
Proving the Shalls:
Requirement Analysis and
Verification

CSCE 740 - Lecture 10 - 09/28/2017

How do we know that the
software will work?
(AKA: How do we know that our
specification is correct?)
(Also… free of contradictions and
complete)

2

The Power of Argument

● Once the software is complete, we perform
verification (does the software meet the
requirements?).
○ We argue that the software is correct.
○ We argue that the software meets the users’ needs.

● Before we build the software, we want to
know that the specifications are complete,
correct, and not contradictory.

● How can we analyze the specification
without code?

3

Abstraction Holds the Key

● Abstraction - simplifying a problem by
identifying important aspects, focusing on
those, and pretending other details don’t
exist.

● The key to solving many computing
problems.
○ Solve a simpler version, then apply to the big

problem.
● Don’t have code? A design? Hardware?

Ignore those and focus on the core behavior.
4

What About a Model?

● Models can be used to “tame” the complexity
of the program.
○ Models are simpler than the real program.
○ By abstracting away unnecessary details, we can

learn important insights.
● Perhaps models can be used to verify the

full programs!

5

Behavior Modeling

● Requirements analysis can be performed by
modeling behavior as state machines.
○ Input causes the system to change state (transition).
○ Use the requirements to develop a model of how the

system responds to different types of input when
performing a function.

● Not as complex as the real code (states
summarize types of responses).

● Can be “executed”.

6

So, You Want to Perform
Verification...

● You have a property that you want your
program to obey (i.e., a requirement).

● Great! Let’s write some tests!
● Does testing guarantee that the

requirement is met?
○ Not quite…

■ Testing can make a statistical argument in favor
of verification, but usually cannot guarantee that
the requirement holds in all situations.

7

Testing

● Any real system has a near-infinite number of possible
inputs.
○ Models are simplified, but still may have trillions of inputs.

● Some faults trigger failures extremely rarely, or under
conditions that are hard to control and recreate
through testing.

● How can we prove that our
system meets the property?

8

Finite-State Verification

● Express specification as a set of logical
properties, written as Boolean formulae.

● Exhaustively search the state space of the
model for violations of those properties.

● If the property holds -
proof that the model
is correct.

● Contrast with testing -
no violation might just
mean bad tests.

9

What Can We Do With This Model?

If we can show that the model satisfies the
requirement, then the program should as well.

Specification

public static void Main(){
System.out.println(“Hell

o world!”);
}

If the model satisfies
the specification...

And If the model is
well-formed, consistent,
and complete.

And If the model accurately
represents the program.

10

Today’s Goals

● Building behavioral models.
● Formulating specification statements as

formal logical expressions.
○ Introduction to temporal logic.

● Performing finite-state verification over the
model.
○ Exhaustive search algorithms.

11

State Machine Models

12

Finite State Machines

● A common method of
modeling behavior of a
system.

● A directed graph: nodes
represent states, edges
represent transitions.

● Not a substitute for a
program, but a way to
explore functionality.
○ Typically build a model

for each major feature.

13

Some Terminology

● Event - Something that happens at a point in time.
○ Operator presses a self-test button on the device.
○ The alarm goes off.

● Condition - Describes a property that can be true or
false and has duration.
○ The fuel level is high.
○ The alarm is on.

● State - An abstract description of the current value of an
entity’s attributes.
○ The controller is in the “self-test” state after the self-test button

has been pressed, and leaves it when the rest button has been
pressed.

○ The tank is in the “too-low” state when the fuel level is below
the set threshold for N seconds.

14

States, Transitions, and Guards

● State - An abstract description of the current
value of an entity’s attributes.

● States change in response to events.
○ A state change is called a transition.

● When multiple responses to an event
(transitions triggered by that event) are
possible, the choice is guided by the current
conditions.
○ These conditions are also called the guards on a

transition.

15

State Transitions

Transitions are labeled in the form:
event [guard] / activity

● event: The event that triggered the transition.
● guard: Conditions that must be true to choose this

transition.
● activity: Behavior exhibited by the object when this

transition is taken.
● All three are optional.

○ Missing Activity: No output from this transition.
○ Missing Guard: Always take this transition if the event

occurs.
○ Missing Event: Take this transition immediately.

16

State Transition Examples

Transitions are labeled in the form:
event [guard] / activity

● The controller is in the “self-test” state after the
self-test button has been pressed, and leaves
it when the rest button has been pressed.
○ Pressing self-test button is an event.

