
Architectural Style:
Representational
State Transfer (REST)
CSCE 742 - Lecture 10 - 10/04/2018

The Parts Depot Web Store

● Parts Depot, Inc wants to deploy a web
service to enable its customers to:
○ Get a list of parts.
○ Get detailed information about a particular part.
○ Submit a Purchase Order (PO).

● How would you architect this?

2

RESTful Services

● REST is an architectural style for
implementing web-based systems.
○ RESTful services provide resources (as web pages)

designed to be consumed by programs rather than
by people.

○ Design Principles:
■ Stateless
■ Resource-Based (URI)
■ Uniform Interface (GET, PUT, POST, DELETE)
■ Links describe relationships
■ Cacheable and monitorable using standard

internet tools
3

Today’s Class

● Introduce HTTP requests.
○ “The API of the Web”

● Introduce the REST architectural style.
○ Design principles
○ Fulfillment of quality properties
○ Implementation of RESTful services

4

The Interface of the Web

5

HTTP

● The Hypertext Transfer Protocol is an
communication protocol used for distributed
networked systems.
○ Defines how to exchange or transfer hypertext

between nodes in a network.
○ AKA, how your computer can access a webpage.

● Defines an API based on requests.
● Requests are performed using verbs.

○ I get a page, I post an update, I delete a photo, I
put up my information.

6

Retrieving Information (GET)

● User types into the browser: http://www.amazon.com
● The browser creates an HTTP request (no body)
● The HTTP request identifies:

○ The desired action: GET ("get me resource")
○ The target machine (www.amazon.com)

7
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Updating Information (POST)

● The user fills in a form on a webpage.
● The browser creates an HTTP request with a body

comprised of the form data
● The HTTP request identifies:

○ The action: POST ("here is some updated info")
○ The target machine (amazon.com)

● The body contains:
○ The data being POSTed (the form data)

8
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

The HTTP API

● HTTP provides a simple set of operations.
○ Amazingly, all Web exchanges are done using this

simple HTTP API.
● Based on the idea of CRUD (Create,

Retrieve, Update, and Delete)
○ PUT: “Here is some new info” (Create)
○ GET: “Give me some info” (Retrieve)
○ POST: “Here is some updated info” (Update)
○ DELETE: “Get rid of this info” (Delete)

9
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Additional Verbs

● HEAD
○ “Give me the metadata”

● TRACE
○ “Show me what changes have been made”

● OPTIONS
○ “Tell me what verbs you have implemented for this

resource.”
● PATCH

○ “Apply partial resource modification”

10

Anatomy of an HTTP Request

● <VERB> is one of the HTTP verbs
● <URI> is the URI of the resource
● <HTTP Version> is the version of HTTP
● <Request Header> contains metadata

○ Collection of key-value pairs of headers and their values.
○ Information about the message and its sender like client type,

the formats client supports, format type of the message body,
cache settings for the response, and more.

● <Request Body> is the actual message content.

11

Request Header

Request Body

VERB URI HTTP Version

HTTP Request Examples

12

GET:

POST:

GET http://www.w3.org/Protocols/rfc2616/rfc2616.html HTTP/1.1
Host: www.w3.org, Accept: text/html,application/xhtml+xml,application/xml; …,
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 …,
Accept-Encoding: gzip,deflate,sdch, Accept-Language: en-US,en;q=0.8,hi;q=0.6

POST http://MyService/Person/ HTTP/1.1
Host: MyService, Content-Type: text/xml; charset=utf-8, Content-Length: 123
<?xml version="1.0" encoding="utf-8"?>
<Person><ID>1</ID><Name>M Vaqqas</Name>
<Email>m.vaqqas@gmail.com</Email><Country>India</Country></Person>

Request Header

Request Body

VERB URI HTTP Version

http://www.w3.org
http://myservice/Person/

Anatomy of an HTTP Response

● <Response code> contains the status of the request. It
is almost always a 3-digit HTTP status code from a
pre-defined list.

