
Viewpoint: Information
CSCE 742 - Lecture 11 - 10/09/2018

Data Manipulation

● Most software manipulates data.
○ Most organizations possess massive amounts of

data on customers and products.
● The architecture requires a summary view of

static information structure and dynamic
information flow.
○ Answers questions around ownership, latency,

relationships, identifiers, and more.
● The Information View details how the

system will manipulate, manage, and
distribute information.

2

Information View

● Describes the way the system stores,
manipulates, manages, and distributes
information.
○ Modeled through static information structure models,

information lifecycle models, information ownership
models, information quality analysis, metadata
models, and volumetric models.

○ Addresses concerns around information structure,
ownership, data usage, volatility, storage models,
flow, consistency, quality, timeliness, latency, age.

3

Information Concerns

4

Information Structure and Content

● Find the elements of information structure
that have system-wide impact, and leave the
rest to data designers.
○ Focus on a small number of items core to primary

system responsibilities.
○ Focus on information-rich items that:

■ Are fundamental to stakeholder concerns.
■ Are significant to the users.
■ Have complex internal structure.
■ Can impact quality properties.
■ Are heavily used or are expected to change

frequently.
5

Information Structure and Content

● Early in the project, focus on abstract - not
physical - information.
○ Data implementation will change, important to start

controlling guiding ideas.
● Focus on system functionality. Model data

so that it supports functionality.
● Later, worry about physical considerations.

○ Location, ownership.

6

Information Purpose and Usage

● The same information can be used to
support operational processes, present
operational status, analyze historical trends.
○ How it is used is important. Different usage patterns

often have different ownership rules and may require
architectural variation.

● Many systems have a transaction store.
○ Manages information required to support operations.
○ Highly volatile.
○ System must process a large number of concurrent

read/write operations.

7

Information Purpose and Usage

● Significant reporting requirements strain the
transaction store.
○ Long-running queries disrupt access by users.

■ Increases response time and lowers throughput.
○ Use a separate reporting database to service

complex queries, fed from transaction store.
■ Optimize for compex ad hoc queries, not updates.

● Transaction store biased to current activity.
○ Historic information usually managed in a analytical

processing (OLAP) database.
○ Specialized data stores may manage information

from a specific domain or time period.
8

Information Purpose and Usage

● Most systems rely on reference data.
○ Information on people, places, things that classify

system transactions.
○ Varies by organization, but changes infrequently and

is lower in volume than transactional or operational
information.

● Important to be able to split data across
multiple databases and data warehouses.
○ Architecture must control for impact of partitioning,

speed of data read/write, data duplication.

9

Information Ownership

● Information is often distributed across
multiple locations.
○ Which copy of a data item is the most up-to-date?
○ How do you keep information synchronized in

multiple places?
○ How do you deal with information derived from

information managed and owned elsewhere?
○ What validation should be applied to data

modification, and what assumptions can be made
about data that has been validated elsewhere?

○ If the same data item can be modified in several
places, how are conflicts reconciled?

10

Information Ownership

● Insurance company sends workers to
customer homes.
○ Customer information is updated on a laptop, sent to

central database when they return to the office.
○ Customers can also update information and make

purchases online.
○ What if an online update is made before the laptop

update is made?
○ What if a laptop update fails strict validation on the

central database?
● Requires rules on how to deal with update

conflicts and failures.
11

Information Ownership

● Develop a model of information ownership.
○ An owner of an item is the system or data store that

contains the definitive version of that item.
○ Always has the “correct” value for that information.

● Defining data owners helps ensure that
consumers have the right data and that
producers write to correct location.
○ Also clarifies interfaces - interfaces are required

between data owners and consumers.

12

Identifiers and Mappings

● All data items need unique identifiers
distinguishing them from other items.
○ Customer number, serial number, ISBN.
○ The primary key, object ID, identifier.

● If different systems use different means to
identify items, these mechanisms must be
reconciled when data exchange occurs.
○ Key assignment can be volatile.
○ Reconciliation must be kept up to date with new

information as it arrives.

13

Identifiers and Mappings

● Identifiers should be invariant.
○ Not always possible. Mechanisms for creating and

changing identifiers must be carefully designed.
■ Ex: Financial derivatives are assigned temporary ID while

going through approval. Once approved, they are given a
permanent ID. Link must be established between the two.

