
When to Stop Testing:
Dependability & Reliability

CSCE 740 - Lecture 25 - 11/30/2017



When is software ready 
for release?

2



We Will Cover

● How do we know when we are done?
● Stopping Criteria

○ Requirements
○ Coverage
○ Budget
○ Plan
○ Dependability

3



When All Functional Tests Pass?

● Write tests based on your requirements, 
then stop when they pass. 
○ AKA: Stop when you can make an argument for 

verification.

● Are there problems with this?

4



When We Have Achieved Coverage?

● Set your sights on some structural coverage 
metric and test until that is achieved.
○ branch coverage, condition coverage, etc.

● Problems?

5



When We Run Out of Time?

● The “Budget Coverage Criterion”
○ The usual answer to when testing is done.
○ When we run out of time. 
○ When the money dries up.

● Problems?

6



What if We Make a Plan?

● Plan a series of tests carefully, then test 
according to that plan.
○ Consider forms of functional and structural testing.
○ Factor in the budget and the cost of test case 

creation in choosing how we test.

● When those tests are done, you are done.
● Problems?

7



$%$*, I give up. When are we done?

● Can we can argue that we’ve done enough?
● Provide evidence that the system is 

dependable.
● The goal is to establish four things about the 

system:
○ That it is correct.
○ That it is reliable.
○ That it is safe.
○ That is is robust.

8



Correctness

● A program is correct if it is consistent with 
its specifications.
○ A program cannot be 30% correct. It is either correct 

or not correct.
○ A program can easily be shown to be correct with 

respect to a bad specification. However, it is often 
impossible to prove correctness with a good, 
detailed specification.

○ Correctness is a goal to aim for, but is rarely 
provably achieved.

9



Reliability

● A statistical approximation of correctness. 
● Reliability is a measure of the likelihood of 

correct behavior from some period of 
observed behavior. 
○ Time period, number of system executions
○ Measured relative to a specification and a usage 

profile (expected pattern of interaction).
■ Reliability is dependent on how the system is 

interacted with by a user.

10



Safety

● Two flaws with correctness/reliability:
○ Success is relative to the strength of the 

specification.
○ Severity of a failure is not considered. Some failures 

are worse than others.
● Safety is the ability of the software to avoid 

hazards. 
○ Hazard = any undesirable situation.
○ Relies on a specification of hazards.

■ But is only concerned with avoiding hazards, not 
other aspects of correctness.

11



Robustness

● Correctness and reliability are contingent on 
normal operating conditions.

● Software that is “correct” may still fail when 
the assumptions of its design are violated. 
How it fails matters.

● Software that “gracefully” fails is robust. 
○ Consider events that could cause system failure.
○ Decide on an appropriate counter-measure to 

ensure graceful degradation of services.

12



Dependability Property Relations

Reliable Correct Safe Robust

Correct, but not safe. 
Specification is inadequate

Safe, but not correct. 
Annoying failures can occur.

Robust, but not safe. Catastrophic 
failures can occur.

Reliable, but not correct. 
Catastrophic failures can occur.

13



Measuring Dependability

● Finding all faults is nearly impossible, and 
always expensive.

● We can always test more.
● Must establish criteria for when the system is 

dependable enough to release.
○ Correctness hard to prove conclusively.
○ Robustness/Safety important, but not enough.
○ Reliability is the basis for arguing dependability.

14



Analyzing Software 
Reliability

15



What is Reliability?

● Reliability is the probability of failure-free 
operation for a specified time in a specified 
environment for a given purpose.

● This means different things depending on 
the system and the users of that system.

● Informally, reliability is a measure of how 
well users think the system provides the 
services they require.

16



Reliability is Measurable
● Reliability can be defined and measured.
● Reliability requirements can be specified:

○ Non-functional requirements can define the number 
of failures that are acceptable during normal use of 
the system, or the time in which the system is 
allowed to be unavailable for use.

○ Functional requirements can define how the 
software avoids, detects, and tolerates faults to 
ensure they don’t lead to failures. 

17



Improving Reliability

● Reliability is improved when software faults 
that occur in the most frequently-used parts 
of the software are removed.
○ Removing X% of the faults will not necessarily lead 

to an X% improvement in reliability.
■ In a study, removing 60% of the faults actually 

led to a 3% reliability improvement. 