● The tank is in the “too-low” state when the fuel
level is below the set threshold for N seconds.
○ Fuel level below threshold for N seconds is a guard.

17

Example: Gumball Machine

Waiting for
Quarter

Quarter
Inserted

user inserts quarteruser ejects quarter

Gumball
Sold

user turns crank

Out of
Gumballs

[gumballs > 0]

[gumballs -1 > 0] /
dispense gumball

[gumballs -1 = 0] / dispense
gumball

18

Expressing Specification
Statements as Provable Properties

19

Expressing Properties

● Properties expressed in a formal logic.
○ Temporal logic ensures that properties hold over

execution paths, not just at a single point in time.
● Safety Properties

○ System never reaches bad state.
○ Always in some good state.

● Liveness Properties
○ Eventually useful things happen.
○ Fairness criteria.

20

Temporal Logic

● Sets of rules and symbolism for representing
propositions qualified over time.

● Linear Time Logic (LTL)
○ Reason about events over a timeline.

● Computation Tree Logic (CTL)
○ Branching logic that can reason about multiple

timelines.
● We need both forms of logic - each can

express properties that the other cannot.

21

Linear Time Logic Formulae

Formulae written with propositional variables
(boolean properties), logical operators (and, or,
not, implication), and a set of modal operators:

X (next) X hunger In the next state, I will be hungry.

G (globally) G hunger In all future states, I will be hungry.

F (finally) F hunger Eventually, there will be a state where I am hungry.

U (until) hunger U burger I will be hungry until I start to eat a burger.

R (release) hunger R burger I will cease to be hungry after I eat a burger.

22

LTL Examples

● X (next) - This operator provides a constraint
on the next moment in time.
○ (sad && !rich) -> X(sad)
○ ((x==0) && (add3)) -> X(x == 3)

● F (finally) - At some point in the future, this
property will be true.
○ (funny && ownCamera) -> F(famous)
○ sad -> F(happy)
○ send -> F(receive)

23

LTL Examples

● G (globally) - This property must always be
true.
○ winLottery -> G(rich)

● U (until) - One property must be true until the
second becomes true.
○ startLecture -> (talk U endLecture)
○ born -> (alive U dead)
○ request -> (!reply U acknowledgement)

24

More LTL Examples

● G (requested -> F (received))
● G (received -> X (processed))
● G (processed -> F (G (done)))
● If the above are true, can this be true?

○ G (requested) && G (!done)

25

Computation Tree Logic Formulae

Combines quantifiers over all paths and path-specific
quantifiers:

X (next) X hunger In the next state on this path, I will be hungry.

G (globally) G hunger In all future states on this path, I will be hungry.

F (finally) F hunger Eventually on this path, there will be a state where I am
hungry.

U (until) hunger U burger On this path, I will be hungry until I start to eat a burger. (I
must eventually eat a burger)

W (weak until) hunger W burger On this path, I will be hungry until I start to eat a burger.
(There is no guarantee that I eat a burger)

A (all) A hunger Starting from the current state, I must be hungry on
all paths.

E (exists) E hunger There must be some path, starting from the current
state, where I am hungry.

26

CTL Examples

● chocolate = “I like chocolate.”
● warm = “It is warm outside.”
● AG chocolate
● EF chocolate
● AF (EG chocolate)
● EG (AF chocolate)
● AG (chocolate U warm)
● EF ((EX chocolate) U (AG warm))

27

Examples

● It is always possible to reach a state where
we can reset.
○ AG (EF reset)
○ Is the LTL formula G (F reset) the same expression?

● Eventually, the system will reach a good
state and remain there.
○ F (G good)
○ Is the CTL formula AF (AG good) the same?

28

Proving Properties Over Models

29

Proving Properties

● To perform verification, we take properties
and exhaustively search the state space of
the model for violations.

● Violations give us counter-examples
○ A path that demonstrates how the property has been

violated.
● Implications:

○ Property is incorrect.
○ Model does not reflect expected behavior.
○ Real issue found in the system being designed.

30

Test Generation from FS Verification

● We can also take properties and negate
them.
○ Called a “trap property” - we assert that a property

can never be met.
● The counter-example shows one way the

property can be met.
● This can be used as a test for the real

system - to demonstrate that the final system
meets its specification.

31

Exhaustive Search

● Algorithms exhaustively comb through the possible
execution paths through the model.

● Major limitation - state space explosion.

