
Writing 
Requirements 
CSCE 740 - Lecture 5 - 09/12/2017



Key Points

● A requirement is a singular documented physical or 
functional need that a particular product must be able to 
perform.

● Each requirement should be accompanied by a 
specification detailing how the requirement should be 
realized.

● Use templates to structure and clarify specifications.
● Requirement must still be well-written.

○ Precise, avoid amalgamation, make distinction 
between functional/non-functional

● The structure of the requirements document is of critical 
importance.

2



Today’s Goals

● Learn how to write “good” requirements
○ Clear and testable
○ Not contradictory
○ Complete
○ Exit criteria

● Using checklists to avoid forgetting items

3



Easy Requirements Guidelines

● Avoid requirements “fusion”
○ One requirement per requirement entry in document.

■ One property the software must uphold.
● Be precise

○ No vague or incomplete requirements.
○ Define all outcomes of a condition.

● Stated in the positive
○ State what the software will do, not what it will not.
○ You can never prove a negative.

4



Easy Requirements Guidelines

● Be rigorous in defining test cases
○ If you cannot define how to test whether a 

requirement is satisfied, you have a poor 
requirement.

● Attach a person to each requirement
○ Assigning responsibility leads to better work, less 

feature inflation.

5



Requirement 1

The system shall validate and accept credit 
cards and cashier’s checks. High priority.

Problem: Requirements Fusion
● validate and accept

○ If validation fails, can we still “accept”? 
● credit cards and cashier’s checks

○ Can you pay with a combination? What if credit card 
validation fails and the cashier’s check is accepted?

● “high priority”
○ Are both payment methods high priority?

6



Requirement 2

Charge numbers should be validated online 
against the master corporate charge number 
list, if possible.

Problem: Vague Requirement
● How is it validated?
● What is the “master corporate charge 

number list”? Where is it stored?
● “if possible”? What would make it 

impossible?
7



Requirement 3

The software shall not support optical character 
recognition for converting scanned recipes to 
text.

Problem: Stated in the Negative
● How do you test whether a feature is not 

supported? 
● There are an infinite number of things the 

software will not do - why state this one?

8



Requirement 4

If a failure occurs (either internal or external), 
an easy to interpret alarm must be raised 
quickly.

Problem: Untestable
● What does “raised quickly” mean? 
● What does “easy to interpret” mean? You 

can’t test ease of interpretation - subjective 
quality.

● First problem can be fixed, second cannot.
9



The Properties of a Good 
Requirement

10



Each Requirement Must Be...

● Correct
○ The requirement is free from faults.

● Precise, unambiguous, and clear
○ Each item is exact and not vague.
○ There is a single interpretation.
○ The meaning of each item is understood.
○ The requirement is easy to read.

● Complete
○ The requirement covers all aspects of the property 

being asserted.
○ All failure scenarios covered - no question of what 

an outcome should be.
11



Each Requirement Must Be...

● Consistent
○ No statement contradicts another statement within 

the requirement or its specification.

The user shall be able to reset their password.
○ If the user selects the reset password option, an 

e-mail shall be dispatched with a unique, one-use 
reset link.

○ If the user selects the reset password option, they 
shall be prompted to enter a new password along 
with their e-mail address. 

12



Each Requirement Must Be...

● Relevant
○ Each item is pertinent to the problem and its solution

“The software shall not require Adobe Acrobat.”

● Testable
○ During development and acceptance testing, it will 

be possible to determine whether the item is 
satisfied.

“An alarm shall be raised quickly.”
“An alarm shall be raised within 10 seconds.”

13



Each Requirement Must Be...

● Traceable
○ Each requirement should be linked to all related 

requirements, and back to its source.

“In order to withdraw funds, the card must be validated 
(Req 2.6) and the PIN must be entered correctly (Req 2.7).”

● Feasible
○ Each item can be implemented with the available 

techniques, tools, resources, and personnel, and 
within the specified cost and schedule constraints. 

14



Each Requirement Must Be...

● Free of unwarranted design detail
○ The requirements specifications are statements that 

must be satisfied by the problem solution, but should 
not unnecessarily constrain the solution.

“The system shall store user information including name, 
DOB, address and SSN.”
“The system shall store user information in the User class 
including name (string), DOB (Date), address (string), and 
SSN (integer).” 

15



Each Requirement Must Be...

● Prioritized
○ Each requirement must be classified according to its 

importance. 
○ Essential for risk mitigation and development 

planning.

“The system must support credit card payment.”
“The system must support cash payment.”
Which is more important?

16



The Properties of a Good 
Requirements Document

17



The SRS (as a document) Must Be...

● Complete
○ All necessary requirements have been included. Do 

not forget abnormal and boundary cases.
○ Completeness can be internal or external:

■ Internal Completeness: The SRS specifies a 
complete system, leaving out no functionality or 
outcomes of calculations and actions. 

■ External Completeness: The SRS specifies all 
functionality (and outcomes) that the customer 
has asked for.