● <Response Header> contains the metadata and
settings about the response message.

● <Response Body> contains the representation if the
request was successful.

13

Response Header

Response Body

HTTP Version Response Code

HTTP Response Example

● GET Response:
HTTP/1.1 200 OK
Date: Sat, 23 Aug 2014 18:31:04 GMT, Server: Apache/2, Last-Modified: Wed,
01 Sep 2004 13:24:52 GMT, Accept-Ranges: bytes, Content-Length: 32859,
Cache-Control: max-age=21600, must-revalidate, Expires: Sun, 24 Aug 2014
00:31:04 GMT, Content-Type: text/html; charset=iso-8859-1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html
xmlns='http://www.w3.org/1999/xhtml'> <head><title>Hypertext Transfer
Protocol -- HTTP/1.1</title></head> <body> …

14

Response Header

Response Body

HTTP Version Response Code

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

HTTP Status Codes

● Common Responses:
○ 200 Ok (succeeded)
○ 201 Created (a new resource)
○ 202 Accepted (not completed)
○ 204 No Content (fulfilled request, nothing to return)
○ 205 Reset content (reload page)
○ 206 Partial content
○ 301 Redirection: moved permanently
○ 302 Redirection: found (temporary move)
○ 400 Bad request
○ 401 Unauthorized
○ 402 Payment Required
○ 404 Not found

15

Representational State
Transfer (REST)

16

Representational State Transfer

● A Client references a resource using a URI.
● A representation of the resource is returned.

○ Receiving the representation places the client in a new state.
● When the client selects a hyperlink in Boeing747.html, it accesses

another resource.
● The new representation places the client into yet another state.

○ Thus, the client application transfers state with each resource
representation.

17
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

The Core Idea

● REST is modeled after the natural workflow
of the Internet.
○ Motivation: Create a design pattern for how the web

should work, such that it could serve as a guiding
framework for designing web services.

○ A well-designed web application behaves as a
network of web pages (a virtual state-machine).

○ The user progresses through an application by
selecting links (state transitions).

○ Resulting in the next page (the next state of the
application) being transferred to the user and
rendered for their use.

18

REST - Not a Standard

● REST is not a standard.
○ W3C will not put out a REST specification.
○ Microsoft does not sell a REST developer's toolkit.

● REST is just an architectural pattern.
○ You can't bottle up a pattern.
○ You can only understand it and design your web

services based on it.
● REST does prescribe the use of standards:

○ HTTP, URL
○ XML/HTML/JPEG/etc. (Resource Representations)
○ text/xml, text/html, image/gif, image/jpeg, etc.

(Resource Types, MIME Types)
19

Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Verbs in REST

● Verbs (loosely) describe actions that are
applicable to nouns

● Using different verbs for every noun would
make widespread communication impossible

● Some verbs only apply to a few nouns
○ In programming we call this “polymorphism”

● In REST, we use universal verbs
○ All RESTful services offer the same interface.
○ Based on HTTP requests and responses.

20

REST Fundamentals

● Services offer resources that can be
interacted with.

● All resources have a unique URI.
○ Often web addresses (blah.com/form.html)
○ Not necessarily HTML - resources are just concepts.
○ URIs tell a client that there's a concept somewhere.

■ Clients can then request a specific representation
of the concept from the representations the
server makes available.

● HTTP verbs are used to retrieve or
manipulate resources in a clear, universal
manner. 21

Representation Formats

● Both client and server should be able to comprehend
the format.
○ Structured content is often JSON or XML
○ JSON = Javascript Object Notation

● A representation should completely represent a
resource.
○ If there is a need to partially represent a resource,

break the resource into child resources.
○ Smaller representation = easier to transfer = less

time required to create representation = faster
services.

● The representation should be capable of linking
resources to each other via URIs.

22

Verb Guarantees

● GET, OPTIONS, TRACE, and HEAD are
safe operations.
○ They should not change the resource in any way.
○ Be careful - no technical limitations ensuring safety.

