cashier records the item and the software

updates the payment total.
○ The Cashier accepts payment in either cash or credit card form

and records payment information in the software.
○ If payment is successful, the software will print a receipt and the

Customer collects the items and leaves the store.

Gregory Gay CSCE 740 - Fall 2015 3

Grocery Store System Use Case

● Use-Case: Buy Item
● Actors: Customer (initiator), Cashier
● Description:

○ The Customer arrives at the checkout with items to purchase.
○ For each item:

■ the Cashier records the item,
■ completes use-case “Update Inventory”,
■ and the software updates the payment total.

○ The Cashier accepts payment in either cash or credit card form and
records payment information in the software.

○ If payment is successful, the software will print a receipt and the
Customer collects the items and leaves the store.

● Exception Paths: If credit card payment is denied, then an error message
will be displayed and the customer will not be allowed to leave with the items.

● Preconditions: Cashier must have completed use-case “Log In”

Gregory Gay CSCE 740 - Fall 2015 4

Activity: HACS

Homework assignment and collection are an integral part of any
educational system. Today, this is performed manually. We want to
automate this with the Homework Assignment and Collection
System (HACS).

HACS will be used by the instructor to distribute the homework
assignments, review the students’ solutions, distribute suggested
solutions, and distribute student grades on each assignment.
HACS shall also help the students by automatically distributing the
assignments to them, providing a facility where the students can
submit their solutions, reminding the students when an assignment
is almost due, and reminding the students when an assignment is
overdue.

Gregory Gay CSCE 740 - Fall 2015 5

HACS

HACS Use Case Diagram

Configure HACS

StudentSystem
Admin

Instructor

Distribute
Assignment

Post Solutions

Distribute Grades

Remind Student

Get Assignment

Submit
Assignment

Get Solutions

Get Grade

Gregory Gay CSCE 740 - Fall 2015 6

HACS Use Case:
Distribute Assignment

● Use-Case: Distribute Assignment
● Actors: Instructor (initiator)
● Description:

○ The Instructor uploads an assignment to the system.
○ If the upload completes successfully, the Instructor will be asked to evaluate a

preview of the file.
○ If the Instructor approves the file preview, HACS will ask for a due date.
○ Once the due date is submitted, the assignment will be added to the system and

made readable for students, and the Instructor will be returned to the main menu.

● Exception Paths: If the file upload fails, an error message will be
displayed, and the Instructor returned to the main menu.

● Alternate Paths: At any time, the Instructor may click the cancel button
to return to the main menu.

● Preconditions: Use-Case “Configure HACS” must be performed before
assignments can be distributed.

Gregory Gay CSCE 740 - Fall 2015 7

HACS

HACS Use Case Diagram

Configure HACS

StudentSystem
Admin

Instructor

Distribute
Assignment

Post Solutions

Distribute Grades

Remind Student

Get Assignment

Submit
Assignment

Get Solutions

Get Grade

Gregory Gay CSCE 740 - Fall 2015 8

HACS

HACS Use Case Diagram (Version 2)

Configure HACS

StudentSystem
Admin

Instructor

Distribute
Assignment

Post Solutions

Distribute Grades

Remind Student

Submit
Assignment

Gregory Gay CSCE 740 - Fall 2015 9

HACS Use Case:
Distribute Assignment (Version 2)

● Actors: Instructor (initiator), Student
● Description:

○ The Instructor uploads an assignment to the system.
○ If the upload completes successfully, the Instructor will be asked to evaluate a

preview of the file.
○ If the Instructor approves the file preview, HACS will ask for a due date.
○ Once the due date is submitted, the assignment will be added to the system and

the Instructor will be returned to the main menu.
○ HACS will then make the assignment readable for students and e-mail each

student a link to the file, along with a due date notice.

● Exception Paths: If the file upload fails, an error message will be
displayed, and the Instructor returned to the main menu.

● Alternate Paths: At any time, the Instructor may click the cancel button
to return to the main menu.

● Preconditions: Use Case “Configure HACS” must be performed before
assignments can be distributed.

Gregory Gay CSCE 740 - Fall 2015 10

Things to Keep in Mind

● Remember:
○ Each use case will likely correspond to many

requirements. Use cases are high level goals,
requirements are low level statements of how to make
that goal achievable.

○ Use cases represent an external view of the system.
They do not tell you what your system objects are, and
should not feature internal objects as actors.