18



Internal Completeness

● Internal Completeness: The SRS specifies 
a complete system, leaving out no 
functionality or outcomes of a piece of 
functionality. 
○ If we have a requirement about what to do when a 

button is pressed, we need a requirement about 
what to so when it is released.

○ If we have a requirement about what to do when a 
button is pressed for more than 2 seconds, we need 
one for when it is released within 2 seconds.

19



External Completeness

● External Completeness: The SRS specifies 
all functionality (and constraints) that the 
customer has asked for.
○ If we specify all functionality related to button A, but 

the customer expects an additional button B, then 
we can be internally complete, but not externally 
complete.

○ External completeness is very difficult to achieve: 
■ Need to know the customer’s needs.
■ Customers change their minds, are vague.

20



The SRS (as a document) Must Be...

● Consistent
○ No item conflicts with another item in the document.

● Single Voice
○ Consistent level of detail and quality.

● Manageable and Modifiable
○ Things will change! Be able to accommodate 

requirements evolution.

21



Example Requirements

22



Example Requirement 1

The product shall provide status messages 
regarding background processing at regular 
intervals not less than every 60 seconds.
Problems:
● Regular intervals? “not less” than 60 seconds? What is 

the upper limit?
● What events need to trigger status messages?
● What are the status messages?

○ (Should be covered in separate requirements, and 
linked here.)

23



Example 1 Rewritten

1. The product shall provide status messages regarding 
background processing at intervals of 60, plus or minus 
10, seconds.

1.1. If background processing is progressing normally, 
the percentage of the background task processing 
that has been completed shall be displayed.

1.2. A message shall be displayed when the background 
task is complete.

1.3. An error message shall be displayed if the 
background task has not progressed for 10 seconds 
or failed.

1.4. Status messages are logged to the log file 
maintained on the local file system.

24



Example Requirement 2

The product shall switch between displaying 
and hiding non-printing characters 
instantaneously.
Problems:
● Instantaneously is not testable - subjective.
● When is it switching? What causes this switch? Is it 

random?

25



Example 2 Rewritten

The text entry box shall switch between 
displaying and hiding non-printing characters 
within 200ms of mouse release of the display 
button in the quick function bar (Req 3.4).

26



Example Requirement 3

Charge numbers should be validated online 
against the master corporate charge number 
list, if possible. The system shall validate the 
charge number entered against the online 
master corporate charge number list. If the 
charge number is not found on the list, an error 
message shall be displayed and the order shall 
not be accepted.

27



Example Requirement 3 (Take 2)

1. The system shall validate the charge card 
number entered against the online master 
corporate charge card number list.

1.1. If the charge card number is not found on the list, an 
error message shall be displayed and the order shall 
not be accepted.

28



Example Requirement 3 Rewritten

1. The system shall validate the charge card 
number entered against the online master 
corporate charge card number list.

1.1. If the charge card number is not found on the list, an 
error message shall be displayed and the order shall 
not be accepted.

1.2. If the charge card number is found on the list, a 
success message shall be displayed and the order 
shall be accepted.

1.3. If the online master corporate charge number list is 
not available, an error message shall be displayed 
and the order shall not be accepted.

29



Example Requirement 4

1. The system shall activate pilot ejection 
through a red trigger on the backside of the 
right handle of the control stick. 

1.1. The ejection shall be activated upon button release 
only if the trigger is held down for more than five 
seconds.

1.2. The ejection shall not be activated unless the safety 
mode has been disengaged (Req 2).

30



Example Requirement 4 Rewritten

1. The system shall activate pilot ejection through a red 
trigger on the backside of the right handle of the control 
stick. 

1.1. The ejection shall be activated upon button release 
only if the trigger is held down for more than five 
seconds.

1.1.1. If the trigger is released prior to five seconds, the 
ejection shall not be activated, and the pilot display 
shall display a feedback message indicating that 
ejection was cancelled.

1.2. The ejection shall not be activated unless the safety 
mode has been disengaged (Req 2).

31



Incomplete Requirements

32



Example Requirement 4

The system shall respond to all user requests 
within 2 seconds.

Problems:
● Too overarching - need to address different user 

requests one at a time, each might have different 
needs.

● Very likely to lead to inconsistent requirements.

33



Requirements Rationale

It is important to provide rationale with 
requirements.
Rationale: Survey ABC-345 indicates that withdrawals are highly desirable. The success 
of the product hinges on successful withdrawal of funds.

Rationale offers context:
● The issues that are being addressed.
● The alternatives that were considered.
● The decisions that were made to resolve the issues.
● The criteria that were used to guide decisions. 
● The debate developers went through to reach a 

decision.
34



Requirements Rationale

It is important to provide rationale with 
requirements.

● Helps developers understand the application 
domain and why the requirement is stated in 
its current form.

● Very important when requirements are 
changed.
○ Reduces the chance that changes will have an 

undesired effect.

35



Why is Rationale Important?

Loading a boat on a car rack
1. The boat must have handles to help a person lift it.
2. The car rack must be padded so the boat can easily 

slide into the rack.
3. The boat must be lighter than 100 pounds.