● Difficult to decide if two items are the same.
○ Ex: New edition of a book. Could only have minor

corrections, or could be entirely new.
■ Should it have the same ISBN identifier?

● Should identifiers be user-visible?
○ Ex: Credit card numbers are unique, but may not be

shown to protect privacy.
14

Information Semantics Volatility

● Information changes frequently.
○ New fields, constraints, relationships, or entities may

be added to existing data.
● Small changes can have implications for

systems that use changing data.
○ New mandatory field added to a database requires

every process that creates or updates data to
provide a value for that field.

● Managed through formal process of data
model change control.
○ Data change only implemented once all parties have

implemented required code changes.
15

Information Semantics Volatility

● Decouple information semantics from the
physical structure used to store it.
○ Store information structure in a structured text format

(JSON, XML, YAML).
○ XML data management standards allow definition of

a schema for XML documents.
○ Changes to schema can be implemented quickly.
○ Trade-off: XML-based systems can be less scalable

due to XML management overhead and lack of
database optimization support.

16

Information Flow

● How does information move around the
system? How is it accessed and modified by
system elements?
○ Where is data created and destroyed?
○ Where is data accessed, modified, and enriched?
○ How do individual data items change as they move

around the system?
● Architecture must identify the most important

information flows.
○ May be part of functional view.

17

Information Consistency

● Information held in different parts of the
system must be compatible, congruent, and
not in conflict.

● Transactions are updates that occur as an
atomic unit (all updates accepted or none).
○ Transaction management ensures right outcome by

committing updates only if all updates can be
applied.

○ Ex: Customer transfers $500 from CHECKING to
SAVINGS. Implemented as two updates. Important
that either both updates work or neither do.

18

Information Consistency

● Transaction management across systems or
processes is complicated to build or operate.

● Compensating Transactions:
○ Each data update is committed individually.
○ If a later update fails, each committed update is

reversed with a new transaction with an equal and
opposite effect.
■ If withdrawal succeeds and deposit fails, a compensating

deposit of $500 to the checking account will restore the
original state.

○ Do not require locks over separate data stores at the
same time.

○ Problem: what if the compensating transaction fails?
19

Information Consistency

● Eventual Consistency:
○ Favor high availability over consistency.
○ Guarantees that all instances of the same data will

eventually be updated to a value, without guarantee
of when this will occur.
■ Used by DNS system, NoSQL databases

○ BASE principles:
■ Basic Availability: Data should be available in the presence

of multiple failures. Instead of a central data store, spread
data across many systems with high replication.

■ Soft State: Data consistency is left to developer, not the
database.

■ Eventual Consistency: Data will converge to consistency.

20

Information Quality

● Are data values in your system accurate?
● Affects the architecture of systems that use

information from a variety of sources.
○ How will data quality be assessed and monitored?
○ What minimum quality criteria must be met?
○ How will these criteria be enforced?
○ How will poor-quality information be improved?
○ Can good-quality information be corrupted by

information of lesser quality?
○ If so, should this be prevented or checked?
○ Is it possible for information quality to degrade as it

flows around the system?
21

Information Quality

● May be necessary to develop tools for
monitoring or assessing information quality.

● Data may need to be held in a “holding”
state for human repair.
○ Often managed through workflow.
○ List of tasks (i.e., correct customer names) is

managed in a central database.
○ Tasks are assigned to workers and the system

tracks status.
○ Tasks can be standard or ad hoc.
○ Company sets target service level.

22

Information Timeliness

● In distributed environments, information can
be out of date.
○ Commodity brokerage system accepts information

feeds and filters through a central gateway.
○ After returning from downtime, the gateway floods

subscribers with messages that contain old price
information.

○ Gateway should be modified so that, after a failure, it
discards cached messages older than a threshold.
Will enable faster recovery.

23

Information Timeliness

● Information transfer from producers to
consumers takes time.
○ If lag cannot be reduced to near-zero, architecture

must deal with impact of inconsistent information.
○ Time lag measured in terms of length of time

between data update at source and the updated
value being available throughout system.

● Take into account age of data items (since
last update by data source).
○ Discard information that is older than a threshold to

prevent misuse.

24

Information Timeliness

● Identify when time-based inconsistency can
occur and handle them:
○ Tag important data items with a “last updated” date

and time.
○ Define “currency windows” for significant data items.
○ Warn users when information may be outdated.
○ Hide or discard information that may be too old.
○ Reduce latency by means of faster interfaces or

direct access to data sources.

