Developing
Requirements-Based Tests

CSCE 740 - Lecture 8 - 09/21/2017

Partitioning

e Functional testing is based

on the idea of partitioning.
o You can't actually test individual
requirements in isolation.

Requirement Specification

* o First, we need to partition the
specification and software into
2 features that can be tested.

o Not all inputs have the same
* effect.
o We can partition the outputs of a

feature into the possible

TeSt CaSQS outcomes.

m and the inputs, by what
outcomes they cause (or
other potential groupings).

Creating Requirements-Based Tests

Specifications

[Write Testable J Produce clear, detailed, and testable

requirements.

Independently
Testable Features

Identify J

Figure out what functions can be
tested in (relative) isolation.

Identify

Representative
Input Values

What are the outcomes of the
feature, and which input classes
will trigger them?

Generate Test Case

|dentify abstract classes

Specifications J of test cases.

Instantiate concrete
input/output pairs.

Generate Test
Cases

Today’s Goals

e How to define and select
requirements-based tests
o Choosing representative input values.

o Creating abstract test case “specifications”
o Filling in the concrete input values.

Calculator Requirement

e Requirement 7.63: Divide-By-Zero
o When a 0 is provided as input, it should be
iIntercepted. Division-by-zero indicates an unsolvable
expression.

Any problems?

e |[nput to what? Anything?
e Intercepted?

Calculator Requirement (Take 2)

e Requirement 7.63: Divide-By-Zero
o When a 0 is provided as input as the divisor in any
use of the division function, the software shall issue
an error message indicating that this is an
unsolvable expression.

e \What are the independently testable features of a
calculator?

e \What are the parameters of the division feature? Their
characteristics?

e How would you test that this requirement is fulfilled?

Independently Testable Features

What are three independently testable features of
a spreadsheet?