■ A service may allow deletion of a resource by
accessing a URL. A GET request to that URL
would cause deletion.

● PUT and DELETE are idempotent.
○ Repeated requests should have the same effect as a

single request.
○ Safe operations are also idempotent.
○ POST is not idempotent.

23

Elements of Web Architecture

● Firewalls decide which HTTP messages get
out, and which get in.
○ These components enforce web security.

● Routers decide where to send HTTP
messages.
○ These components manage web scalability.

● Caches decide if a saved copy of a resource
can be used.
○ These components increase web performance.

24
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Firewalls

● The firewall decides whether an HTTP
message should pass through.

● All decisions are based purely on the HTTP
header. The firewall never looks in the
payload.
○ This is fundamental!

● This message is rejected.

25
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Privacy of Content

● All three components base decisions and
actions purely upon information in the HTTP
header.
○ They should never examine the request body.

● Letter analogy: The postal service doesn’t
look inside your letter (this is illegal), they
just act based on addressing on the outside.
○ REST enforces a similar idea - the content should

not matter, just the metadata.
○ Protects privacy of data.

26

The Parts Depot Web Store

● Parts Depot, Inc wants to deploy a web
service to enable its customers to:
○ Get a list of parts.
○ Get detailed information about a particular part.
○ Submit a Purchase Order (PO).

● How would you architect this?
○ Let’s discuss the RESTful way to design this.

27

The RESTful Way of Designing the
Web Services

28
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Retrieving a List of Parts

Service: Get a list of parts
● The web service makes available a URL to a

parts list resource.
● A client posts a GET request to this URL to

get the parts list:
○ http://www.parts-depot.com/parts

● How the web service generates the parts list
is completely transparent to the client.
○ This enforces loose coupling.

29
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

http://www.parts-depot.com/parts

REST Fundamentals:
1. Create a resource for every service.
2. Identify each resource using a URI.

30

Data Returned: Parts List
<?xml version="1.0"?>
<Parts>
 <Part id="00345" href="http://www.parts-depot.com/parts/00345"/>
 <Part id="00346" href="http://www.parts-depot.com/parts/00346"/>
 <Part id="00347" href="http://www.parts-depot.com/parts/00347"/>
 <Part id="00348" href="http://www.parts-depot.com/parts/00348"/>
</Parts>

● The parts list contains links to get detailed
information about each part.

● This is a key feature of the REST pattern.
○ The client transfers from one state to the next by

examining and choosing from among the alternative
URLs in the response document.

31
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

REST Fundamental:
The data that a service returns should
link to other data.
● Thus, design your data as a network

of information.
● Contrast with OO design, which says

to encapsulate information.

32

Retrieving Details on a Part

Service: Get detailed information about a
particular part
● The web service makes available a URL to

each part resource.
● For example, a client can request

information on a specific part by posting a
GET request to
http://www.parts-depot.com/parts/00345

33
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

http://www.parts-depot.com/parts/00345

Data Returned: Part 00345
<?xml version="1.0"?>
<Part>
 <Part-ID>00345</Part-ID>
 <Name>Widget-A</Name>
 <Description>This part is used within the frap assembly</Description>
 <Specification href="http://www.parts-depot.com/parts/00345/specification"/>
 <UnitCost currency="USD">0.10</UnitCost>
 <Quantity>10</Quantity>
</Part>

● Again, data is linked to still more data
○ The specification for this part may be found by

traversing the hyperlink.
● Each response document allows the client to drill down

to get more detailed information.
34

Designing Services with
REST

35

Designing Services With REST

● Destination URL must be placed in the
HTTP header for Web components to
operate effectively.
○ Web components (firewalls, routers, caches) make

their decisions based upon information in the HTTP
Header.

○ Infrastructure will not work correctly if destination not
in URL!

● It is anti-REST if the HTTP header just
identifies an intermediate destination and the
payload identifies the final destination.