○ No “rule of thumb” for how many use cases you should
have:
■ Ask yourself: does this capture all of the goals a

user might have when using my system?Gregory Gay CSCE 740 - Fall 2015 11

Testing the
Requirements
CSCE 740 - Lecture 7 - 09/16/2015

Today’s Goals

● Discuss the importance of test cases for the
requirements.
○ Help write better requirements
○ Verification and Validation

● How to come up with those test cases.

Gregory Gay CSCE 740 - Fall 2015 13

Requirements Verifiability

“The system should be easy to use by experienced
engineers and should be organized in such a way that
user errors are minimized.”

● Problem is the use of vague terms such as “errors
shall be minimized.”

● The error rate must be quantified

Gregory Gay CSCE 740 - Fall 2015 14

Why Write Tests Based on the
Requirements?

● The software might have bugs.
● The requirements might have “bugs”.

○ Can’t automatically check this, but writing a test
requires thinking through the requirement.

● Gives a way to argue that the software does what
we promised it would do (verification).

Gregory Gay CSCE 740 - Fall 2015 15

Verification and Validation

Activities that must be performed to consider the
software “done.”

● Verification: The process of proving that the
software meets its stated functional and non-
functional requirements.

● Validation: The process of proving that the
software meets the customer’s needs and
expectations.

Gregory Gay CSCE 740 - Fall 2015 16

Verification and Validation

Barry Boehm, inventor of “software engineering”
describes them as:

● Validation: “Are we building the right product?”
● Verification: “Are we building the product

right?”

Gregory Gay CSCE 740 - Fall 2015 17

Goal of V&V

The goal of V&V is to establish confidence that the system
is “fit for purpose.”
How confident do you need to be? Depends on:
● Software Purpose: The more critical the software, the

more important that it is reliable.
● User Expectations: When a new system is installed,

how willing are users to tolerate bugs because benefits
outweigh cost of failure recovery.

● Marketing Environment: Must take into account
competing products - features and cost - and speed to
market.

Gregory Gay CSCE 740 - Fall 2015 18

Definition of Software Testing

Investigation conducted to provide information
about system quality.

Sequences of stimuli and observations.

(I1 O1) (I2 O2) (I3 O3)

Gregory Gay CSCE 740 - Fall 2015 19

What Does Testing Accomplish?

Your current goal shapes what scenarios the tests
cover:
● Defect Detection: Discover situations where

the behavior of the software is incorrect.
○ Tests tend to reflect extreme usage.

● Verification: Demonstrate to the customer that
the software meets the requirements.
○ Tests tend to reflect “normal” usage.

Gregory Gay CSCE 740 - Fall 2015 20

Requirements-Based Testing

● Typically the baseline technique for designing
test cases.

● Can begin as part of requirements
specification, and continue through each level
of design and implementation.

● Effective at finding some classes of faults that
elude code-based techniques.
○ Namely - missing functionality

Gregory Gay CSCE 740 - Fall 2015 21

What Goes Into a Test?

● The anatomy of a test case
○ Inputs (test data) to the system.
○ Predicted outputs based on these inputs.
○ Procedure needed to exercise the system.

■ Pre-conditions and set-up steps.
■ Things that we will need to do to gather data.

Gregory Gay CSCE 740 - Fall 2015 22

Typical Requirements

● After a high temperature is detected, an alarm
must be raised quickly.

● Novice users should be able to learn the
interface with little training.

How in the world do you make these
requirements verifiable?

Gregory Gay CSCE 740 - Fall 2015 23

Test the Requirement

After a high temperature is detected, an alarm
must be raised quickly.

Test Case 1:
● Input:

○ Artificially raise the temperature above the high
temperature threshold.

● Procedure:
○ Measure the time it takes for the alarm to come on.

● Expected Output:
○ The alarm shall be on within 2 seconds.

Gregory Gay CSCE 740 - Fall 2015 24

Test the Requirement

Novice users should be able to learn the interface with little
training.

Test Case 2:
● Input:

○ Identify 10 new users and put them through the training
course (maximum length of 6 hours)

● Procedure:
○ Monitor the work of the users for 10 days after the

training has been completed
● Expected Output:

○ The average error rate over the 10 days shall be less
than 3 entry errors per 8 hours of work.Gregory Gay CSCE 740 - Fall 2015 25

“Fixed” Requirements

● Original: After a high temperature is detected, an
alarm must be raised quickly.

