
Developing
Requirements-Based Tests
CSCE 740 - Lecture 8 - 09/21/2017

Partitioning

Requirement Specification

Test Cases

?

● Functional testing is based
on the idea of partitioning.
○ You can’t actually test individual

requirements in isolation.
○ First, we need to partition the

specification and software into
features that can be tested.

○ Not all inputs have the same
effect.

○ We can partition the outputs of a
feature into the possible
outcomes.
■ and the inputs, by what

outcomes they cause (or
other potential groupings).

2

Creating Requirements-Based Tests

Write Testable
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and testable
requirements.

Figure out what functions can be
tested in (relative) isolation.

What are the outcomes of the
feature, and which input classes

will trigger them?

Identify abstract classes
of test cases.

Instantiate concrete
input/output pairs.

3

Today’s Goals

● How to define and select
requirements-based tests
○ Choosing representative input values.
○ Creating abstract test case “specifications”
○ Filling in the concrete input values.

4

Calculator Requirement

● Requirement 7.63: Divide-By-Zero
○ When a 0 is provided as input, it should be

intercepted. Division-by-zero indicates an unsolvable
expression.

Any problems?
● Input to what? Anything?
● Intercepted?

5

Calculator Requirement (Take 2)

● Requirement 7.63: Divide-By-Zero
○ When a 0 is provided as input as the divisor in any

use of the division function, the software shall issue
an error message indicating that this is an
unsolvable expression.

● What are the independently testable features of a
calculator?

● What are the parameters of the division feature? Their
characteristics?

● How would you test that this requirement is fulfilled?

6

Independently Testable Features

What are three independently testable features of
a spreadsheet?

7

Identifying Representative Values

● We know the
features. We know
their parameters.

● What input values
should we pick?

● What about
exhaustively
trying all inputs?

Test Input Data

Test Output Results

Program

8

Exhaustive Testing

Take the arithmetic
function for the
calculator:
add(int a, int b)

● How long would it
take to exhaustively
test this function?

Test Input Data

Test Output Results

Program

232 possible integer values
for each parameter.
= 232 x 232 = 264
combinations = 1013 tests.

1 test per nanosecond
= 105 tests per second
= 1010 seconds
or… about 600 years!

9

Not all Inputs are Created Equal

● We can’t exhaustively
test any real program.
○ We don’t need to!

● Some inputs are better
than others at revealing
faults, but we can’t know
which in advance.

● Tests with different input
than others are better
than tests with similar
input.

Test Input Data

Test Output Results

Program

Ie

Oe

10

Random Testing

● Pick inputs uniformly
from the distribution of
all inputs.

● All inputs considered
equal.

● Keep trying until you
run out of time.

● No designer bias.
● Removes manual

tedium.
11

Why Not Random?

12

Input Partitioning

Test Input Data

Test Output Results

Program

Ie

Oe

Faults are sparse in the
space of all inputs, but
dense in some parts of the
space where they appear.

By systematically trying
input from each partition,
we will hit the dense fault
space.

13

Equivalence Class

● We want to divide the input domain into
equivalence classes.
○ Inputs from a group can be treated as the same

thing (trigger the same outcome, result in the same
behavior, etc.).

○ If one test reveals a fault, others in this class
(probably) will too. In one test does not reveal a
fault, the other ones (probably) will not either.

● Perfect partitioning is difficult, so grouping
based largely on intuition, experience, and
common sense.

14

Example

substr(string str, int index)
What are some possible partitions?

● index < 0
● index = 0
● index > 0
● str with length < index
● str with length = index
● str with length > index
● ...

15

Choosing Input Partitions

● Look for equivalent output events.
● Look for ranges of numbers or values.
● Look for membership in a logical group.
● Look for time-dependent equivalence

classes.
● Look for equivalent operating environments.
● Look at the data structures involved.
● Remember invalid inputs and boundary

conditions.

16

Look for Equivalent Outcomes

● It is often easier to find good tests by looking
at the outputs and working backwards.
○ Look at the outcomes of a feature and group input

by the outcomes they trigger.
● Example: getEmployeeStatus(employee ID)

○ Manager
○ Developer
○ Marketer
○ Lawyer
○ Employee Does Not Exist
○ Malformed Employee ID

17

Look for Ranges of Values

● If an input is intended to be a 5-digit integer
between 10000 and 99999, you want
partitions:
<10000, 10000-99999, >100000

● Other options: < 0, max int, real-valued
numbers

● You may want to consider non-numeric
values as a special partition.

18

Look for Membership in a Group

Consider the following inputs to a program:
● The name of a valid Java data type.
● A letter of the alphabet.
● A country name.

● All make up input partitions.
● All groups can be subdivided further.
● Look for context that an input is used in.

19

Timing Partitions

The timing and duration of an input may be as
important as the value of the input.
● Very hard and very crucial to get right.

● Trigger an electrical pulse 5ms before a
deadline, 1ms before the deadline, exactly at
the deadline, and 1ms after the deadline.

● Push the “Esc” key before, during, and after the
program is writing to (or reading from) a disc.

20

Equivalent Operating Environments

● The environment may affect the behavior of
the program. Thus, environmental factors
can be partitioned and varied when testing.

● Available memory may affect the program.
● Processor speed and architecture.

○ Try with different machine specs.
● Client-Server Environment

○ No clients, some clients, many clients
○ Network latency
○ Protocols (SSH vs FTP, HTTP vs HTTPS)

21

Data Structure Can Suggest
Partitions

Certain data structures are prone to certain
types of errors. Use those to suggest
equivalence classes.

For sequences, arrays, or lists:
● Sequences that have only a single value.
● Different sequences of different sizes.
● Derive tests so the first, middle, and last

elements of the sequence are accessed.

