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Data Manipulation

● Most software manipulates data.
○ Most organizations possess massive amounts of 

data on customers and products.
● The architecture requires a summary view of 

static information structure and dynamic 
information flow.
○ Answers questions around ownership, latency, 

relationships, identifiers, and more.
● The Information View details how the 

system will manipulate, manage, and 
distribute information.
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Information View

● Describes the way the system stores, 
manipulates, manages, and distributes 
information.
○ Modeled through static information structure models, 

information lifecycle models, information ownership 
models, information quality analysis, metadata 
models, and volumetric models.

○ Addresses concerns around information structure,  
ownership, data usage, volatility, storage models, 
flow, consistency, quality, timeliness, latency, age.

3



Information Concerns
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Information Structure and Content

● Find the elements of information structure 
that have system-wide impact, and leave the 
rest to data designers.
○ Focus on a small number of items core to primary 

system responsibilities.
○ Focus on information-rich items that:

■ Are fundamental to stakeholder concerns.
■ Are significant to the users.
■ Have complex internal structure.
■ Can impact quality properties.
■ Are heavily used or are expected to change 

frequently.
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Information Structure and Content

● Early in the project, focus on abstract - not 
physical - information. 
○ Data implementation will change, important to start 

controlling guiding ideas.
● Focus on system functionality. Model data 

so that it supports functionality.
● Later, worry about physical considerations.

○ Location, ownership.
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Information Purpose and Usage

● The same information can be used to 
support operational processes, present 
operational status, analyze historical trends. 
○ How it is used is important. Different usage patterns 

often have different ownership rules and may require 
architectural variation. 

● Many systems have a transaction store.
○ Manages information required to support operations.
○ Highly volatile.
○ System must process a large number of concurrent 

read/write operations.
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Information Purpose and Usage

● Significant reporting requirements strain the 
transaction store.
○ Long-running queries disrupt access by users.

■ Increases response time and lowers throughput.
○ Use a separate reporting database to service 

complex queries, fed from transaction store.
■ Optimize for compex ad hoc queries, not updates. 

● Transaction store biased to current activity.
○ Historic information usually managed in a analytical 

processing (OLAP) database.
○ Specialized data stores may manage information 

from a specific domain or time period. 
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Information Purpose and Usage

● Most systems rely on reference data.
○ Information on people, places, things that classify 

system transactions.
○ Varies by organization, but changes infrequently and 

is lower in volume than transactional or operational 
information. 

● Important to be able to split data across 
multiple databases and data warehouses.
○ Architecture must control for impact of partitioning, 

speed of data read/write, data duplication.
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Information Ownership

● Information is often distributed across 
multiple locations.
○ Which copy of a data item is the most up-to-date?
○ How do you keep information synchronized in 

multiple places?
○ How do you deal with information derived from 

information managed and owned elsewhere?
○ What validation should be applied to data 

modification, and what assumptions can be made 
about data that has been validated elsewhere?

○ If the same data item can be modified in several 
places, how are conflicts reconciled?
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Information Ownership

● Insurance company sends workers to 
customer homes.
○ Customer information is updated on a laptop, sent to 

central database when they return to the office.
○ Customers can also update information and make 

purchases online.
○ What if an online update is made before the laptop 

update is made?
○ What if a laptop update fails strict validation on the 

central database?
● Requires rules on how to deal with update 

conflicts and failures.
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Information Ownership

● Develop a model of information ownership.
○ An owner of an item is the system or data store that 

contains the definitive version of that item. 
○ Always has the “correct” value for that information.

● Defining data owners helps ensure that 
consumers have the right data and that 
producers write to correct location.
○ Also clarifies interfaces - interfaces are required 

between data owners and consumers.
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Identifiers and Mappings

● All data items need unique identifiers 
distinguishing them from other items.
○ Customer number, serial number, ISBN.
○ The primary key, object ID, identifier.

● If different systems use different means to 
identify items, these mechanisms must be 
reconciled when data exchange occurs.
○ Key assignment can be volatile.
○ Reconciliation must be kept up to date with new 

information as it arrives.
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Identifiers and Mappings

● Identifiers should be invariant.
○ Not always possible. Mechanisms for creating and 

changing identifiers must be carefully designed. 
■ Ex: Financial derivatives are assigned temporary ID while 

going through approval. Once approved, they are given a 
permanent ID. Link must be established between the two.

● Difficult to decide if two items are the same.
○ Ex: New edition of a book. Could only have minor 

corrections, or could be entirely new.
■ Should it have the same ISBN identifier?