● Removing faults with serious consequences 
is the top priority.

18



Reliability Perception

User 2

User 1

User 3

Input 
Causing 
Failure

19



Software Reliability

● Reliability cannot be defined objectively for 
all situations.
○ Reliability measurements quoted out of context are 

meaningless.

● Requires operational profile for its definition.
○ A profile of the expected pattern of software usage.

● Must consider fault consequences.
○ Not all faults are equally serious.
○ System is perceived as unreliable if there are more 

serious faults.
20



How to Measure Reliability

● Measuring reliability is normal when building 
hardware, but hardware metrics often aren’t 
suitable for software. 
○ Based on component failures and the need to repair 

or replace a component once it has failed.
○ In hardware, the design is assumed to be correct.

● Software failures are always design failures.
○ Often, the system is available even though a failure 

has occurred. 

21



Availability
● The availability of a system reflects its ability to 

deliver services when available (uptime/total time).
○ Takes repair and restart time into account.
○ Does not tend to take incorrect computations (partial 

failures) into account.
● Availability of 0.9999 means the system is available 

99.99% of the time. 
○ 0.9 = down for 144 minutes a day, 0.99 = down for 

14.4 minutes, 0.999 = down for 84 seconds, 0.9999 
= down for 8.4 seconds.

22



Probability of Failure on Demand 
(POFOD)
● The likelihood that a service request will result in a 

system failure (failures/requests over a period).
● POFOD = 0.001 means that 1 out of 1000 service 

requests result in a failure. 
● Should be used as a reliability metric in situations 

where a failure on request is serious. 
○ Independent of the frequency of requests.
○ 1/1000 failure rate sounds risky, but if one failure 

per lifetime, it is good.

23



Rate of Occurrence of Fault 
(ROCOF)

● Frequency of the occurrence of unexpected 
behavior.
○ Probable number of failures over a period of time or 

number of system executions.

● ROCOF of 0.02 means that 2 failures are 
likely per 100 time units.

● Most appropriate metric when requests are 
made on a regular basis (such as a shop).

24



Mean Time Between Failures (MTBF)

● Measures the average length of time 
between observed failures.
○ Requires the timestamp of each failure and the 

timestamp of when the system resumed service.

● MTBF of 500 means that the time between 
failures is, on average, 500 time units (or 
requests).

● For systems with long user sessions, you 
want to require a long MTBF.

25



Data Needed for Measurements

To assess reliability, data must be captured 
from users’ sessions with the system:
● Measure the number of failures per a given number of 

requests (used for POFOD).
● Measure the number of failures, plus total elapsed time 

or request number (used for ROCOF).
● Requires the timestamp of each failure and the 

timestamp of when service is resumed (used for MTBF).
● Measure the time to restart after a failure (for 

availability).
26



Reliability Examples

● Provide software with 10000 requests.
○ Wrong result on 35 requests, crash on 5 requests.
○ What is the POFOD?

● 40 / 10000 = 0.0004
● Run the software for 144 hours 

○ (6 million requests). Software failed on 6 requests.
○ What is the ROCOF? The POFOD?

● ROCOF = 6/144 = 1/24 = 0.04 
● POFOD = 6/6000000 = (10-6)

27



Reliability Examples
● You advertise a piece of software with a ROCOF of 

0.001 failures per hour.
○ However, it takes 3 hours (on average) to get the system 

up again after a failure.
○ What is the availability per year?

● Failures per year:
○ approximately 8760 hours per year (24*365)
○ 0.001 * 8760 = 8.76 failures per year 

● Availability
○ 8.76 * 3 = 26.28 hours of downtime per year.
○ Availability = 0.997 ((8760 - 26.28)/8760)

28



Activity - Availability
● Your customers want an availability of at least 99%, a 

POFOD of less than 0.1, and ROCOF of less than 2 
failures per 8 hour work period. 

● After testing your code for 7 full days, 972 requests 
were made. The product failed 64 times (37 system 
crashes, 17 bad calculations) and it took an average of 
2 minutes to restart after each failure. 
○ What is the availability, POFOD, and ROCOF? 
○ Can we calculate MTBF?
○ Is the product ready to ship?
○ If not, why not?