22

Do Not Forget Invalid Inputs!

● Likely to cause problems. Do not forget to
incorporate them as input partitions.
○ Exception handling is a well-known problem area.
○ People tend to think about what the program should

do, not what it should protect itself against.

● Take these into account with all of the other
selection criteria already discussed.

23

Input Partition Example

What are the input partitions for:
max(int a, int b) returns (int c)

We could consider a or b in isolation:
a < 0, a = 0, a > 0
We should also consider the combinations of a
and b that influence the outcome of c:
a > b, a < b, a = b

24

Creating Requirements-Based Tests

Identify
Representative

Values

Generate Test
Case

Specifications

Generate
Test Cases

For each independently testable
feature, we want to:
1. Identify the representative

value partitions for each input
or output.

2. Use the partitions to form
abstract test specifications for
the combination of inputs.

3. Then, create concrete test
cases by assigning concrete
values from the set of input
partitions chosen for each
possible test specification.

25

Equivalence Partitioning

Feature insert(int N, list A).
Partition inputs into equivalence classes.
1. int N is a 5-digit integer between 10000 and 99999.

Possible partitions:
<10000, 10000-99999, >100000

2. list A is a list of length 1-10. Possible partitions:
Empty List, List of Length 1, List of Length 2-10,
List of Length > 10

26

From Partition to Test Case

Choose concrete values for each combination of input
partitions: insert(int N, list A)
int N

list A

Test Specifications:
insert(< 10000, Empty List)

insert(10000 - 99999, list[1])

insert(> 99999, list[2-10])

etc

Test Cases:
insert(5000, {})

insert(96521, {11123})

insert(150000, {11123, 98765})

etc

< 10000

10000 - 99999

> 99999

Empty List

List[1]

List[2-10]

List[>10]

27

Identify Constraints Among Choices

● Test specifications are formed by combining
partitions for all inputs of a feature.

● Number of possible combinations may be
impractically large, so:
○ Eliminate impossible pairings.
○ Identify constraints that can remove

unnecessary options.
○ From the remainder, choose a practical

subset.
○ (called “category partition testing”)

28

Identify Constraints Among Choices

Three types of constraint:
● IF

○ This partition only needs to be considered if another
property is true.

● ERROR
○ This partition should cause a problem no matter

what value the other input variables have.
● SINGLE

○ Only a single test with this partition is needed.

29

Constraint Example - Split

substr(string str, int index)

Str length Input index
length 0 value <0
length 1 value = 0
length >= 2 value = 1
Str contents
contains special characters value > 1
contains lower case only value = MAXINT
contains mixed case

PROPERTY zeroLen

if !zeroLen

ERROR

SINGLEif !zeroLen

if !zeroLen

30

Constraints Example - Computer
Customization

● Model
○ Model number

■ malformed [error]
■ not in database [error]
■ valid

○ Number of required slots
■ 0 [single]
■ 1 [property RSNE] [single]
■ many [property RSNE], [property

RSMANY]
○ Number of optional slots

■ 0 [single]
■ 1 [property OSNE][single]
■ many [property OSNE], [property

OSMANY]
● Product Database

○ Number of models in database
■ 0 [error]
■ 1 [single]
■ many

○ Number of components in database
■ 0 [error]
■ 1 [single]
■ many

● Components
○ Correspondence of selection with model slots

■ omitted slots [error]
■ extra slots [error]
■ mismatched slots [error]
■ complete correspondence

○ Number of required components with non-empty
selections

■ 0 [if RSNE] [error]
■ < number required [if RSNE] [error]
■ = number required [if RSMANY]

○ Number of optional components with non-empty
selections

■ 0
■ < number optional [if OSNE]
■ = number optional [if OSMANY]

○ Selected components for required (optional) slots
■ some default [single]
■ all valid
■ >= 1 incompatible with slot
■ >= 1 incompatible with another component
■ >= 1 not in database [error]

31

Generate Test Cases

Generate Test Case
Specifications

Generate Test
Cases

substr(string
str, int index)

Specification:
str: length >=2, contains
special characters
index: value > 0

Test Case:
str = “ABCC!\n\t7”
index= 5

32

Boundary Values

Basic Idea:
● Errors tend to occur

at the boundary of a
partition.

● Remember to select
inputs from those
boundaries.

33

Choosing Test Case Values

Choose test case values at the boundary (and typical)
values for each partition.
● If an input is intended to be a 5-digit integer between

10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

0 5000 9999

10000 50000 99999

100000 150000 max int

34

Activity: BILL Partitioning

Consider the BILL system you are designing for
your homework.
1. What are the independently testable features

of BILL?
2. Choose one - how would you partition the

input domain? Define the inputs and outputs
for at least one of the independently testable
features and identify partitions for each
input.

35

Activity: BILL Partitioning

1. How would you partition the BILL
functionality? What are the independently
testable features?

● View bill
● View transaction history
● View profile
● Edit profile
● Pay bill
● ...

36

Activity: BILL Partitioning

2. How would you partition the input domain?
Define the inputs and outputs and identify
partitions for each input.

View Bill
Inputs: Student ID, semester, contents of student
profile (each field is an input that can be varied),
profile database.
How would we partition these?

37

We Have Learned

● Requirements-based tests are derived by
○ identifying independently testable features
○ partitioning their input/output to identify equivalence

partitions
○ combining inputs into test specifications

■ and removing impossible combinations
○ then choosing concrete test values for each

specification

38

Next Time

● Arguing for the correctness of our
specifications.
○ The World and Machine Model

● Reading:
○ Paper: “Will it Work?”

■ Available on Dropbox
● Homework

○ Due 09/27
○ Any questions?

39

