
This is the fourth of five assignments that you will complete over the course of the semester:

1: Requirements Draft (10% of homework grade)
2: Final Requirements and Requirement-Based Tests (25%)
3: Design Draft (15%)
4: Final Design and Implementation (25%)
5: Testing (25%)

Each assignment is graded over a series of categories. You will be judged on a scale of 1-4 for
each criterion, where a 1 corresponds to a 60%, a 2 corresponds to 75%, a 3 corresponds to
90%, and a 4 corresponds to 100%. If there is no work for a criterion or it is clear that even a
minimal amount of effort was not put in, you will receive a 0% for that section of the assignment.

The following is a tentative idea of what we are looking for in Assignment 4. This may change
before final grading, but gives criteria to aim for with your submission. A “4” in a category
requires all requested elements to be present. Missing elements will result in a lower grade.

Peer Evaluation (5%)

Updated Structural Design (20%):

● Overall design
○ Extensible OO design that is clearly capable of providing the requested

functionality.
○ High cohesion and low coupling.
○ All interfacing with MEAT is through a defined interface. Access is controlled, and

proper privacy and scoping is maintained.
○ Customized Exceptions ​

● Class Diagram
○ Properly formed UML.
○ External files and systems should not be present in class diagram.

● Justification and Explanation
○ VERY IMPORTANT to justify and explain your design. Must show that

different options were considered and why/how group arrived at final
design. Must demonstrate understanding of OO principles.

○ Automatic maximum of 2 on this section if no justification present.
● Class Descriptions​

○ Level of detail is sufficient. Is this implementable by another team?

Dynamic Design (20%):

● Sequence Diagrams
○ Properly formed UML
○ Named instances, not just class names, in boxes.
○ Life​ lines and activation boxes present

○ Actor present
○ Calls and returns properly labeled

● Diagram description present and understandable.

Code Style (15%):
Based on a random sampling of the source code, we are looking at:
● Consistent bracketing and tab/spacing style
● Descriptive variable names
● JavaDocs present and used correctly
● Sufficient comments to understand code

Missing any one results in ​-1 to score for that section.

Runtime Behavior (40%):

● Passes a series of test cases, executed through the scripting interface.
○ Tests will correspond to each available feature - such as scheduling a meeting,

editing a meeting, viewing schedules, booking vacation time, etc.
● Passes a series of scenarios performed through the interactive interface.
● Results consistent between scripting and interactive interfaces.