● New: When the temperature rises over the threshold,
the alarm must activate within 2 seconds.

● Original: Novice users should be able to learn the
interface with little training.

● New: New users of the system shall make less than 2
entry mistakes per 8 hours of operation after 6 hours of
training.

Gregory Gay CSCE 740 - Fall 2015 26

Detailed is Not Always Testable

● Number of invalid attempts to enter the PIN
before a user is suspended.
○ This count is reset when a successful PIN entry is

completed for the user.
○ The default is that the user will never be suspended.
○ The valid range is from 0 to 10 attempts.

Problem: “never” is not testable.
(same for “always”)

Gregory Gay CSCE 740 - Fall 2015 27

Patient Management System

Consider related requirements for a patient
management system:
● If a patient is known to be allergic to any

particular medication, then prescription of that
medication shall result in a warning message
being issued to the system user.

● If a prescriber chooses to ignore an allergy
warning, they shall provide a reason why this
has been ignored.

Gregory Gay CSCE 740 - Fall 2015 28

Patient Management System Tests

Some possible tests include:
● Set up a patient record with no known allergies. Prescribe medication

for allergies that are known to exist. Check that a warning message is
not issued by the system.

● Set up a patient record with a known allergy. Prescribe the medication
they are allergic to, and check that a warning is issued.

● Set up a patient record where allergies to two or more drugs are
recorded. Prescribe both separately and check that the correct warning
is issued for each.

● Prescribe both drugs at once and check that both warnings are issued.
● Prescribe a drug that issues a warning and overrule the warning. Check

that the system requires the user to provide information explaining why
the warning was overruled.

Gregory Gay CSCE 740 - Fall 2015 29

How Many Tests Do You Need?

Testing a requirement does not mean writing a
single test.
● You normally have to write several tests to

ensure that the requirement holds.
○ What are the different conditions that the requirement

must hold under?
● Maintain traceability links from tests to the

requirements they cover.

Gregory Gay CSCE 740 - Fall 2015 30

Scenario Testing

One method of testing is to use scenarios to
develop test cases for the system.
● Stories that describe one way in which a

system might be used.
○ Use-cases, user stories, sequences of user interactions.

● Stories should be complex and credible.
● Should be easy to evaluate.

Gregory Gay CSCE 740 - Fall 2015 31

Scenario Example
For the patient management system:
Kate is a nurse. One of her responsibilities is to visit patients at home to check on
the progress of their treatment. On a day for home visits, Kate logs into the PMS
and uses it to print her schedule of home visits for that day, along with summary
information about the patients to be visited. She requests that the records for these
patients be downloaded to her tablet. She is prompted for her password to encrypt
the records for the tablet.
One of the patients, Jim, is being treated for depression. Jim feels that the medicine
is keeping him awake at night. Kate looks up Jim’s record and is prompted for her
key phrase to decrypt the record. She checks the drug prescribed and queries its
side effects. She notes the problem in Jim’s record and enters a prompt to call him
when she gets back to the office to schedule an appointment with a physician. The
system re-encrypts Jim’s record.
After finishing her consultations, Kate uploads her records to the database. The
system generates a call list for Kate of those patients who need to schedule a
follow-up appointment.

Gregory Gay CSCE 740 - Fall 2015 32

Patient System - Features Tested

This single scenario would test:
● Authentication
● Downloading to a mobile device and uploading

changes
● Home visit scheduling
● Encryption and decryption of patient records on a

mobile device
● Record retrieval and modification
● Links with drug database
● System for call prompting

Gregory Gay CSCE 740 - Fall 2015 33

Outcomes of Scenario Testing

● Tester can take scenario and vary the inputs to
test different outcomes.

● Each scenario covers multiple requirements,
and also ensures that combinations of
requirements work correctly.

● Warning -
○ Traceability is difficult. Need to maintain careful links

from scenarios to requirements.
○ Need to ensure that all outcomes of software features

are tested.

Gregory Gay CSCE 740 - Fall 2015 34

A Model of Testing

Requirement Specification

Test Cases

Gregory Gay CSCE 740 - Fall 2015 35

● Where we’re at:
○ “Set up a patient record with no

known allergies. Prescribe
medication for allergies that are
known to exist. Check that a warning
message is not issued by the
system.”

