
Architectural Design
CSCE 740 - Lecture 12 - 10/05/2017

Architectural Styles

2

Today’s Goals

● Define what “architecture” means when
discussing software development.

● Discuss methods of documenting and
planning software architecture (and why this
is a good practice).

● Discuss common architectural models.

3

What is Software Architecture?

“Software architecture is the fundamental
organization of a system, embodied in its
components, their relationships to one
another and the environment, and the
principles governing its design and evolution.”

- IEEE Definition

4

Architectural Design

● First stage of design.
● Partitions the requirements into

self-contained subsystems.
○ Later, each subsystem will be decomposed into one

or more classes.
● Plan how those subsystems cooperate and

communicate.

5

Architecture Parallels

● Architectural plans are the technical
interface between the customer and the
contractor building the building.
○ (and the software)

● A bad architectural design for a building
cannot be rescued by good construction.
○ (same for software)

● There are specialist types of building
architects and architecture styles.
○ (you get the point)

6

Why Explicitly Plan Architecture?

● Enable stakeholder communication
○ High-level presentation of the system.

● Enables system analysis
○ Can look for problems before coding.

● Enables large-scale reuse
○ Planning subsystems as independent entities allows

their reuse in other systems.
● Bad architectural design means bad security

○ Controlling access is the first line of defense.

7

How We Partition a System

● System Structuring
○ The system is decomposed into several

subsystems and connections between those
subsystems are identified.

● Control Modeling
○ A model of the control relationship between

different parts of the system is established.
● Modular Decomposition

○ The subsystems are decomposed into
modules to structure the implementation.

8

Architectural Qualities

● Performance
○ Minimize communication using fewer, larger

components, stored on a local machine.
Consider opportunities for parallel execution.

● Security
○ Layer the architecture, with the critical

components protected in innermost layers.
● Safety

○ Encapsulate safety-related operations within
a small number of local components.

9

Architectural Qualities

● Availability
○ Include redundant components so that they

can be replaced or updated without stopping
operation.

● Maintainability
○ Design system with large number of

self-contained components that may readily
be changed. Separate data from consumers,
avoid shared data structures.

10

Architectural Qualities Conflict

These qualities often conflict. It is hard to
achieve multiple qualities at once.
● Using fewer subsystems improves

performance, but hurts maintainability.
● Introducing redundant data improves

availability, but makes security more difficult.
● Localizing safety-related features usually

introduces more communication between
subsystems, degrading performance.

11

System Structuring

12

System Structuring

● How we decompose the system into interacting
subsystems.

● Can be visualized as block diagrams presenting
an overview of the system structure.

Vision
System

Object
ID
System

Arm
Controller

Gripper
Controller

Packaging
Selection
System

Packing
System

Conveyor
Controller

13

Structuring Views

When structuring the system, consider:
● Static View

○ Logical view - given the services we want to offer,
how does it make sense to delegate responsibility?
Relate requirements to entities in the system.

● Dynamic View
○ Visualize entities communicating during runtime

execution. Useful for judging performance, security,
availability.

● Physical View
○ How hardware and software communicate and how

software is distributed across processors.

14

Example: The ASW

You are designing control software for an aircraft. In such
software, multiple behaviors are based on altitude. The
software interfaces with one of more altimeters, makes
autopilot decisions based on this information, and outputs
status information to a monitor that is viewed by the pilot. If
altitude drops below certain thresholds, the system will
send warnings to that monitor and, if autopilot is engaged,
will attempt to correct the plane’s orientation.

How would you architect the system?

15

Architectural Models

● Four common models: layered, shared
repository, client/server, pipe & filter

● The model used affects the performance,
robustness, availability, maintainability, etc.
of the system.

● Complex systems might not follow a single
model - mix and match.

16

Layered Model

● System functionality
organized into layers,
with each layer only
dependent on the
previous layer.

● Allows elements to
change independently.

● Supports incremental
development.

User Interface

Interface Management,
Authentication, Authorization

Core Business Logic
(Functionality)

System Support (OS interface,
Databases, etc.)

17

Copyright Management Example

Web-based Interface

Login, Forms and Query Manager, Print Manager

Search, Document Retrieval, Rights Management, Accounting

Search Index, Support

Databases and Database Handlers

18

Layered Model Characteristics

Disadvantages
● Clean separation

between layers is often
difficult.

