
Midterm Review
CSCE 740 - Lecture 13 - 10/12/2017



General Questions

● Today: Go over practice midterm questions.
● First - any general questions on course 

content or homework? 

2



Question 1

Briefly explain why a software system must 
change or become progressively less useful?

3



Question 1 - Solution

● The world is constantly changing, and if 
software does not change too, it will be out 
of date and useless.

● Changes might be 
○ organizational (user’s needs have changed).
○ infrastructure (hardware and OS are changing).
○ changed computational model (standalone systems 

are now networked)
○ … etc...

4



Question 2

The properties of the environment of a system 
are generally of critical importance for the 
system to be able to satisfy its stated system 
requirements. It is essential to capture 
environmental assumptions in a requirements 
document.

Briefly discuss how the environment may 
influence a system’s ability to satisfy its 
requirements. 

5



Question 2 - Solution

● A system cannot meet its requirements 
without assuming properties of the 
environment.
○ Patient-Monitoring: Is the nurse close enough?

● Environment must cooperate with system.
● Requirements must capture what we assert 

to be true, so informed decisions can be 
made.
○ And we can argue that we wrote a correct 

specification and can meet the real-world 
requirements.

6



Question 3

Explain the following tenets of XP (and other 
agile processes):
● Collective Ownership
● Sustainable Pace
● Open Workspaces
● Customer as a Team Member
● Test-First Development
● Short Iterative Cycles
● Stories as Requirements

7



Question 3 - Solution

● Collective Ownership
○ All developers own the code, and can make 

changes. They do not need approval. 
● Strict Use of Coding Standards

○ Allows code to be readable by other developers.
● Open Workspaces

○ Quick communication and informal meetings.
● Customer as a Team Member

○ Rapid feedback is essential.
● Test-First Development

○ Refines requirements, clarifies implementation.
8



Question 3 - Solution

● Short Iterative Cycles
○ We are able to quickly get feedback on the current 

status of a project.
● Sustainable Pace

○ Developers produce worse results if forced to work 
too much overtime. Keep iteration scope in check.

● Stories as Requirements
○ We can use the expected usage of the system as 

the basis for development. Lightweight requirements 
document.

9



Question 4
You are involved in a new software product - an insurance application intended to 
determine what insurance products a customer is eligible for. The eligibility requirements 
are captured in various laws and regulations.
A contractor is doing most of the work. They will assist with all aspects of planning, 
management, and development since you lack the expertise to complete the project. The 
plan was a waterfall process. The product will be long lived, good documentation is a 
must. The laws were thought to be a good start for requirements.
During the requirements capture process, the team discovers the laws are incomplete, 
ambiguous, and obtuse. The elicitation is taking longer than planned, and required a lot of 
interaction with case workers. Towards the end of the requirement process, the 
requirements document is incomplete and there is more work to be done. 
At this point, the contractor decides that since there is so much risk and the schedule is 
behind, the project will switch to an agile method (XP). In addition, to save money, the 
contractor is offshoring the coding to a development center in a low-cost country.

1: Is this approach likely to succeed?
2: What would your recommendation have been?

10



Question 4 - Solution

Likely to succeed:
● NO!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
● One reason: Agile requires access to customers. Off-shore development 

will make this hard. Lack of familiarity with US laws and regulations is a 
problem.

● Project now involves three organizations, unlikely to produce a good 
design even with traditional plan-driven methods. Existing requirements 
are poor, not written in a style conducive to incremental design.

Recommendation:
● Cancel the project? 
● Can we build incrementally or iteratively from the existing requirements? 

With good design, new or changed rules can be integrated into system. 

11



Question 5

● Explain the difference between verification 
and validation.

● Which of these is considered harder? Why?

12



Question 5 - Solution

● Explain the difference between verification 
and validation.
○ Validation: Does the system meet the customer’s 

needs? “Are we building the right product?”
○ Verification: Does the system meet the specifications 

we laid out? “Are we building the product right?”
● Which of these is considered harder? Why?