○ Generic scenarios that can be used
as the basis for test cases.

● We need concrete test cases
that can be run.
○ You can’t actually test individual

requirements in isolation. Need to
express tests in terms of features.

○ Not all inputs have the same effect.

?

Creating Requirements-Based Tests

Write Testable
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and testable
requirements.

Figure out what functions can be tested
in (relative) isolation.

What are the outcomes of the
feature, and which input classes will

trigger them?

Identify abstract classes
of test cases.

Instantiate concrete
input/output pairs.

Gregory Gay CSCE 740 - Fall 2015 36

Independently Testable Feature

● Requirements are typically difficult to test in
isolation. However, the system can usually be
decomposed into the functions it provides.

● An independently testable feature is a well-
defined function that can be tested in
(relative) isolation.

● Identified to “divide and conquer” the
complexity of functionality.

Gregory Gay CSCE 740 - Fall 2015 37

Features and Parameters

Tests for features must be described in terms of
all of the parameters and environmental factors
that influence the feature’s execution.
● User registration on a website might take in:

○ (firstName, lastName, dateOfBirth, eMail)

● Consider implicit environmental factors.
○ This feature also requires a user database.
○ The existence and contents of that database influence

execution.

Gregory Gay CSCE 740 - Fall 2015 38

Parameter Characteristics

The key to identifying tests is in understanding
how the parameters are used by the feature.
● Type information is helpful.

○ firstName is a string, the database contains
UserRecord structs.

● … but context is important.
○ If the database already contains an entry for that

combination of fields, registration should be rejected.
○ dateOfBirth is a collection of three integers, but

those integers are not used for any arithmetic
operations.

Gregory Gay CSCE 740 - Fall 2015 39

Examples

Class Registration
What are some independently testable
features?

● Add class
● Drop class
● Modify grading scale
● Change number of credits
● Graphical interface of registration page

Gregory Gay CSCE 740 - Fall 2015 40

Examples

Adding a class
What are the parameters?

● Course number to add
● Grading basis
● Student record
● What about a course database? Student

record database?

Gregory Gay CSCE 740 - Fall 2015 41

Examples

GRADS
What are some independently testable
features?

● Generate progress report
● Add note to a student
● Generate report with hypothetical courses

added.
● Generate list of students

Gregory Gay CSCE 740 - Fall 2015 42

Examples

Generate progress report
What are the parameters?

● Student ID
● Record for that student

○ Records Database
● Anything else?

○ Profile of logged in user (can they access the progress
report they are trying to produce?)

Gregory Gay CSCE 740 - Fall 2015 43

Where We Are At...

Write Functional
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and testable
requirements.

Figure out what functions can be tested
in (relative) isolation.

Gregory Gay CSCE 740 - Fall 2015 44

Next Class

Key Points

● Do yourself and the testing group a favor:
develop test cases for each requirement.

● If the requirement cannot be tested, you most
likely have a bad requirement.
○ Rewrite it so it is testable.
○ Remove the requirement if it can’t be rewritten.
○ Point out why it is an unstable requirement.

● Your requirements and testing effort will be
greatly improved!

Gregory Gay CSCE 740 - Fall 2015 45

Next Time

● Coming up with concrete requirements-based
test cases.

● Reading:
○ Sommerville, chapter 8

■ Introduction, section 8.3.1, 8.3.2

● Homework: Draft requirements due next
Wednesday!

Gregory Gay CSCE 740 - Fall 2015 46

A Model of Testing

Test Input Data

Test Output Results

Program

I

O

Source Code
(look at class

interactions, methods,
etc.)

System
Specifications

(look at requirements,
test externally-visible

features)

O
(expected)

=

Test Verdict

?

Gregory Gay CSCE 740 - Fall 2015 11

Tailoring Tests to Requirements

Requirement with minimal detail:
● One person must be able to load the boat on the car rack.

Requirement with detailed specification:
● The boat must be lighter than 100 lb.
● The boat must have handles to help one person lift it.
● The car rack must be padded so the boat can easily slide

into the rack.
● ...

Not written for engineers, so requirements not
as detailed. Tests will be more subjective.

User Study: Can 9/10 users load the
boat without help.

More detailed, so tests should also be more objective. Can
define absolute scales, exact inspections, etc.

Gregory Gay CSCE 740 - Fall 2015 27