Rationale: One person must 
be able to load the boat on 
the car rack.

36



Use Checklists to Avoid 
Forgetting Requirements

37



General Requirement Checklist

Are your requirements:
● Complete
● Consistent
● Correct
● Precise, 

unambiguous, and 
clear

● Relevant
● Testable

● Understandable
● Expressed in the 

user’s language
● Traceable
● Feasible
● Prioritized
● Classified for stability
● Free of unwarranted 

design detail

38



Requirements Definition and Writing 
Style Checklist
1. Have you varied the stress pattern in a sentence to reveal alternative 

meanings?
2. Could you commit to implementing this requirement within a week?
3. If a term is defined elsewhere, try substituting the term for its definition.
4. When a structure if described in words, try to sketch a picture of the 

structure.
5. When a picture describes a structure, try to redraw the picture in a 

form that emphasizes different aspects.
6. When there is an equation, try expressing the meaning of the equation 

in words.
7. When a calculation is specified or implied in words, try expressing it in 

an equation.
8. When a calculation is specified, work through at least two concrete 

examples by hand and give them as examples in the document.

39



Requirement Definition Checklist (2)
9. Look for statements that imply certainty and ask for proof.

10. Look for words that are there to persuade the reader, make sure the 
connected statements are actually backed up.

11. Watch for vague words and clarify those statements. 
12. Watch for non-committal words.
13. Ensure lists are complete. If “etc” is used, make sure you know what 

“etc” means.
14. In attempting to clarify lists, we sometimes state a rule. Be sure that 

rules do not contain unstated assumptions.
15. Look for requirements without examples (or too few/too similar 

examples)
16. Avoid vague verbs.
17. Avoid passive voice. Passive voice does not name an actor.
18. Don’t make comparisons without clearly stating what is being referred.
19. Pronouns are often clear to the writer, but not the reader.

40



Domain-Specific Checklists

What problems and test scenarios can we 
anticipate in the automated cooling 
system?

Control 
Panel

Cooling 
Software

Reactor

Chemical 
Tank

41



Checklist for Embedded Systems
1. Is the software’s response to out-of-range values specified for every 

input?
2. Is the software’s response to not receiving an expected input 

specified?
a. Are timeouts provided?
b. Does the software specify the latency of the timeout?

3. If input arrives when it shouldn’t, is a response specified?
4. On a given input, will the software always follow the same path through 

the source code?
5. Is each input bound in time? 

a. Does the specification include the earliest time at which it will be 
accepted and the latest time at which it will be considered valid?

6. Is a minimum and maximum arrival rate specified for each input?
a. What if input arrives too often? 
b. Is there a capacity limit on interrupts? 

42



Checklist for Embedded Systems (2)
7. If interrupts are masked or disabled, can events be lost?
8. Can software output be produced faster than it can be used by the 

receiving system? 
a. Is overload behavior specified?

9. Can all of the outputs from the sensors be used by the software?
10. Can input received before startup, while offline, or after shutdown 

influence the software’s startup behavior? 
a. Are the values of any counters/timers/signals retained following 

shutdown? Is the earliest or most recent value retained?
11. In cases where performance degradation is the chosen error response, 

is the degradation predictable?
12. Are there sufficient delays incorporates into error-recovery responses?

43



Generality of Checklists

Domain-specific checklists focus on common 
pitfalls of one domain, but hold important 
lessons for other problems.

Use checklists to set expectations, but not to 
limit analysis and requirements refinement. 

44



Checklists are Effective

On two NASA spacecraft projects, 192 critical 
errors were found during integration and 
testing. 
● 142 of those were found and addressed after 

using a simple safety checklist.
● Most were problems with unexpected input.

○ Unexpected values, and more importantly, 
unexpected timing (recall the embedded 
system checklist).

45



When Are We Done?

When can we stop writing and revising 
requirements?

● Are the stakeholders happy?
○ Remember that the stakeholders are more diverse and 

numerous than you might think: client/customer, sales 
department, engineers, testers, etc.

● Have the documents passed all inspections 
and checklists?

● Have all TBD items been closed out?
46



The Use of TBD

● Any SRS using the term “to be determined” 
is not complete.

● TBD is often needed, however:
○ You need to include a description of the condition 

causing the TBD (why is cannot be resolved now)
○ You need a description of what must be done to 

eliminate the TBD, who is responsible, and a 
deadline on completion.

47



We Have Learned

● Use a standard document structure and 
forms for individual requirements.

● Make sure that requirements are consistent, 
complete, and testable.

● Use checklists to make sure that you don’t 
forget requirements.

● Keep an eye towards the future - things will 
change. Provide rationale and traceability.

● Make sure all stakeholders agree on the 
requirements document.

48



Next Time

● How to elicit and brainstorm requirements.
○ Understanding your stakeholders.
○ Formulating use cases.

● Reading: Sommerville, chapter 4
● Keep thinking about Assignment 1.

○ What are the requirements for a billing system?
○ Next class will help! 
○ After next class - online requirement elicitation 

session with a “customer”. 

49