● Performance can be a
problem because of
multiple layers of
processing between call
and return.

Advantages
● Allows replacement of

entire layers as long as
interface is maintained.

● When changes occur,
only the adjacent layer is
impacted.

● Redundant features
(authentication) in each
layer can enhance
security and
dependability.

19

The Repository Model

Subsystems often exchange and work with the
same data. This can be done in two ways:
● Each subsystem maintains its own database

and passes data explicitly to other
subsystems.

● Shared data is held in a central repository
and may be accessed by all subsystems.

Repository model is structured around the
latter.

20

IDE Example

Project Information and
Code

Model
Editor

Code
Generator

Java Editor

Python
Editor

Report
Generator

Design
Analyzer

Suggested
Refactorings

21

Repository Model Characteristics

Disadvantages
● Single point of failure.
● Subsystems must agree

on a data model
(inevitably a
compromise).

● Data evolution is difficult
and expensive.

● Communication may be
inefficient.

Advantages
● Efficient way to share

large amounts of data.
● Components can be

independent.
○ May be more secure.

● All data can be
managed consistently
(centralized backup,
security, etc)

22

Client-Server Architecture

Functionality organized into services,
distributed across a range of components:
● A set of servers that offer services.

○ Print server, file server, code compilation server,
etc..

● Set of clients that call on these services.
○ Through locally-installed front-end.

● Network that allows clients to access these
services.
○ Distributed systems connected across the internet.

23

Film Library Example
Client N

Catalog
Server

Video
Server

Search
Server

HTML
Server

24

...

Client 2

Client 1

Client-Server Model Characteristics

Disadvantages
● Performance is

unpredictable (depends
on system and network).

● Each service is a point
of failure.

● Data exchange may be
inefficient (server ->
client -> server).

● Management problems if
servers owned by
others.

Advantages
● Distributed architecture.

○ Failure in one server
does not impact others.

● Makes effective use of
networked systems and
their CPUs. May allow
cheaper hardware.

● Easy to add new servers
or upgrade existing
servers.

25

Implementing Interactions Between
Clients/Servers

● REST is a simple architecture for managing
interactions between clients and servers.

● Allows clients and servers to pass resources
around through requests and responses.

● Simple API that allows interactions tailored
to clients as diverse as phone apps and
websites.
○ Same API, up to client to present information.

26

HTTP

● Protocol used to send documents back and
forth on the internet.

● Clients initiate conversation, servers reply.
● Messages composed of header (metadata)

and body (data).
● The header is the most important part.

VERB resource HTTP/1.1
Host: example.com
...

27

HTTP Requests

Resources are URLs.
● Should be described using nouns.

○ Good: /clients/rbob
○ Bad: /clients/remove

● Everything needed to identify a resource
should be in the URL.

Actions described through HTTP verbs: GET,
DELETE, PUT, and POST.

28

HTTP Verbs
GET
● GET /clients/rbob
● Transmit the resource to the

client.
PUT
● PUT /clients/rbob
● Creates a resource on the

server.

DELETE
● DELETE /clients/rbob
● Remove a resource from the

server.
POST
● POST /clients/rbob
● Trigger processing on the

server.
○ Sometimes used like

PUT: POST for creation,
PUT for updates

○ Sometimes used to
trigger pre-set operations
on resources.

29

Pipe and Filter Architecture

Input is taken in by one component, processed,
and the output serves as input to the next
component.
● Each processing step transforms data.
● Transformations may execute sequentially or

in parallel.
● Data can be processed as items or batches.
● Similar to Unix command line:

○ cat file.txt | cut -d, -f 2 | sort -n |
uniq -c

30

Customer Invoicing Example

Invoice
Processing

Payment
Identification

Receipt
Generation

Payment
Management

Payment
Reminders

Invoices Payments

Receipts

Reminders

31

Pipe and Filter Characteristics

Disadvantages
● Format for data

communication must be
agreed on. Each
transformation needs to
accept and output the
right format.

● Increases system
overhead.

● Can hurt reuse if code
doesn’t accept right data
structure.

Advantages
● Easy to understand

communication between
components.

