
CSCE 740 - Project 4 - Final Design & Implementation
Due Date: Sunday, November 20, 11:59 PM (via Moodle)

Overview

We have a design for the MEAT, the customer wants the system, and we need to build it.

You have three tasks in this assignment:

● The first is to take the feedback from your draft design and make any changes needed to
address that feedback.

● Second, add sequence diagrams to solidify the dynamic design of your system.
● The third task is to take that design and implement it using Java. The customer insisted

on Java, so Java it is.

Sample data is available on the assignment web page to assist in system development (make
sure you've downloaded the most recent version and keep your eye out for possible updates).

Make sure you pay attention to the sample data and the rest of the document. If you code does
not compile, run, and provide a compatible scripting interface, you will be severely penalized in
the grading. You are also required to follow the coding standard provided by us in an appendix
to this document.

Detailed expectations follow below.

MEAT Implementation Notes

You will be expected to develop in Java (we will compile and run your code using Java 8). If you
use any external jars, make sure you include them in a directory labeled lib/ . You source files
should be in a directory labeled src/ .

In order to fully test your code before submission (you should never expect it to work just
because it compiles), you will want to add more data to the sample data and input files provided
(Especially to test corner cases). Please also give us your versions of the data files, stored in a
directory labeled resources/ within the src/ folder.

Be sure to test both the command-line and interactive interfaces, and ensure that they produce
consistent results.

You are required to write your own exceptions, except in cases where an existing exception is
appropriate (such as a NullPointerException). These will extend either
java.lang.Exception or java.lang.RuntimeExceptio n . You cannot simply throw an
Exception , or RuntimeException . You will want to wrap exceptions that occur with your

exception (using the copy constructor Exception(Throwable t)). For more information
about exceptions, please see: http://tutorials.jenkov.com/java-exception-handling/index.html

Do not assume we will run on one operating system or another, one IDE over another, or that a
specific file system exists on the system (instead of hardcoding file paths, we recommend using
the Java classloader to pull resource files from the classpath -
http://www.mkyong.com/java/java-read-a-file-from-resources-folder/).

Deliverables

You are responsible for delivering the following as a single zip via Moodle:

● Updated static structural design.
● Dynamic models (UML sequence diagrams). This section should contain sequence

diagrams illustrating three of the major use cases of the system. One of those three must
correspond to the creation of a meeting. You may include more diagrams if you choose.

● Implementation of MEAT, incorporating all feedback provided on the design
assignment (the implementation must be located in the src/ directory).

● Any required libraries for running your implementation (in the lib/ directory).
● A description of how to compile your code – you should not instruct us to compile

and execute your code in any particular IDE. We recommend writing your own build
script or generating one in an IDE (ant, mvn, etc.)

Peer evaluations should also be submitted. See the peer evaluation form description for
instructions.

http://tutorials.jenkov.com/java-exception-handling/index.html
http://tutorials.jenkov.com/java-exception-handling/index.html
http://www.mkyong.com/java/java-read-a-file-from-resources-folder/

Coding Standards

Below is a list of coding conventions that are adopted from Apache Commons Net
(http://commons.apache.org/net/code-standards.html) everything else not specifically mentioned
here should follow the official Sun Java Coding Conventions
(http://www.oracle.com/technetwork/java/codeconvtoc-136057.html).

1. Variables and Class/Interface/Enum names should use CamelCase with variable names
starting with a lower case letter and Class/Interface/Enum names starting with an upper
case letter. Names should be descriptive and easily readable, using long names over
abbreviations.

2. Bracketing style should be consistent. Brackets should either always begin on the same
line as the opening code, and end on a new line (preferred Java syntax) OR begin and
end on new lines (preferred C syntax). Brackets should exist even for one line
statements.

Examples:
if (foo){

 // code here
}

try{

 // code here
}catch (Exception bar){

 // code here
}finally{

 // code here
}

while (true){

// code here
}

4. Descriptive JavaDoc comments MUST exist for all methods and classes. JavaDocs on
data members is preferred and encouraged, but a standard comment (called an
implementation comment) describing the data member on the line before it is
acceptable here. As a general rule, if your code modifications use an existing
class/method/variable which lacks a JavaDoc, it is required that you add it. This will
improve the project as a whole.

For more information on how to write JavaDocs, please see:
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

5. Blocks of code should have inline implementation comments to help with finding code
quickly during maintenance. These should be there in addition to the JavaDoc
comments above the method/class/member. For example:

http://commons.apache.org/net/code-standards.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

/**
* JavaDoc description here.
* @param param1 describe param1 here.
*/
public void myMethod(String param1) {

//Process parameter
…
//Do something else non-trivial
…
//Do yet another non-trivial thing
…

}
It is generally bad practice to include these comments as trailing comments as it makes
the code harder to read.

6. We would like to encourage you to make your code available under an open source

license such as the Apache Software License or Mozilla Public License. If you choose to
do this, all proper licensing standard must be followed. For example, with the Apache
Software License, the license header (found here:
http://www.apache.org/legal/src-headers.html) MUST be placed at the top of each and
every file.

7. Import statements must be fully qualified for clarity.
import java.util.ArrayList;
import java.util.Hashtable;
import org.apache.foo.Bar;
import org.apache.bar.Foo;
And not
import java.util.*;
import org.apache.foo.*;
import org.apache.bar.*;

http://www.apache.org/legal/src-headers.html

