<Project Name> Design Document

v.<versionNumber>

<Project Name>

Design Document
Authors:

<name 1>

<name 2>

<name 3>

<name 4>

Group:
0
The purpose of this document is to provide you with a guideline for writing the software design document for your project.

Points to remember:

· Content is important, not the volume. Another team should be able to develop this system from only this document.
· Pay attention to details.

· Completeness and consistency will be rewarded.

· Readability is important.

This page intentionally left blank.

Document Revision History

	Date
	Version
	Description
	Author

	10/25/2012
	0.0
	Initial draft
	

	10/25/2012
	0.1
	<ex: Added Class Diagram>
	John Q. Doe

This page intentionally left blank.

Contents

61
Introduction

1.1
Purpose
6
1.2
System Overview
6
1.3
Design Objectives
6
1.4
References
6
1.5
Definitions, Acronyms, and Abbreviations
6
2
Design Overview
7
2.1
Introduction
7
2.2
Environment Overview
7
2.3
System Architecture
7
2.3.1
Top-level system structure of Fuel level controller
7
2.3.2
Level Monitoring Sub-system
7
2.3.3
Fuel Subsystem
8
2.4
Constraints and Assumptions
8
3
Interfaces and Data Stores
9
3.1
System Interfaces
9
3.1.1
Pressure Sensor Interface
9
3.1.2
Pump Valve Controller Interface
9
3.2
Data Stores
9
4
Structural Design
9
4.1
Class Diagram
9
4.2
Class Descriptions
10
4.3
Classes in the Fuel Subsystem
10
4.3.1
Class: Tank
10
5
Dynamic Model
11
5.1
Scenarios
11
6
Non-functional requirements
11
7
Supplementary Documentation
11

Introduction

This section addresses the purpose of this document including the intended audience, an introduction to the problem and a detailed view of the project's design. In the discussion, the design of the final system including several detailed diagrams will be described in detail.
1.1 Purpose

Provide a brief introduction to the document. What is the purpose of the document? What is its layout?

1.2 System Overview

Provide a brief description of the purpose of the system, its target users and the environmentxe "environment" in which the system will be used. This is basically from the initial part of the requirements document with revisions if any.

1.3 Design Objectives

In this section discuss the overall system design goals. Broadly mention what functionality the design attempts to cover and what it doesn’t. Also, refer to non-functional requirements like performance and usability that the design addresses. The requirements specification document could be useful in writing this section. Take a look at the functional and non-functional requirementsxe "requirements:functional"

xe "requirements:non-functional"

xe "requirements:non-functional" definitions in your requirements specification.

This section should provide the overall scope and context for the design. After reading this section the reader should be able to understand what features and functions are being addressed. In the later sections, you will be explaining how this is achieved in your design.

1.4 References

Provide referencesxe "references" to other documents.

Hint: You must at least refer to the requirements document!

1.5 Definitions, Acronyms, and Abbreviations
Definition of various terms, acronyms, or abbreviationsxe "terms" used in the document.

Note: If your TAs ask, “what do you mean by this…?”, may be you should consider adding a brief definition here.

If some of the terms have been defined in the requirements document already, you may just refer the reader to the glossary of the requirements document.

2 Design Overview

2.1 Introduction

This section should highlight the design approachxe "design:approach" that you adopt (e.g. object-oriented design or structured design), the proposed architecture of the system (e.g. client-server) and the relevant techniques and tools used (e.g., Microsoft Visio, Dia, ArgoUML, etc.).