● Should identifiers be user-visible?
○ Ex: Credit card numbers are unique, but may not be 

shown to protect privacy.
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Information Semantics Volatility

● Information changes frequently.
○ New fields, constraints, relationships, or entities may 

be added to existing data.
● Small changes can have implications for 

systems that use changing data.
○ New mandatory field added to a database requires 

every process that creates or updates data to 
provide a value for that field.

● Managed through formal process of data 
model change control.
○ Data change only implemented once all parties have 

implemented required code changes.
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Information Semantics Volatility

● Decouple information semantics from the 
physical structure used to store it.
○ Store information structure in a structured text format 

(JSON, XML, YAML).
○ XML data management standards allow definition of 

a schema for XML documents.
○ Changes to schema can be implemented quickly.
○ Trade-off: XML-based systems can be less scalable 

due to XML management overhead and lack of 
database optimization support. 
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Information Flow

● How does information move around the 
system? How is it accessed and modified by 
system elements?
○ Where is data created and destroyed?
○ Where is data accessed, modified, and enriched?
○ How do individual data items change as they move 

around the system?
● Architecture must identify the most important 

information flows. 
○ May be part of functional view.
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Information Consistency

● Information held in different parts of the 
system must be compatible, congruent, and 
not in conflict.

● Transactions are updates that occur as an 
atomic unit (all updates accepted or none).
○ Transaction management ensures right outcome by 

committing updates only if all updates can be 
applied.

○ Ex: Customer transfers $500 from CHECKING to 
SAVINGS. Implemented as two updates. Important 
that either both updates work or neither do.
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Information Consistency

● Transaction management across systems or 
processes is complicated to build or operate.

● Compensating Transactions:
○ Each data update is committed individually.
○ If a later update fails, each committed update is 

reversed with a new transaction with an equal and 
opposite effect.
■ If withdrawal succeeds and deposit fails, a compensating 

deposit of $500 to the checking account will restore the 
original state.

○ Do not require locks over separate data stores at the 
same time. 

○ Problem: what if the compensating transaction fails?
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Information Consistency

● Eventual Consistency:
○ Favor high availability over consistency.
○ Guarantees that all instances of the same data will 

eventually be updated to a value, without guarantee 
of when this will occur.
■ Used by DNS system, NoSQL databases

○ BASE principles:
■ Basic Availability: Data should be available in the presence 

of multiple failures. Instead of a central data store, spread 
data across many systems with high replication.

■ Soft State: Data consistency is left to developer, not the 
database.

■ Eventual Consistency: Data will converge to consistency.
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Information Quality

● Are data values in your system accurate?
● Affects the architecture of systems that use 

information from a variety of sources.
○ How will data quality be assessed and monitored?
○ What minimum quality criteria must be met?
○ How will these criteria be enforced?
○ How will poor-quality information be improved? 
○ Can good-quality information be corrupted by 

information of lesser quality?
○ If so, should this be prevented or checked?
○ Is it possible for information quality to degrade as it 

flows around the system?
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Information Quality

● May be necessary to develop tools for 
monitoring or assessing information quality.

● Data may need to be held in a “holding” 
state for human repair.
○ Often managed through workflow. 
○ List of tasks (i.e., correct customer names) is 

managed in a central database.
○ Tasks are assigned to workers and the system 

tracks status.
○ Tasks can be standard or ad hoc.
○ Company sets target service level.
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Information Timeliness

● In distributed environments, information can 
be out of date.
○ Commodity brokerage system accepts information 

feeds and filters through a central gateway.
○ After returning from downtime, the gateway floods 

subscribers with messages that contain old price 
information.

○ Gateway should be modified so that, after a failure, it 
discards cached messages older than a threshold. 
Will enable faster recovery.
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Information Timeliness

● Information transfer from producers to 
consumers takes time.
○ If lag cannot be reduced to near-zero, architecture 

must deal with impact of inconsistent information.
○ Time lag measured in terms of length of time 

between data update at source and the updated 
value being available throughout system.

● Take into account age of data items (since 
last update by data source). 
○ Discard information that is older than a threshold to 

prevent misuse.
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Information Timeliness

● Identify when time-based inconsistency can 
occur and handle them:
○ Tag important data items with a “last updated” date 

and time.
○ Define “currency windows” for significant data items.
○ Warn users when information may be outdated.
○ Hide or discard information that may be too old.
○ Reduce latency by means of faster interfaces or 

direct access to data sources.
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Information Archival and Retention

● Information is often retained for legal and 
historical analysis.