○ Validation is harder. 
○ It requires that we understand the customer’s actual 

desires. They might not have told us those, or 
changed their minds.

13



Questions 6 & 7

ATM
● What are the actors and use-cases involved 

in an ATM system? 
● Draw a use-case diagram
● Pick one use case and write a scenario.

14



Questions 6 & 7 - Solution

Customer

Bank Operator

Maintenance Person

Cash Supply DB 

User DB

Activate 
Error Mode

Refill Money 
Supply

Validate PIN

Withdraw Money

Deposit Money

<<uses>><<uses>>

ATM

Enter PIN <<uses>>

15



Question 8
The airport connection check is part of a travel reservation system. It checks 
the validity of a single connection between two flights in an itinerary. 
validConnection(Flight arrivingFlight, Flight departingFlight) returns ValidityCode. 

A Flight is a data structure consisting of:
● A unique identifying flight code (string, three characters followed by four 

numbers).
● The originating airport code (three character string).
● The scheduled departure time (in universal time).
● The destination airport code (three character string).
● The scheduled arrival time (in universal time).

There is also a flight database, where each record contains:
● Three-letter airport code (three character string).
● Airport country (two character string).
● Minimum connection time (integer, minimum number of minutes that must 

be allowed for flight connections).

16



Question 8
A Flight is a data structure consisting of:
● A unique identifying flight code (string, three characters followed by four 

numbers).
● The originating airport code (three character string).
● The scheduled departure time (in universal time).
● The destination airport code (three character string).
● The scheduled arrival time (in universal time).

There is also a flight database, where each record contains:
● Three-letter airport code (three character string).
● Airport country (two character string).
● Minimum connection time (integer, minimum number of minutes that must 

be allowed for flight connections).

Derive representative values of the parameters from this specification for 
the validConnection function. 

17



Question 8 - Solution
Parameter: Arriving flight

Flight code:
● malformed
● not in database
● valid

Originating airport code:
● malformed 
● not in database 
● valid city

Scheduled departure time:
● syntactically malformed
● out of legal range
● legal

Destination airport (transfer airport):
● malformed 
● not in database
● valid city

Scheduled arrival time (tA):
● syntactically malformed
● out of legal range
● legal

Parameter: Departing flight

Flight code:
● malformed
● not in database
● valid

Originating airport code:
● malformed
● not in database 
● differs from transfer airport 
● same as transfer airport

Scheduled departure time:
● syntactically malformed
● out of legal range
● before arriving flight time (tA)
● between tA and tA + minimum 

connection time (CT)
● equal to tA + CT
● greater than tA + CT

Destination airport code:
● malformed 
● not in database
● valid city

Scheduled arrival time:
● syntactically malformed 
● out of legal range 
● legal

Parameter: Database record

This parameter refers to the database time 
record corresponding to the transfer airport.

Airport code:
● malformed
● not found in database
● valid

Airport country:
● malformed
● not a real country
● valid

Minimum connection time: 
● not found in database
● Negative
● 0
● valid

18



Question 9

The following requirements are unclear and 
ambiguous. Explain why, and then rewrite the 
statements so that they can be objectively 
evaluated. 
a. The response time should be minimized.
b. The alarm should be raised quickly after a 
high fuel level has been detected.

19



Question 9 - Solution

a. The response time should be minimized.

“should” != shall
What does minimized mean? 
Response time to what? 

“The system shall respond to a user request 
within ten seconds.”

20



Question 9 - Solution

b. The alarm should be raised quickly after a 
high fuel level has been detected.

Quickly? 
Is “high fuel level” a boolean condition or a 
specific quantity? 

“The alarm shall be raised within 5 seconds of 
the fuel level reaching 10 cm.”

21



Question 10

In class, we discussed the importance of 
defining a test case for each requirement. What 
are the two primary benefits of defining this test 
case?