2.2 Environment Overview

This section should describe the environment in which the system will be run. This should include diagrams and descriptions of the environment. For example, if we are describing a web app, this will include a network diagram or topology. If we are developing a library, we should describe what might be calling us. In order to do this effectively, you should have previously stated your system’s scope.
Be sure to address where this application will reside and how it will be executed.
2.3 System Architecture

Provide a high-level description of the system architecturexe "architecture:system architecture". Use a few block diagramsxe "block diagrams" to show the major components and their interactionxe "components and their interaction". Remember to describe the conventions and notations used in your diagrams.
The following is provided as an example:
2.3.1 Top-level system structure of Fuel level controller

The system consists of two major components, a level monitoring subsystem and a fuel subsystem. The interaction between the systems is bi-directional. Current sensor measurements are sent to the level monitoring subsystem from the fuel subsystem and instructions to various actuators are sent back based on the current fuel level.

2.3.2 Level Monitoring Sub-system

The Level Monitoring Subsystem consists of the Operator interface and the Controller. The operator interface in turn consists of Alarms and Switches.

2.3.3 Fuel Subsystem

Another diagram and some explanation…

2.4 Constraints and Assumptions

Mention the major design constraintsxe "constraints:design"

xe "design:constraints" here. These may have been imposed by the customer, which can be found in the requirements document. Explain how your design accommodates these constraints.

There may also be constraints imposed because of your system interacting with other external systems or being dependent on some external systems to provide part of the functionality. In such cases clearly mention the type of software your system interacts with (e.g. XYZ database software, ABC email software) and the constraints this imposes (e.g. only text based email messages are allowed).

Implementation laxe "constraints:languages and platforms"nguages and platforms may impose certain constraints. Mention them here, including the languages or technologies you will use in your implementation.
For constraints imposed by your design choices, briefly mention the options that you had, the tradeoffs involved and the reason why you made the choice.

1. Response from the controller to changes in the fuel level should reach the controller within 100 milliseconds.

This is addressed by a combination of the priority scheme and the underlying executive software that operates the controller. Events are scheduled to be handled by the executive by priority. The executive runs every 25 milliseconds and schedules the event-handler for the highest priority event pending in the event-queue. All event-handlers execute within the 25-millisecond time limit.

2. Another constraint…
An example of a design choice imposing a constraint:

Choice of email software restricts messages to plain text.

We had the option of choosing an easy to use software that provides the basic functionality or a full-featured messaging system. The former option meant that we could use only text based messages whereas the latter option meant a lot of overhead in installing and supporting the software. Since our application required predominantly text-based messages, we chose the first option. In future binary data could be sent over the text-based system using some coding scheme.
3 Interfaces and Data Stores
This section describes the interfaces into and out of the system as well as the data stores you will be including in your system.
3.1 System Interfaces

The various interfacesxe "interface:system" \t "See" provided to users and/or other external systems should be defined here. If you had included user interfacexe "interface:user" descriptions in your requirements document you may refer to them here. If you provide interfaces to other systems, say export and import data to a different software, you should mention them here.

Do not include JavaDocs here. You should describe the interfaces using prose and graphics if your interface includes a GUI.
The following is provided as an example:
3.1.1 Pressure Sensor Interface

This interface is used to measure the liquid pressure at the bottom of the tank from which the fuel level is computed. The sensor measures pressure in pounds per square inch (psi). A hardware interface is provided to access the sensor reading from the Controller software. The data can be accessed by the software at a fixed memory location (using memory mapped I/O).

3.1.2 Pump Valve Controller Interface

Description goes here…
3.2 Data Stores
Describe the data stores you will create AS PART OF YOUR SYSTEM. This should NOT include databases or other data stores that are external to your system. This information should be included in a previous section.
4 Structural Design
4.1 Class Diagram

Provide the class diagram for the system. If the class diagram is too big, partition the diagram using some reasonable criteria. For example, you may provide the client-side and the server-side object models as separate diagrams.

What should go into a class diagram?