● Eventually, older and less-useful information 
should be transferred to offline storage.
○ Scope of archived information must be carefully 

defined.
○ Cannot be information needed to support production 

activities or used in regular analysis.
○ Selected on basis of age and usefulness.
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Information Archival and Retention

● Archival strategy impacts architecture.
○ Archiving large volumes of information may make 

some systems fully or partly unavailable for 
significant periods of time.

○ Physical disk sizing needs to take into account the 
length of time information will be retained.

○ Need to define the processes that move production 
information to archive media,

○ Need to take special actions to ensure the integrity 
and consistency of production and archive storage.

○ There may be an impact on the network 
infrastructure if archive storage is remote.
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Information Modeling
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Information Models

● Static Information Models
○ Analyze the static structure of information.

● Information Flow Models
○ Analyze the dynamic movement of information 

between elements of the system and the world.
● Information Lifecycle Models

○ Analyze the way information changes over time.
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Static Information Structure Models

● Analyze the static structure of the data.
○ The important data elements and the relationships 

among them.
● Entity-relationship modeling

○ Important data items are entities.
○ Their parts are called attributes.
○  We define relations between entities based on 

information semantics.
○ Relations have cardinality based on how many of an 

entity can be related to an instance of the other.
○ Similar to class diagrams, but omitting methods.
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Entity-Relationship Example
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Publisher

name: string
address: string
location: string

Author

name: string
account: int

Book

title: string
isbn: string

Member

name: string
memberID: int

CheckOut

DueDate: Date

1

0..*

1..*

1..*

1..*
1



Star Schema

● Data model used in data warehouses.
● Facts hold measurable, quantitative data.

○ Sale price, sale quantity, sale time
● Dimensions are descriptive attributes related 

to fact data. 
○ Product models, product colors, product sizes

● Fact tables contain facts at different levels.
○ Generally consist of numeric values and foreign keys 

to dimensional data where descriptive information is 
kept.
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Star Schema

● Dimensional tables model different levels at 
which information can be aggregated.
○ Usually contain fewer records than fact tables, but 

each record may have a large number of attributes.
○ Describe the fact data.

● An aggregated value can be retrieved in a 
single database read, rather than querying 
and summarizing all underlying transactions.
○ Simplified queries - join logic is simpler than in highly 

normalized schema. 
○ Improved query performance
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Star Schema Example
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SELECT P.Brand, S.Country AS Countries, SUM(F.Units_Sold)

FROM Fact_Sales F
INNER JOIN Dim_Date D    ON (F.Date_Id = D.Id)
INNER JOIN Dim_Store S   ON (F.Store_Id = S.Id)
INNER JOIN Dim_Product P ON (F.Product_Id = P.Id)

WHERE D.Year = 1997 AND  P.Product_Category = 'tv'

GROUP BY P.Brand, S.Country

From https://en.wikipedia.org/wiki/Star_schema



Structure Modeling Activities

● Identify the important data entities.
○ Inspect the use cases and scenarios for nouns.

● Normalization reduces model to purest form.
○ No repeated, redundant, duplicated information.
○ Sometimes helpful to leave data unnormalized in 

architecture so that you don’t miss anything.
● Perform domain analysis to define legal 

value ranges for data attributes.
○ Not performed rigorously at architectural level, but a 

basic pass can inform your model.

35



Information Flow Models

● Analyze dynamic movement of information 
between elements of the system and the 
outside world.

● Flows represent information transferred from 
one component to another.
○ Associated with a direction, scope of information 

transferred, volumetric information.
○ In a physical model, also includes how the 

information is transferred (flat files, JSON, XML 
messages).
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Information Flow Models
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Bookseller Member Librarian

Acquire Book

Check Out Return

Dispose OfBook



Information Lifecycle Models

● Lifecycle models analyze the way 
information values change over time.

● Entity Life Models
○ Model transitions data items undergo in response to 

external events, from creation to final deletion.
○ Can be a useful cross-check to ensure there is 

processing to deal with all of the life events for that 
entity. 

○ Helps ensure entities are created in a controlled 
manner, and that all entities can be deleted.
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Entity Life Model

● A book is initially published
● It is then acquired by the library
● Once on the shelves it alternates between available and checked out…
● Until it is disposed of.
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UML State Diagram

● Model overall changes in an element’s state 
in response to stimuli.