36

Designing Services With REST

● Client requests should be idempotent –
multiple calls should lead to the “same”
response.

● Server responses are “idempotent”, but only
in terms of the meaning of information and
not necessarily the content.
○ Think of a URL that always returns the current

time…

37

PUT and POST

● PUT is idempotent, POST is not.
○ No matter how many times PUT request is made

(>=1), server state will be the same.
○ Multiple POSTs may create multiple resources.

● PUT requires a full resource ID path.
○ Client creates resource.

● POST does not require full resource ID path.
○ Server notifies client of resource location.
○ Post can still be used for resource updates.

38

PUT and POST

● PUT http://MyService/Persons/
○ Won't work. PUT requires a complete URI.

● PUT http://MyService/Persons/1
○ Insert a new person with PersonID=1 if it does not

already exist, or else update the existing resource
with the payload.

● POST http://MyService/Persons/
○ Insert a new person every time this request is made

(using the payload) and generate a new PersonID.
● POST http://MyService/Persons/1

○ Update the existing person where PersonID=1

39

http://myservice/Persons/
http://myservice/Persons/
http://myservice/Persons/
http://myservice/Persons/

Handling POSTs

● Other methods are idempotent, but POST
creates new resources.

● Multiple POSTs of the same data must be
made harmless.
○ Put message ID in a header or in the message body.
○ This renders multiple posts harmless.

■ Prevents “multiple charge” issue with web stores.

40

Handling POSTs

● Many ways to do this:
○ Exact: client or server-side unique transaction ID.
○ Heuristic: check for and remove “likely duplicates”

from POST stream.
● Wasted IDs are irrelevant.

○ Duplicated POSTs are not acted on by the server
● The server must send back the same

response the original POST got, in case the
application is retrying because it lost the
response.

41

Idempotence

● What does this mean, strictly speaking?
○ Call to server must return the same thing each time?
○ No side effects?

● What about changing data?
○ Time-of-day service.
○ Each GET call returns a new time.
○ Is this still RESTful?

■ As long as the resource is constant.
■ The value does not need to be constant, just how

we access it.

42

Statelessness

● Each request contains all information
needed to service the request.

● No client state is held on the server.
● Benefits in terms of scale and availability.
● Negatives:

○ Development is harder.
○ Performance may be worse (multiple requests may

be needed to get information).

43

Caching

● An important part of scaling services is
caching generated results.

● Clients and servers can cache responses.
● Responses must be defined as cacheable or

not to prevent clients from getting out-of-date
information.

● Well-managed caching removes some
client-server interactions, improving
scalability and performance.

44

Caching

● Controlled through HTTP header metadata.
○ Date

■ Date and time when this representation was generated.
○ Last Modified

■ Date and time when the server last modified this
representation.

○ Cache-Control
■ Used to control caching. Allows specification of max or min

time, can prevent storage.
○ Expires

■ Expiration date and time for this representation.
○ Age

■ Duration passed in seconds since this was fetched from
the server. Can be inserted by an intermediary component.

45

Cache-Control Response Directives

● Public: Indicates any component can cache this
representation.

● Private: Intermediary components cannot cache this
representation, only client or server can do so.

● no-cache/no-store: Caching turned off.
● Max-age: Duration in seconds after the date-time marked in

the Date header for which this representation is valid.
● S-maxage: Similar to max-age but only meant for the

intermediary caching.
● Must-revalidate: Indicates that the representation must be

revalidated by the server if max-age has passed.
● Proxy-validate: Similar to max-validate but only meant for

the intermediary caching.

46

Well-Structured URIs

● Avoid using spaces. Use an _ (underscore)
or – (hyphen) instead.

● Remember that URIs are case insensitive.
● Stay consistent with naming conventions

throughout the service..
● URIs are long lasting.

○ If you need to change the location of a resource, do
not discard the old URI. If a request comes for the
old URI, use status code 300 and redirect the client
to the new location.