● Supports subsystem
reuse.

● Can add features by
adding new subsystems
to the sequence.

32

Control Modeling

33

Control Models

● A model of the control relationships between the
different parts of the system is established.

● During execution, how do the subsystems work together
to respond to requests?
○ Centralized Control:

■ One subsystem has overall responsibility for
control and stops/starts other subsystems.

○ Event-Based Control:
■ Each subsystem can respond to events

generated by other subsystems or the
environment.

34

Centralized Control: Call-Return

A central piece of code (Main) takes responsibility
for managing the execution of other subsystems.

Call-Return Model
● Applicable to

sequential systems.
● Top-down model

where control starts
at the top of a
subroutine and
moves downwards.

Main program

Subsystem 1 Subsystem 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

35

Centralized Control: Manager Model

System
Controller
Process

Sensor
Processes

Actuator
Processes Manager Model

● Applicable to
concurrent systems.

● One process controls
the stopping,
starting, and
coordination of other
system processes.

Sensor
Processes

Sensor
Processes

Actuator
Processes
Actuator

Processes

Control
Processes

Control
Processes
Computation

Processes

User Interface
Process

Fault HandlerFault Handler
Fault Handler

Processes

36

Decentralized Control:
Event-Driven Systems

Control is driven by externally-generated
events where the timing of the event is out of
control of subsystems that process the event.
● Broadcast Model

○ An event is broadcast to all subsystems.
○ Any subsystem that needs to respond to the event

does do.
● Interrupt-Driven Model

○ Events processed by interrupt handler and passed to
proper component for processing.

37

Broadcast Model

An event is broadcast to all subsystems, and
any that can handle it respond.
● Subsystems can register interest in specific

events. When these occur, control is
transferred to the registered subsystems.

● Effective for distributed systems. When one
component fails, others can potentially
respond.
○ However, subsystems don’t know when or if an

event will be handled.
38

Interrupt-Driven Model

Events processed by interrupt handler and
passed to proper component for processing.
● For each type of interrupt, define a handler

that listens for the event and coordinates
response.

● Each interrupt type associated with a
memory location. Handlers watch that
address.

● Used to ensure fast response to an event.
○ However, complex to program and hard to validate.

39

Nuclear Plant Interrupt Example

Interrupt
Array

Temperature
Event Handler

Radiation
Event Handler

Fire Alarm
Event Handler

Fuel Event
Handler

Process 1 Process 2 Process 3 Process 4

40

Example: The ASW

You are designing control software for an aircraft. In such
software, multiple behaviors are based on altitude. The
software interfaces with one of more altimeters, makes
autopilot decisions based on this information, and outputs
status information to a monitor that is viewed by the pilot. If
altitude drops below certain thresholds, the system will
send warnings to that monitor and, if autopilot is engaged,
will attempt to correct the plane’s orientation.
● Perform system structuring. Try to use one or more

of the models covered.
● Perform control modeling. How should control be

routed?

41

ASW Solution

● Perform system structuring. Try to use
one or more of the models covered.

Option 1: Repository Model

Altimeter History
Repository

Monitor
Output

Autopilot
Control

Altimeter
Reading

42

ASW Solution

● Perform system structuring. Try to use
one or more of the models covered.

Option 2: Pipe and Filter

Autopilot
Control

Altimeter
Reading

Altimeter
Response

Monitor
Output

43

ASW Solution

● Perform control modeling. How should
events be handled?

Depends on how you answered the previous
question, but a natural option would be an
Interrupt-Driven Model.
Handlers for new altimeter readings, for error
flags triggered by altimeter processing code.

44

Modular Decomposition

Next step - subsystems need to be
decomposed into modules.
● How we get from a “subsystem” to classes

and methods.
● We’ll start to talk about this after the

midterm.

45

Key Points

● The software architect is responsible for
deriving a system structure, a control model,
and a modular decomposition.

● Architectural models can help organize a
system.
○ Layered, repository, client-server, and pipe and filter

models - also many others.
● Control models include centralized control

and event-driven models.

46

Next Time

● Midterm Review
○ Practice exam on Moodle
○ Answers will be discussed Thursday

● Homework: Project 2 due next Tuesday
night.

47