25

Information Archival and Retention

● Information is often retained for legal and
historical analysis.

● Eventually, older and less-useful information
should be transferred to offline storage.
○ Scope of archived information must be carefully

defined.
○ Cannot be information needed to support production

activities or used in regular analysis.
○ Selected on basis of age and usefulness.

26

Information Archival and Retention

● Archival strategy impacts architecture.
○ Archiving large volumes of information may make

some systems fully or partly unavailable for
significant periods of time.

○ Physical disk sizing needs to take into account the
length of time information will be retained.

○ Need to define the processes that move production
information to archive media,

○ Need to take special actions to ensure the integrity
and consistency of production and archive storage.

○ There may be an impact on the network
infrastructure if archive storage is remote.

27

Information Modeling

28

Information Models

● Static Information Models
○ Analyze the static structure of information.

● Information Flow Models
○ Analyze the dynamic movement of information

between elements of the system and the world.
● Information Lifecycle Models

○ Analyze the way information changes over time.

29

Static Information Structure Models

● Analyze the static structure of the data.
○ The important data elements and the relationships

among them.
● Entity-relationship modeling

○ Important data items are entities.
○ Their parts are called attributes.
○ We define relations between entities based on

information semantics.
○ Relations have cardinality based on how many of an

entity can be related to an instance of the other.
○ Similar to class diagrams, but omitting methods.

30

Entity-Relationship Example

31

Publisher

name: string
address: string
location: string

Author

name: string
account: int

Book

title: string
isbn: string

Member

name: string
memberID: int

CheckOut

DueDate: Date

1

0..*

1..*

1..*

1..*
1

Star Schema

● Data model used in data warehouses.
● Facts hold measurable, quantitative data.

○ Sale price, sale quantity, sale time
● Dimensions are descriptive attributes related

to fact data.
○ Product models, product colors, product sizes

● Fact tables contain facts at different levels.
○ Generally consist of numeric values and foreign keys

to dimensional data where descriptive information is
kept.

32

Star Schema

● Dimensional tables model different levels at
which information can be aggregated.
○ Usually contain fewer records than fact tables, but

each record may have a large number of attributes.
○ Describe the fact data.

● An aggregated value can be retrieved in a
single database read, rather than querying
and summarizing all underlying transactions.
○ Simplified queries - join logic is simpler than in highly

normalized schema.
○ Improved query performance

33

Star Schema Example

34

SELECT P.Brand, S.Country AS Countries, SUM(F.Units_Sold)

FROM Fact_Sales F
INNER JOIN Dim_Date D ON (F.Date_Id = D.Id)
INNER JOIN Dim_Store S ON (F.Store_Id = S.Id)
INNER JOIN Dim_Product P ON (F.Product_Id = P.Id)

WHERE D.Year = 1997 AND P.Product_Category = 'tv'

GROUP BY P.Brand, S.Country

From https://en.wikipedia.org/wiki/Star_schema

Structure Modeling Activities

● Identify the important data entities.
○ Inspect the use cases and scenarios for nouns.

● Normalization reduces model to purest form.
○ No repeated, redundant, duplicated information.
○ Sometimes helpful to leave data unnormalized in

architecture so that you don’t miss anything.
● Perform domain analysis to define legal

value ranges for data attributes.
○ Not performed rigorously at architectural level, but a

basic pass can inform your model.

35

Information Flow Models

● Analyze dynamic movement of information
between elements of the system and the
outside world.

● Flows represent information transferred from
one component to another.
○ Associated with a direction, scope of information

transferred, volumetric information.
○ In a physical model, also includes how the

information is transferred (flat files, JSON, XML
messages).

36

Information Flow Models

37

Bookseller Member Librarian

Acquire Book

Check Out Return

Dispose OfBook

Information Lifecycle Models

● Lifecycle models analyze the way
information values change over time.

● Entity Life Models
○ Model transitions data items undergo in response to

external events, from creation to final deletion.
○ Can be a useful cross-check to ensure there is

processing to deal with all of the life events for that
entity.

○ Helps ensure entities are created in a controlled
manner, and that all entities can be deleted.

38

Entity Life Model

● A book is initially published
● It is then acquired by the library
● Once on the shelves it alternates between available and checked out…
● Until it is disposed of.

39

UML State Diagram

● Model overall changes in an element’s state
in response to stimuli.

● Often used to model systems. Can also
model state of a data entity.