32

Exhaustive Search - Dining
Philosophers

● Problem - X philosophers sit at a table with Y
forks between them. Philosophers may think
or eat. When they eat, they need two forks.

● Goal is to avoid deadlock - a state where no
progress is possible.
○ 5 philosophers/forks - deadlock after exploring 145 states
○ 10 philosophers/forks - deadlock after exploring 18,313 states
○ 15 philosophers/forks - deadlock after exploring 148,897 states
○ 9 philosophers/10 forks - deadlock found after exploring

404,796 states

33

Search Based on SAT

● Express properties as conjunctive normal
form expressions:
○ f = (!x2 || x5) && (x1 || !x3 || x4) &&

(x4 || ! x5) && (x1|| x2)
● Examine reachable states and choose a

transition based on how it affects the CNF
expression.
○ If we want x2 to be false, choose a transition that

imposes that change.
● Continue until CNF expression is satisfied.

34

Branch & Bound Algorithm

● Set a variable to a particular value
(true/false).

● Apply that value to the CNF expression.
● See whether that value satisfies all of the

clauses that it appears in.
○ If so, assign a value to the next variable.
○ If not, backtrack (bound) and apply the other value.

● Prune branches of the boolean decision tree
as values are applies.

35

Branch & Bound Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4
|| ! x5) && (x1|| x2)

1. Set x1 to false.
f = (!x2 || x5) && (0 || !x3 || x4) &&
(x4 || ! x5) && (0 || x2)

2. Set x2 to false.
f = (1 || x5) && (0 || !x3 || x4) && (x4
|| ! x5) && (0 || 0)

3. Backtrack and set x1 to true.
f = (0 || x5) && (0 || !x3 || x4) && (x4
|| ! x5) && (0 || 1)

36

DPLL Algorithm

● Set a variable to a particular value
(true/false).

● Apply that value to the CNF expression.
● If the value satisfies a clause, that clause is

removed from the formula.
● If the variable is negated, but does not

satisfy a clause, then the variable is
removed from that clause.

● Repeat until a solution is found.

37

DPLL Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4
|| ! x5) && (x1|| x2)

1. Set x2 to false.
f = (1 || x5) && (x1 || !x3 || x4) && (x4 || !
x5) && (x1|| 0)
f = (x1 || !x3 || x4) && (x4 || ! x5) && (x1)

2. Set x1 to true.
f = (1 || !x3 || x4) && (x4 || ! x5) && (1)
f = (x4 || ! x5)

3. Set x4 to false, then x5 to false.

38

Model Properties

To be useful, a model must be:
● Compact

○ Models must be simplified enough to be analyzed.
○ Depends on how it will be used.

● Predictive
○ Represent the real system well enough to distinguish

between good and bad outcomes of analyses.
○ No single model usually represents all characteristics

of the system well enough.

39

Model Properties

To be useful, a model must be:
● Meaningful

○ Must provide more information than success and
failure.

● General
○ Models must be practical for use in the domain of

interest.
○ An analysis of C programs is not useful if it only works

for programs without pointers.

40

Model Refinement

● Models have to balance precision with efficiency.
● Abstractions that are too simple may introduce spurious

failure paths that may not be in the real system.
● Models that are too complex may render model

checking infeasible due to resource exhaustion.

41

Models require abstraction. Useful for
requirements analysis, but may not reflect
operating conditions.

Challenge - Does the Model Match
the Program?

SimplePacing

sense
Voltage
Sensor

Clock Module

timeIn /
timeOut

Other
Subsystems

In the model:
● Binary input

In the implementation:
● Voltage reading compared

to calculated threshold

In the model:
● input time = output time
● Operations take place

instantly.
In the implementation:
● Operations take time to

compute.
● Clock drift may impact time.

42

We Have Learned

● We can analyze our specifications by
creating simplified models of the system and
proving that properties hold over the model.

● To do so, we must express specifications as
sets of logical formulae written in a temporal
logic.

● Finite state verification exhaustively
searches the state space for violations of
properties.

43

We Have Learned

● By performing this process, we can gain
confidence that the specifications are correct
(or fix them if they are not).

● We can also generate test cases from the
model to demonstrate that properties still
hold over the final system.

44

Next Time

● Design Fundamentals

● Readings:
○ Sommerville, chapter 6

● Homework 2:
○ Up on Moodle
○ You will get feedback on HW1 soon!
○ Revised requirements and tests due 10/10.
○ Any questions?

45