47

Well-Structured URIs

● Avoid verbs for your resource names unless
your resource is actually an operation or a
process.
○ Bad URIs:

■ http://MyService/FetchPerson/Mike
■ http://MyService/DeletePerson?id=Mike

○ Good URI:
■ http://MyService/Persons/Mike
■ You can apply verbs to this resource.

48

http://myservice/FetchPerson/Mike
http://myservice/DeletePerson?id=Mike
http://myservice/Persons/Mike

Food For Thought

What if Parts Depot has a million parts, will
there be a million static pages?

http://www.parts-depot/parts/000000
http://www.parts-depot/parts/000001
...
http://www.parts-depot/parts/999999

49
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Food For Thought

● Distinguish between logical and physical entities.
● The URLs are logical.

○ They express what resource is desired.
○ They do not identify a physical object.
○ The advantage of using a logical identifier (URL) is

that changes to the implementation of the resource
will be transparent to clients (loose coupling!).

● Parts Depot will store all parts data in a database. Code
at the Parts Depot website will receive each logical URL
request, parse it to determine which part is being
requested, query the database, and generate the part
response document to return to the client.

50
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Food For Thought
Physical URLs
http://www.parts-depot/parts/000000.html
http://www.parts-depot/parts/000001.html
...
http://www.parts-depot/parts/999999.html

51

Logical URLs
http://www.parts-depot/parts/000000
http://www.parts-depot/parts/000001
...
http://www.parts-depot/parts/999999

● Physical URLs are pointing to HTML pages.
● If there are a million parts, it will not be very

attractive to have a million static pages.
● Furthermore, changes to how these parts

data is represented will effect all clients that
were using the old representation.

Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Food For Thought

What if I have a complex query?

Show me all parts whose unit cost is under
$0.50 and for which the quantity is less than 10

How would you do that with a simple URL?

52
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Food For Thought

● For complex queries, you can provide a
service (resource) for a client to retrieve a
form that the client then fills in.

● When the client hits "Submit", the browser
will gather up the client’s responses (form
data) and generate a URL based on the
responses.
○ Often, the client doesn't generate the URL (think

about using Amazon - you start by entering the URL
to amazon.com; from then on you simply fill in forms,
and the URLs are automatically created for you).

53
Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Activity - Let’s Make a Deal

● Game where contestants are presented with
three doors.
○ One leads to a great prize, the other leads to

nothing.
○ Users select one door.
○ Host opens one of the other doors.
○ Users can then choose to open their door or the

remaining unopened door.

54

Activity - Let’s Make a Deal

You have been asked to implement Let’s Make
a Deal as a web service. You must support:
● Creation of games.
● User selection of a door.

○ The game will open one of the other doors.
● User opening of a door.
● Querying of the current state of the game and outcome

(if complete) by user.
● Deletion of a game.

Determine the appropriate resources, verbs,
and response messages.

55

Sample API

● Use status codes to determine whether an operation is reasonable.
● Once game is finished (won/lost), only GET requests are allowed.

56

Resource Verb

/games get – status of games server
post – create new game

/games/{gid} get – status of game (in_play, won, lost)
delete – delete the game resource

/games/{gid}/doors get – status of all doors

/games/{gid}/doors/{1..3} get – door status {closed, selected, opened}
put – update door status

Key Points

● REST is an architectural style for
implementing web-based systems.
○ RESTful services provide resources (as web pages)

designed to be consumed by programs rather than
by people.

○ Design Principles:
■ Stateless
■ Resource-Based (URI)
■ Uniform Interface (GET, PUT, POST, DELETE)
■ Links describe relationships
■ Cacheable and monitorable using standard

internet tools
57

Next Time

● The Information Viewpoint
○ Sources: Rozanski and Woods, Ch: 18

● Midterm coming up soon
○ Practice midterm on site, with no answers.
○ In Lec 12 (10/11), we will go over answers

● Homework:
○ Project 2 - 10/11
○ Assignment 2 - 10/25

58