40

Information Ownership Model

● Define the system that is the “owner” of each
data item in the architecture.
○ A data item being a table or field.

● Classes of ownership:
○ Owners hold definitive value for an item.
○ Creators create new instances of the item.
○ Updaters modify existing instances of the item.
○ Deleters delete instances of the item.
○ Readers can read, but not change, the item.
○ Copiers hold a read-only copy of the item.
○ Validaters perform validation of the item.
○ Combination of the above.

41

Information Ownership Model

● Modeled using a grid, with systems and data
stores on one axis and data items on other.

● Shows conflicts in data ownership.

42

Problems and Pitfalls

43

Representation Incompatibility

● Simple: Different systems represent
field-level information in different ways.
○ Different models (polar vs cartesian coordinates)
○ Different encoding (metric vs imperial)

● Difficult: Different business models
○ Ex: Architecture integrates phone and sales systems
○ Phone customers may have multiple or shared

numbers, each number has a “phone account”.
○ Sales system requires “customer accounts”.
○ These two are not compatible.

44

Representation Incompatibility

● Reconciling business models requires
complex processing.
○ Service that links customers and accounts.
○ Manages and stores links itself.
○ Would sit at center of architecture, require high

performance, scalability, availability.
● Risk reduction:

○ Develop a common high-level data structure model.
○ Include external entities in modeling efforts.
○ Develop a data abstraction layer to hide

incompatibilities from other parts of architecture.

45

Interface Complexity
● Integrating n data-sharing

systems requires n (n - 1) / 2
interfaces.
○ Change to a system require

changes to all interfaces
accessing that system.

● Can be fixed by applying an
integration hub.
○ Adapter performs

system-specific translation.
○ Hub handles message

routing, resilience.
○ If a system changes, only

the adapter needs to
change.

46

Overloaded Central Database

● Central databases are simpler, cleaner. Do
not need update reconciliation or complex
interfaces.
○ Single point of failure, performance bottleneck,

imposes geographical constraints.
○ Can cause data model to be overloaded.
○ Can impose design and runtime constraints.

● Risk Reduction:
○ Consider likely growth rate.
○ Develop strategies for later data partitioning.
○ Plan for scalability.

47

Inconsistent Distributed Databases

● Many problems are eliminated by replicating
data in different locations.
○ Bring data close to where it is needed. Reduces

latency and improves availability.
○ Often lead to information inconsistency due to

replication delay.
○ Updates are hard to manage.

● Risk Reduction:
○ Have strategies in place for dealing with

inconsistency.
○ Ensure there are tools and processes for detecting

data inconsistency.
48

Excessive Information Latency

● Overly complex architectures or
architectures not designed for information
volume can lead to excessive latency.
○ Latency issues from external systems are out of your

control.
● Identify expected latency early.

○ Can identify problem areas and address.
○ Close distance between providers and consumers.
○ Obtain agreement on latency requirements from

stakeholders and validate that you meet them.

49

Food for Thought

● Do you have an appropriate level of detail in
your data models?
○ (e.g., no more than 20–30 entities)

● Does the data model support processing
requirements now and in the future?

● Are keys clearly identified for all entities?
○ When an entity is distributed across multiple

systems or locations with different keys, are the
mappings between these keys defined?

○ Do you have processes for maintaining these
mappings when data items are created?

50

Food for Thought

● Have you taken account of data that is
derived from data managed elsewhere?

● Have you defined strategies for resolving
data ownership conflicts?

● Are latency requirements clearly identified,
and are mechanisms in place to ensure that
these are achieved?

● Do you have clear strategies for
transactional consistency across distributed
data stores?

51

Food for Thought

● Have you considered which data storage
models to use for the data stores?

● Do you have mechanisms in place for
validating migrated data?

● Have you defined sufficient storage and
processing capacity for archiving?
○ For restoring archived data?

52

Key Points

● The Information View describes the way the
system stores, manipulates, manages, and
distributes information.
○ Modeled through static information structure models,

information lifecycle models, information ownership
models, information quality analysis, metadata
models, and volumetric models.

○ Addresses concerns around information structure,
ownership, data usage, volatility, storage models,
flow, consistency, quality, timeliness, latency, age.

53

Next Time

● Midterm Review
○ Practice midterm on site.
○ We will go over answers next time.

● Homework:
○ Project Part 2 - Due on the 11th
○ Assignment 2 - Due on the 25th

54

