
Viewpoint: 
Concurrency
CSCE 742 - Lecture 14 - 10/25/2018



Software Evolution

● In the beginning: 
○ Information systems designed to run in batch mode 

on large central computers.
● Now:

○ Moore’s law dictates more cores, not faster cores.
○ More focus on real-time response.
○ Information systems are inherently concurrent

● Control systems have always been 
concurrent.

● Architects must describe and manage 
concurrency

2



The Concurrency View

● Describes the concurrent structure of the 
system and maps functional elements to 
concurrency units to identify the parts of the 
system that can execute concurrently.

● Describes how concurrent execution is 
coordinated and controlled. 
○ Process Model: Shows processes, threads, and 

interprocess communication structure.
○ State Model: Shows the set of states runtime 

elements can be in, and how to transition between 
them

3



Concurrency Versus Parallelism
● In a parallel environment, 

operations can be performed 
simultaneously on duplicated, 
independent resources.

● In a concurrent environment, 
multiple processes share 
resources.
○ Multiple actions can take 

place concurrently, but 
only as allowed given 
resource constraints.

○ Must consider shared 
resources, multiple 
consumers/producers, 
out of order events, 
deadlocks. 4



Why Design for Concurrency?

● Scale
● Redundancy
● Security / Isolation
● Better utilization of 

hardware 
resources

● Cost: use cheaper 
“commodity” 
hardware

● Future flexibility
5



Concurrency Elements

● Processes
○ An operating system process.

■ Address space providing an execution 
environment for threads of execution.

○ Processes are independent, using interprocess 
communication mechanisms to work together.

● Threads
○ A thread of execution that can be independently 

scheduled within a process.
○ Represented through process decomposition.
○ Implementation detail, but affects quality properties, 

so may need to be discussed.
6



Concurrency Elements

● Process Groups
○ Architecture may group processes into a “single 

entity” to allow less important concerns to be 
deferred until later stages of design.
■ DBMS: Will be concurrent, but we don’t need to know how 

many/what processes it uses.
■ Can be modelled as a single black box, as it is independent 

and has well-defined interfaces.
○ Complex systems may be modeled in layers, with 

lower layers represented at higher levels as process 
groups.

7



Interprocess Communication

● Processes are isolated. One process cannot 
directly change another process.
○ Processes must work together through interprocess 

communication mechanisms.
○ Depicted as connectors in the concurrency model.

● Procedure Call Mechanisms
○ Invoke an operation on a process. 
○ Remote procedure calls or message passing.

● Execution Coordination Mechanisms
○ Allow processes to signal each other when events 

occur, using semaphores and mutexes.
○ Limited to processes and threads on one machine.

8



Interprocess Communication

● Data-Sharing Mechanisms
○ Allows processes to share data structures and 

access them concurrently.
○ Shared memory, databases, file storage.

● Messaging Mechanisms
○ Transmit data directly from one task to another.
○ Queuing allows consumers to read messages from a 

queue, then deletes the message (delivered to one 
consumer).

○ Publisher/Subscriber introduces topics where 
consumers indicate types of messages of interest. 
Message consumed by all interested consumers.

9



Concurrency Concerns

10



Task Structure

● Task = Generic term for process or thread.
● Task structure: the overall strategy for using 

concurrency in the system.
○ Partitions the system’s workload into tasks.
○ Defines how system functionality is distributed 

across tasks.
○ May define how tasks are mapped to OS threads.

■ May need to abstract from individual processes 
and consider groups of processes. 

11



Task Structure

● Details addressed depend on the needs of 
the system.
○ A complex system with a small footprint may only 

have 1-2 “tasks”, but those may need to be mapped 
to a larger number of threads to meet quality goals.
■ Focus of view on thread level.
■ Explain how threads function and communicate, 

rather than one the core tasks.
○ Large enterprise system with hundreds of 

processes, each with dozens of threads.
■ Focus on “task” level (groups of related 

processes), emphasize architectural significance.
12



Mapping Functionality to Tasks

● How do we map elements to concurrent 
tasks?

● Affects performance, efficiency, reliability, 
flexibility of the architecture.

● Which functional elements need to be 
isolated from each other?
○ Separate tasks/processes.

● Which need to cooperate closely?
○ Same task/process.

13



Interprocess Communication

● If all elements part of one process, 
communication and control are simple.
○ Shared memory space, can just transfer control via 

method calls.
● Communication between processes is more 

complex, especially across machines.
● Can communicate through remote procedure 

calls, messaging, shared memory, queues.
○ Each has strengths and weaknesses to consider.
○ Each impacts quality properties.

■ Message queue latency causes scalability issues
14



State Management

● Concurrent systems often process 
operations through state machine 
implementations.
○ Such as locking mechanisms and shared resource 

management.
● Concurrency view must define set of states 

each element can be in and how states 
transition.
○ Part of the runtime behavior of the system.

15



Synchronization and Integrity

● Concurrent execution 
often results in 
corruption of 
information, if not 
careful.
○ Shared variables, shared 

transaction data.
● Concurrency view must 

address how concurrent 
activity is coordinated to 
that data integrity is 
maintained.