22



Question 10 - Solution

1. A test case will greatly help us in the 
integration testing phase. Groups can start 
defining tests early and be ready when the 
system comes online.

2. Test cases force us to write testable (thus, 
good) requirements. If a requirement is not 
testable, we cannot write a test case.

23



Question 11

You are setting out to develop a new GUI for an 
old application. The system has a diverse set of 
users and the system has to be acceptable to all 
of the user types. 

What development process would you use? 
Justify your answer.

24



Question 11 - Solution

Any process that makes use of evolutionary 
prototyping. Build something rapidly and get 
use feedback, then build something new that 
incorporates that feedback.

25



Question 12

Briefly discuss the concept of incrementality 
(from now on, this is a real word) as it applies 
to software development.

26



Question 12 - Solution

Incrementality is the principle of breaking the 
software project (or anything else) into smaller 
manageable pieces that can be used by the 
customer while other pieces are still in 
development. 
As new pieces are completed, they are 
integrated until we have a complete system.

27



Question 13

The main function of a vending machine is to allow the customer 
to buy products from the machine (soda, candy, etc). When the 
customer wants to buy some of the products, they insert money, 
select one or more products, and the machine dispenses the 
product to the customer. Should the product cost less than the 
amount of money inserted, the machine will dispense change. 
The machine must be restocked when it runs out of products. A 
collector comes and collects money from the vending machine.
1: Identify the actors and use cases. 
2: Define the basic course of events for one use case.
3: What are the exception or alternate paths for that 
scenario?

28



Question 13 - Solution

Actor: Customer
Use Cases:
● Buy Product

What about these:
● Select Product
● Dispense Product
● Dispense Change

29



Question 13 - Solution

Actor: Stocker
Use Cases:
● Restock Machine
Actor: Collector
Use Cases:
● Collect Money

Can these two actors be the same person?

30



Question 14

There is a difference between the internal and 
external completeness of a requirements 
document.

1: Describe internal and external 
completeness.
2: Which is harder? Why?

31



Question 14 - Solution

Internal Completeness is concerned with 
making sure we have not left and holes in the 
requirements document.
● If we have requirements for when a button is pushed 

down, do we have requirements for when it is released?

External Completeness is related to making 
sure we have covered the user’s requirements. 
● If we have internal completeness regarding button A, 

but the customer expects button B, we lack external 
completeness.

32



Question 14 - Solution

External completeness is harder.
● It, again, requires capturing the needs of the 

customer.
● Internal completeness is testable.
● External completeness is subjective.

33



Question 15

Why is it better in a requirements document to 
use TBD with no other information than to 
simply write nothing at all?

34



Question 15 - Solution

Why is it better in a requirements document to 
use TBD with no other information than to 
simply write nothing at all?

It is better to point out when a piece of 
information is missing than to just leave it out. 
Errors of omission are easier to catch (search 
for TBD).

35



Question 16

In the class, we discussed non-functional 
requirements.

Explain the concept of non-functional 
requirements and give two examples.

36



Question 16 - Solution

Explain the concept of non-functional 
requirements and give two examples.

Requirements that do not impact the 
correctness of the functional behavior (the 
services the system performs). 
Usually related to security, performance, 
reliability, maintainability, etc.

37



Question 17

You are setting out to develop a ‘C’ compiler for 
a new microprocessor with a well defined 
instruction set.

What development process would you 
choose? Why is it a good choice for this 
problem?

38



Question 17

What development process would you 
choose? Why is it a good choice for this 
problem?

A plan-driven process, such as waterfall.
● Solid requirements.
● Requirements unlikely to change.
Any argument for an adaptive process?

39



Any other questions?

Next Class: 
● The Midterm

Next Tuesday:
● Object-oriented design and class diagrams
● Reading

○ Sommerville, chapter 5, 7
○ Fowler UML, chapter 3

■ (or any resource on class diagrams)

40