● Often used to model systems. Can also 
model state of a data entity.
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Information Ownership Model

● Define the system that is the “owner” of each 
data item in the architecture.
○ A data item being a table or field.

● Classes of ownership:
○ Owners hold definitive value for an item.
○ Creators create new instances of the item.
○ Updaters modify existing instances of the item.
○ Deleters delete instances of the item.
○ Readers can read, but not change, the item.
○ Copiers hold a read-only copy of the item.
○ Validaters perform validation of the item.
○ Combination of the above.
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Information Ownership Model

● Modeled using a grid, with systems and data 
stores on one axis and data items on other. 

● Shows conflicts in data ownership.

42



Problems and Pitfalls
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Representation Incompatibility

● Simple: Different systems represent 
field-level information in different ways.
○ Different models (polar vs cartesian coordinates)
○ Different encoding (metric vs imperial)

● Difficult: Different business models
○ Ex: Architecture integrates phone and sales systems
○ Phone customers may have multiple or shared 

numbers, each number has a “phone account”. 
○ Sales system requires “customer accounts”.
○ These two are not compatible.
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Representation Incompatibility

● Reconciling business models requires 
complex processing.
○ Service that links customers and accounts.
○ Manages and stores links itself.
○ Would sit at center of architecture, require high 

performance, scalability, availability.
● Risk reduction:

○ Develop a common high-level data structure model.
○ Include external entities in modeling efforts.
○ Develop a data abstraction layer to hide 

incompatibilities from other parts of architecture.
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Interface Complexity
● Integrating n data-sharing 

systems requires n (n - 1) / 2 
interfaces.
○ Change to a system require 

changes to all interfaces 
accessing that system.

● Can be fixed by applying an 
integration hub.
○ Adapter performs 

system-specific translation.
○ Hub handles message 

routing, resilience.
○ If a system changes, only 

the adapter needs to 
change.

46



Overloaded Central Database

● Central databases are simpler, cleaner. Do 
not need update reconciliation or complex 
interfaces.
○ Single point of failure, performance bottleneck, 

imposes geographical constraints.
○ Can cause data model to be overloaded.
○ Can impose design and runtime constraints.

● Risk Reduction:
○ Consider likely growth rate.
○ Develop strategies for later data partitioning.
○ Plan for scalability.
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Inconsistent Distributed Databases

● Many problems are eliminated by replicating 
data in different locations.
○ Bring data close to where it is needed. Reduces 

latency and improves availability.
○ Often lead to information inconsistency due to 

replication delay.
○ Updates are hard to manage.

● Risk Reduction:
○ Have strategies in place for dealing with 

inconsistency.
○ Ensure there are tools and processes for detecting 

data inconsistency.
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Excessive Information Latency

● Overly complex architectures or 
architectures not designed for information 
volume can lead to excessive latency.
○ Latency issues from external systems are out of your 

control.
● Identify expected latency early.

○ Can identify problem areas and address.
○ Close distance between providers and consumers.
○ Obtain agreement on latency requirements from 

stakeholders and validate that you meet them.
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Food for Thought

● Do you have an appropriate level of detail in 
your data models? 
○ (e.g., no more than 20–30 entities)

● Does the data model support processing 
requirements now and in the future?

● Are keys clearly identified for all entities?
○ When an entity is distributed across multiple 

systems or locations with different keys, are the 
mappings between these keys defined? 

○ Do you have processes for maintaining these 
mappings when data items are created?
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Food for Thought

● Have you taken account of data that is 
derived from data managed elsewhere?

● Have you defined strategies for resolving 
data ownership conflicts?

● Are latency requirements clearly identified, 
and are mechanisms in place to ensure that 
these are achieved?

● Do you have clear strategies for 
transactional consistency across distributed 
data stores?
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Food for Thought

● Have you considered which data storage 
models to use for the data stores?

● Do you have mechanisms in place for 
validating migrated data?

● Have you defined sufficient storage and 
processing capacity for archiving?
○ For restoring archived data?
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Key Points

● The Information View describes the way the 
system stores, manipulates, manages, and 
distributes information.
○ Modeled through static information structure models, 

information lifecycle models, information ownership 
models, information quality analysis, metadata 
models, and volumetric models.

○ Addresses concerns around information structure,  
ownership, data usage, volatility, storage models, 
flow, consistency, quality, timeliness, latency, age.

53



Next Time

● Midterm Review
○ Practice midterm on site.
○ We will go over answers next time.

● Homework: 
○ Project Part 2 - Due on the 11th
○ Assignment 2 - Due on the 25th
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