File Edit View Insert Format Tools Data Window Help X
= Eus @ Ees $EKa-¢ ®-- @4 By HOoEEQ @ Lle &,
P Ed Al E‘.ﬁ El,Bfﬂ B % YW == D'g-'é-'$
| a61 = & & = |uo2
B G D E F [6] H 1 1 K L M N o [o[R [s [1«
1 Grand Totals| P&L |%Return| Loot |material material | item gty | item TT | metal res | enmatres | oil res | robot res | tailor res | Bps | gems
2 -1,850.50] B8.49%)| 14992 66/16,943.18 6,166.34 |65,941.00 | 5,944.47 | 1,208.66 302.02 1,206.35 0.00 702 7.82 | 150.00 |
3 start End |
4 Date BP P&L |%Return material BP QR ~ clicks | material | item gty | item TT | metal res | enmatres | oil res | robot res | tailor res | Bps | gems | BP QR
31 09/04/11 0x0F382CBCI1ESECB2TICO (L)L) 242 101.03%] 82867 820.25 0.15 15| 21867 5| B1D.(L0| 0.1
32 09/10/11 basic screws -2334 52.50%| 25.80] 4814 684 126 0| 422 16.88| 892| 686
33 10/04/11 basic screws. -30.27 60.20%| 45.78| 768.05| 638 195 0| 249 33.96| 11.81 0.0 69.2
34 11/08M1 blau tex -5.42] 79.93%| 21.59 27.01] 3 73 0.37| 45| 10.80 10.42| 61
35 111711 Simple springs -2855 89.59%| 24558 27413 813 250| 53.88 240' 96.00| 95.70| 818 T
36 11/18/11 basic screws. =171 74.93%]| £1.14] 6825 692 175 0| 94§| 37.72| 1342 9.5
37 11/28/ 1 Simple springs 5532 113.15%| 476.04| 42072 813 332 128.34) 445 178.00| 169 .67 0.03 823
38 12/20/11 blaus texture 17.62] 152.83%| 50.97| 33.35 6.1 m 0.09) 85| 20.40| 30.13| 0.35) 121
B 01/0112 brukite 0.08] 104.96%] 1.27| 121 487 121 0.01] 74 0.74) 013 0. 33 47.8
40 01/13M2 Simple 1 springs. 1481 106.75%| 23425 21944 823 72| 156.03) Hil 34 40| 43.82| 823 E
41 01/13M2 Eleciropositive Modulator -40.15 B87.86%)| 290.83| 330.78| 41.2 1235 118.34 5729 119.16| 19.12] 3401 517
42 01/13M2 hardened screws -46.70 81.11%| 200.50 247 20, 185 300 46.05) 1156 92 48| 42 55| 19.42| 260
43 01/13M2 Simple 2 springs. 504 104.85%] 108.94| 103.80| 28 43 26.9| BTl 50.25| 1481 16.98| 283
44 01/13112 Solar 8V Gel Batteries. -3 .48 98.07%]| 178.20 179.88 9.4 121 73.38 69| 48.30| 32.28| 22, 2% 15.2]
45 0141312 GeoTrek Buttstock 2878 123.55%) 15626 126 48 48 6.08| 64.17| 0.08| 85| i
46 01/13/12 Simple | Plastic Ruds -35.30 81.06%)| 151.10 188,40 £5.4 '53@ 55.4
47 011312 Apis(L) -16.98] 97.23%| §95.57| 612.53 1 10
48 01/13M2 UR125(L) 128 100.34%| 379.16) 377 88| 42 42
49 0172312 Apis(L) -37.37 91.81%]| 418.78| 458.15| 3 1.0
50 01/25M2 basic screws. -2542 59.01%| 36.59) 6201 695 10.58| 001 69.7|
51 01/3112 Simple 1 springs. -5584 77.63%]| 198410 250 .04 823 40.25| 824
52 01/31112 Simple 2 springs -72.83 82.79%| 355.32| 429.20 28.3| 79| 2869 59| 44.25| 1.1 12.48| 304
53 01/3112 Psa(L) -4069 95.60%| 884 48| 92517 86 4 609.55 1 22210 0.06| SZT;I 86|
54 0212112 Psa(L) 1.32(100.48%] 288.12| 288.80 26 1 50.1 1 m.ml 15. @ 2.60
55 | 02020112 pioneer face guard 2san1| es3sw| ss=a7| e314s 23 2028 12,94 112 22400 18718 18188 257 47.60
56 02/2312 Psa(L) 387 101.46%| 276.17| 272 20| 86 1 334 1 22210 —I ﬂ 20 67| 860
57 03/11/12 basic screws -89.80 63.65%)| 158.88| 24648 89.7 632 0| 1521 80.84| Qﬂ U.E 0.00| 0.04 71.60,
58 03/13M2 Psa(L) a4 98.78%| 763.84| 77325 86 2| 52787 1 22210 0.03| 13.84| 890
58 03/2412 Simple 1 springs. -2824 92.33%| 352.10 38134 824 387 4438 475 190.00| 11771 001 83.30|
60 03/2412 Simple 2 springs 8271 T3.74%]| 232.29| 315.00) 304 125 90.8| 138 103.50| 19.17| 18.82] 3220/
b 04/04M2 PSa(L) -7 48] 98.81%| 620.84| 628.33 839 3 368.78 22210 854 Nd 810, -
obs /CLD /bought {=ales {J hunting /) mining /1 crafting /L hunting /L mining’ L crafting {Full PEIL { deposits / other costs {weapon amd | ¢ | i v
Sheet10/19 | Defaute | |sto| | | Sum=04/04/12 lo—o—® |100%

Identifying Representative Values

e \We know the
features. We know
their parameters.

e \What input values
should we pick?

e What about
exhaustively
trying all inputs?

/Test Input Data

N

~

|
[

Program

4 N
Test Output Results
& J

Exhaustive Testing

Take the arithmetic
function for the
calculator:

add (1nt a, int b)

— 232 X 232 — 264

2°2 possible integer values
for each parameter.

combinations = 103 tests.

1 test per nanosecond

e How long would it = 10° tests per second

test this function?

or... about 600 years!

take to exhaustively r 10" seconds

N

|

Not all Inputs are Created Equal

) . (- ~
e \We can’t exhaustively Test Input Data
test any real program. /

o We don’t need to! 9 \

e Some inputs are better \Z/
than others at revealing
faults, but we can’t know Program

which in advance.
e Tests with different input

than others are better s N
than tests with similar e O el
iInput.

N~ y,

10

Random Testing

e Pick inputs uniformly
from the distribution of
all inputs.

e All inputs considered
equal.

e Keep trying until you
run out of time.

e No designer bias.

¢ Removes manual
tedium.

11

Why Not Random?