All the classes should find a place here. All associations between classes should be identified and associationsxe "associations" should be decorated with the right cardinalityxe "cardinality". Aggregationxe "aggregation" and inheritancexe "inheritance" relationships should be identified. A brief explanation should accompany each diagram including your justification for your design. Make sure you include figure numbers to help you reference figures in the document.
Remember: You may have to iterate several times before you agree on the right class diagram for your system.
4.2 Class Descriptions

In this section you would describe in detail each classxe "object:descriptions", its attributes, and its methods. You should logically group classes together. For example, you may use your architecture diagrams to group classes within a sub-system together.

Provide a subsection for each class. For each class, briefly describe its purpose, any constraints, (e.g., only single instance) and list the attributes and the methods of each class in the class diagram.

For each class, describe each of its attributesxe "attributes" with the following details: name, type, a one line description of the attribute if its meaning is not intuitive, and constraints on the attribute (e.g., attribute must have unique value for each object or value range is restricted to positive integers).

Each methodxe "method" should be described with the following details: method name, return type and value, parameters, purpose and a brief description of the algorithm used (if it is non-trivial). Pre-conditions and post-conditions should be mentioned here if there are any assumptions about the arguments or the return values. List the attributes read and modified by this method and other methods invoked by this method.
The following is provided as an example:
4.3 Classes in the Fuel Subsystem

4.3.1 Class: Tank

· Purpose: To model the relevant aspects of the physical tank that stores fuel
· Constraints: None
· Persistent: No (created at system initialization from other available data)
4.3.1.1 Attribute Descriptions

1. Attribute: fuel-level
Type: real (double precision)
Description: Stores the current fuel level in the tank

Constraints: should be a value between 0 and max-level

2. Attribute: max-level
Type: real (double precision)

Description: maximum level of fuel that the tank can hold

Constraints: non-negative

3. Another attribute …

4.3.1.2 Method Descriptionsxe "method"
1. Method: AdjustLevel(double pressure)
Return Type: boolean

Parameters: pressure – the current pressure reading for the tank

Return value: success or failure

Pre-condition: fuel-level between 0 and max-level

Post-condition: fuel-level between 0 and max-level

Attributes read/used: fuel, pump, alarm, fuel-level

Methods called: fuel.get_density(), alarm.sound_alarm()

Processing logic:

The fuel density is obtained from the fuel attribute of the tank. New fuel-level is computed from density and pressure. If level falls outside the range [low-level, high-level) the alarm associated with the tank is sounded and the pump is stopped.

Test case 1: Call AdjustLEvel with pressure X and fuel-level Y. Expected output is:….

5 Dynamic Model

The purpose of this section is to model how the system responds to various events, i.e., model the system’s behaviorxe "system behavior". We do this using UML sequence diagramsxe "event trace diagrams".

The first step is to identify different scenariosxe "scenarios" (e.g. Fuel Level Overshoots), making sure you address each use case in your requirements document. Do not invent scenarios, rather a general guideline is to include scenarios that would make sense to the customer. For example, for the course enrollment system, logging in is a valid scenario.

5.1 Scenariosxe "scenarios"
For each scenario you will have a subsection with the following information:

· Scenario Name: Provide some meaningful name for the scenario (it is a good idea to include this in the subsection name.
· Scenario Description: A brief description of what the scenario is about and the sequence of actions that take place

· Sequence Diagram: A sequence diagram showing various events and their relative time ordering (as discussed in class).

6 Non-functional requirementsxe "requirements:non-functional"
In this section you have to explain how you expect to meet the non-functional requirements specified in the requirements document. As far as possible, assess your design objectively for each non-functional requirement specified in the requirement document and explain how you meet the requirement. If some non-functional requirements are not totally under the control of the system you are designing, that should be mentioned here. You should also mention how you expect the system to evolve in future and how your design would accommodate those anticipated changes.
7 Supplementary Documentation

Provide any other relevantxe "documentation:supplementary, additional" documentation that may help understanding the design.

Level Monitoring Subsystem

Fuel

Subsystem

Level Monitoring Subsystem

Operator

Interface

Controller

Alarms

Switches

 CSci 5801: Software Engineering I 4 of 11