29



Activity Solution

● What is the rate of fault occurrence?
○ 64/168 hours = 0.38/hour = 3.04/8 hour work day

● What is the POFOD?
○ 64/972 = 0.066

● What is the availability?
○ Was down for (37*2) = 74 minutes out of 168 hours 

= 74/10089 minutes = 0.7% of the time. 
○ Availability is 0.993.

30



Activity Solution

● Can we calculate MTBF?
○ No - need timestamps. We know how long they were 

down (on average), but not when each crash 
occurred.

● Is the product ready to ship?
○ No. Availability/POFOD are good, but ROCOF is too 

low.
○ Suggestions for improvement?

31



Reliability Economics

● Raising reliability is expensive. It may be 
cheaper to accept unreliability and pay for 
failure costs.

● The balancing point depends on social and 
political factors and the system type.
○ A reputation for unreliable products may hurt more 

than the cost of improving reliability.
○ Cost of failure depends on risks of failure. For 

business systems, modest reliability may be fine.

32



Statistical Testing

● Rather than using tests to trigger faults, we 
can use tests to measure reliability.
○ Test inputs should match the predicted usage profile 

of a user.
○ By recording errors and other measurements, we 

can calculate ROCOF, POFOD, etc.
○ An acceptable level of reliability should be specified 

and the software tested until that level is reached.

33



Operational Profiles

● Reflects how the software is used.
● Consists of classes of input and the 

probability of their occurrence. 
● Can be specified in advance if other systems 

exist that perform similar actions.
● For new systems, it is harder to specify.

○ Conduct beta testing to gather initial usage data.
○ Remember that usage changes over time.

34



Statistical Testing Procedure

● Study existing systems and form an 
operational profile. 

● Construct test input that reflects the profile.
● Apply inputs and count the frequency and 

type of failures that occur, along with the 
time between failures.

● After observing a statistically significant 
number of failures, compute the reliability.

35



Statistical Testing Challenges
● Operation profile uncertainty

○ A profile based on other systems may not be valid 
for your system.

● High cost of test input generation
○ Large volume of inputs needed. Can be expensive.

● Statistical uncertainty 
○ Need to generate enough failures to estimate 

reliability. This is hard when the system is already 
reliable. 

○ Hard to estimate confidence in operational profile.

36



Getting the Most Out of Statistical 
Testing

● Statistical testing often reveals errors that do 
not emerge from other V&V activities.
○ As these emerge, fix the system and re-test.
○ As you gather more data, reliability growth can be 

modeled and used to plan testing.

● Mutation often used to plant “known faults” 
for reliability testing.
○ Can make an argument that you already rooted out 

most of the real faults.

37



Reliability Growth Modeling

● Can build mathematical model of the change 
in system reliability as changes are made to 
the code base.

● Used as a means of predicting additional 
reliability from more testing and changes.

● Use statistical testing to measure reliability 
of each system version, and make a call on 
when to stop trying to raise reliability.

38



Reliability Prediction

Failure Rate

Release

Estimate when to 
stop testing.

39



Key Points

● Reliability is one of the most important 
software characteristics.

● We should aim to produce reliable software.
● Reliability depends on the pattern of usage 

of the software. Different users will interact 
differently.
○ Faulty software can be reliable for some users.

40



Key Points

● Reliability can be measured quantitatively.
○ ROCOF, POFOD, Availability, MTBF

● Statistical testing is used to estimate 
reliability without actual users.

● Reliability growth models may be used to 
predict when a required level of reliability 
may be achieved.

41



When Do We Stop Testing?

● Come up with a plan that reflects your 
budget.

● Aim for correctness, robustness, and safety.
● You are done when you can present 

evidence that you have built a dependable 
system.
○ That is, a system that achieves a set dependability 

threshold.

42



Next Time

● Next time - Software Evolution and 
(Re)engineering
○ Reading: Sommerville, ch. 9

● Practice Final up soon.
○ Like midterm - no answers yet.
○ We will go over during the last class (12/7).
○ Final is 12/14

43