12

Input Partitioning

/ & Faults are sparse in the
space of all inputs, but
A dense in some parts of the
el space where they appear.
N v
.e:’_/’_/_ i“i o _I,’: _ _E ______________) _:, Program
R / [\
By systematically trying
£ input from each partition,
we will hit the dense fault
\ : / space.

13

Equivalence Class

e \We want to divide the input domain into

equivalence classes.

o Inputs from a group can be treated as the same
thing (trigger the same outcome, result in the same
behavior, etc.).

o If one test reveals a fault, others in this class
(probably) will too. In one test does not reveal a
fault, the other ones (probably) will not either.

e Perfect partitioning is difficult, so grouping
based largely on intuition, experience, and
common sense.

14

substr (string str,

int 1ndex)

What are some possible partitions?

index <0
index =0
index >0
str with length < index
str with length = index
str with length > index

15

Choosing Input Partitions

00
00
00
00

K for equivalent output events.
K for ranges of numbers or values.
K for membership in a logical group.

K for time-dependent equivalence

classes.

_ook for equivalent operating environments.
_ook at the data structures involved.
Remember invalid inputs and boundary

conditions.

16

Look for Equivalent Outcomes

e [t is often easier to find good tests by looking

at the outputs and working backwards.

o Look at the outcomes of a feature and group input
by the outcomes they trigger.

e Example: getEmployeeStatus(employee ID)
o Manager

Developer

Marketer

Lawyer

Employee Does Not Exist

Malformed Employee ID

O O O O O

17

Look for Ranges of Values

e [f an input is intended to be a 5-digit integer
between 10000 and 99999, you want

partitions:
<10000, 10000-99999, >100000

e Other options: < 0, max int, real-valued

numbers
e You may want to consider non-numeric

values as a special partition.

18

Look for Membership in a Group

Consider the following inputs to a program:

The name of a valid Java data type.
A letter of the alphabet.
A country name.

All make up input partitions.
All groups can be subdivided further.
Look for context that an input is used in.

19

Timing Partitions

The timing and duration of an input may be as
important as the value of the input.

e Very hard and very crucial to get right.

e Trigger an electrical pulse 5ms before a
deadline, 1ms before the deadline, exactly at
the deadline, and 1ms after the deadline.

e Push the “Esc” key before, during, and after the
program is writing to (or reading from) a disc.

20

Equivalent Operating Environments

e The environment may affect the behavior of
the program. Thus, environmental factors
can be partitioned and varied when testing.

e Available memory may affect the program.
e Processor speed and architecture.
o Try with different machine specs.

e Client-Server Environment

o No clients, some clients, many clients
o Network latency
o Protocols (SSH vs FTP, HTTP vs HTTPS)

21

Data Structure Can Suggest

Partitions

Certain data structures are prone to certain
types of errors. Use those to suggest
equivalence classes.

For sequences, arrays, or lists:

e Sequences that have only a single value.

e Different sequences of different sizes.

e Derive tests so the first, middle, and last
elements of the sequence are accessed.

22

Do Not Forget Invalid Inputs!

e Likely to cause problems. Do not forget to

iIncorporate them as input partitions.

o Exception handling is a well-known problem area.

o People tend to think about what the program should
do, not what it should protect itself against.

e Take these into account with all of the other
selection criteria already discussed.

23

Input Partition Example

What are the input partitions for:

max (1nt a, i1nt b) returns (1nt c)

We could consider a or b in isolation:

a < 0, a=20, a>2~o

We should also consider the combinations of a
and b that influence the outcome of c:

a > b, a < b, a=>,

24

Creating Requirements-Based Tests

For each independently testable
feature, we want to:

[Identify J 1. Identify the representative

Representative value partitions for each input
Values

or output.
Generate Test 2. Use the partitions to form
Specifications J abstract test specifications for
the combination of inputs.
Generate 3. Then, create concrete test
Test Cases J cases by assigning concrete
values from the set of input
partitions chosen for each

possible test specification.

25

Equivalence Partitioning

Feature insert (int N, list A).

Partition inputs into equivalence classes.

1. int N is a 5-digit integer between 10000 and 99999.
Possible partitions:

<10000, 10000-99999, >100000

2. list Ais alist of length 1-10. Possible partitions:
Empty List, List of Length 1, List of Length 2-10,
List of Length > 10

26

From Partition to Test Case

Choose concrete values for each combination of input
partitions: insert (int N, list A)

int N Test Specifications:

< 10000 insert (< 10000, Empty List)
insert (10000 - 99999, 1list[1l])
insert (> 99999, 1list[2-10])

10000 - 99999

> 99999

etc
list A
Empty List Test Cases:
insert (5000, {})
List[1]
insert (96521, {11123})
List[2-10]

insert (150000, {11123, 98765})
List[>10] etc

27

Identify Constraints Among Choices

Test specifications are formed by combining

partitions for all inputs of a feature.

Number of possible combinations may be

impractically large, so:

O
O

Eliminate impossible pairings.

|dentify constraints that can remove
unnecessary options.

From the remainder, choose a practical
subset.

(called “category partition testing”)

28

Identify Constraints Among Choices

Three types of constraint:
o |F

o This partition only needs to be considered if another
property is true.

e ERROR

o This partition should cause a problem no matter
what value the other input variables have.

e SINGLE

o Only a single test with this partition is needed.

29

Constraint Example - Split

substr (string str, int 1ndex)

Str length Input index
length O [PROPERTY zeroLen value <0 | ERROR
length 1 value = 0

length >= 2 value = 1

Str contents
contains special characters Lif!zerolen | vglue > 1
contains lower case only ~ Ufzereten J yglye = MAXINT(SINGLE

contains mixed case

if 1zeroLen

30

Constraints Example - Computer

Customization

e Model °
o Model number
m | malformed [error] |
m notin database [error]

s valid
o Number of required slots
m O [single]

m | 1 [property RSNE] [single]

[Eany [property RSNE], |property

o Number of optional slots
m O[single]
m |1 [property OSNE][single]

[[gany [property OSNE], lproperty

e Product Database

o Number of models in database
m O [error]
-
m many

o Number of components in database
m O [error]
m 1 [single]
m many

Components

o

Correspondence of selection with model slots

m omitted slots [error]

m extra slots [error]

m mismatched slots [error]

m complete correspondence
Number of required components with non-empty
selections

m O [if RSNE] [error]

= Enumber required [iF RSNET ferror]

m = number required [if RSMANY]
Number of optional components with non-empty
selections

m O
m | < number optional [if OSN
m = number optional [if OSMANY]

Selected components for required (optional) slots
m some default [single]

all valid

>= 1 incompatible with slot

>= 1 incompatible with another component

>= 1 not in database [error]

31

Generate Test Cases

|

Generate Test Case
Specifications

Generate Test
Cases

|

substr (string
str, 1nt 1ndex)

Specification:

str: length >=2, contains
special characters

index: value >0

Test Case:
str = “ABCCN\n\t7”

index=5

32

Boundary Values

Basic ldea:

N\
\
\
N\
N
\
3
7/
7/
7/
4
/7

e Errors tend to occur P BN
at the boundary of a
partition. e
e Rememberto select [~ e 2
inputs from those i
boundaries. @8

’
’
’
,
,
.
R
N
N
N
N
N

33

Choosing Test Case Values

Choose test case values at the boundary (and typical)
values for each partition.

e If an inputis intended to be a 5-digit integer between
10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

,/”//*:’ ‘\\\, /"“\‘;:::555“-~,‘
0 5000 9999 \ \ 100000 150000 max int

10000 50000 || 99999

34

Activity: BILL Partitioning

Consider the BILL system you are designing for

your homework.

1. What are the independently testable features
of BILL?

2. Choose one - how would you partition the
input domain? Define the inputs and outputs
for at least one of the independently testable
features and identify partitions for each
input.

35

Activity: BILL Partitioning

. How would you partition the BILL

functionality? What are the independently
testable features?

View bill

View transaction history
View profile

Edit profile

Pay bill

36

Activity: BILL Partitioning

2. How would you partition the input domain?
Define the inputs and outputs and identify
partitions for each input.

View Bill

Inputs: Student ID, semester, contents of student
profile (each field is an input that can be varied),
profile database.

How would we partition these?

37

We Have Learned

e Requirements-based tests are derived by

©)
O

identifying independently testable features
partitioning their input/output to identify equivalence
partitions

combining inputs into test specifications

m and removing impossible combinations

then choosing concrete test values for each
specification

38

Next Time

e Arguing for the correctness of our
specifications.
O The World and Machine Model
e Reading:
o Paper: “Will it Work?”
m Avalilable on Dropbox
e Homework
o Due 09/27
o Any questions?

39