16



Supporting Scalability

● Task mapping, synchronization strategy, and 
state management affect scalability.
○ Too many processes or too few can slow down a 

system.
○ Too much synchronization can cause major 

performance issues during high workloads.
● Planning for quality is more difficult in a 

concurrent system.
○ Must address how concurrency strategies will 

support performance and scalability requirements.
○ System must still be implemented cost-effectively.

17



Startup and Shutdown

Startup and Shutdown
● Intertask dependencies 

may require tasks to be 
started or stopped in 
specific orders.
○ If some tasks fail, 

others should not be 
started. 

● Startup and shutdown 
policies are important 
part of concurrency 
design.

18

Task Failure
● When elements are split 

into different processes, 
an element cannot rely 
on the other element 
being available.

● Concurrency design 
needs to account for 
process failure.
○ Need system-wide 

strategy for handling 
and recovering from 
task failure.



Re-entrancy

● Ability of an element to operate correctly 
when used by multiple threads.

● Architecture needs to define which elements 
need to be re-entrant.

● E-mail server implemented as many threads 
in one process.
○ Any elements related to sending/receiving e-mail 

need to be re-entrant, as many threads (belonging to 
many users) will send and receive e-mails at once.

○ Internal state can be corrupted by concurrent access 
unless re-entrancy is guaranteed.

19



Concurrency Models

20



Concurrency Models

● Often visualized using 
UML component models 
(like Functional View).

● Can be modelled at 
process or thread level.

● Stereotypes indicate 
process or process 
group.

21

● Arrows on connections 
indicate direction of 
communication.

● Can be tagged to make 
connection clear.

<<process>>
Stats Server Process

Statistics 
Accessor

<<process group>>
DBMS Processes

Statistics Store

<<mutex>>
StatsUpdate

Mutex

<<process>>
Stats Calc Process

Statistics 
Calculator



<<process>>
Stats Client

Concurrency Model

22

<<process>>
Stats Server Process

Statistics 
Accessor

<<process group>>
DBMS Processes

Statistics Store

<<mutex>>
StatsUpdate

Mutex

<<process>>
Stats Calc Process

Statistics 
Calculator

<<process>>
Loader

Bulk Loader

{type = 
SOAP, 
protocol = 
HTTP}

{type = 
SQL*net}

{type = 
SQL*net}

<<process>>
Stats Client

GUI Client

{type = 
SQL*net}

● Process stereotype 
indicates a process.

● Multiple boxes 
indicate multiple 
instances of the 
process run 
concurrently.

IPC mechanism 
detailed with 
type and other 
relevant information

Functional 
elements mapped 
to processes.

Coordination mechanisms 
shown through stereotyped 
componenets



Thread Model

● Threads can be 
shown within 
processes using a 
thread stereotype.

23

<<process>>
DBMS Process

<<thread>>
Network Thread

Network 
Listener

<<thread>>
Query 

Processing

Query 
Processor

Optimizer

Execution 
Engine

Data Access 
Engine

<<ipc queue>>
Request Queue



Thread Model

24

<<process>>
DBMS Process

<<thread>>
Network Thread

Network 
Listener

<<thread>>
Query 

Processing
{count=1..40}

Query 
Processor

Optimizer

Execution 
Engine

Data Access 
Engine

<<ipc queue>>
Request Queue

<<process>>
DBMS Process

Client Code

Client SQL 
Library

<<thread>>
I/O Thread

<<thread>>
I/O Thread

{count=1..10}

Disk I/O 
Manager

<<ipc shared 
memory>>
I/O Request 

Area

Type={socket stream}



Map the Elements to the Tasks

● Work out how many processes are needed 
and decide which functional elements will 
run in each process.
○ Simple case: one element per process, or all 

elements in one process (not concurrent).
○ More complex: some elements spread over multiple 

processes.
● Only introduce concurrency when required.

○ Adds overhead to interelement communication.
○ Only add when needed for scalability, distribution, 

isolation, etc.

25



Modeling Activities

Determine the Threading Design
● Deciding how many threads per process.
● Often not part of architecture, except to prescribe a 

general approach or patterns.
○ Important to specify if threading impacts quality 

properties.

Define the IPC Mechanisms to Use
● Must consider how processes will communicate.

○ Minimize intertask communication.
○ Many libraries available for implementation.

● Define a system-wide approach.

26



Define Resource Sharing Mechanisms

● Threads share resources (such as memory 
spaces), and you must control how these 
resources are used.
○ Usually achieved through a locking protocol.
○ When one process is using a resource, all others are 

prevented from using it.
● In the architecture, you must define resource 

sharing in terms of the effect on the system 
as a whole.

27



Assign Priorities to Threads and Processes

● Processes on a single machine can be 
prioritized so more important work is 
completed before less important work.
○ Done within OS. Tasks are given runtime priorities 

and controlled by OS thread scheduler.
● In general, avoid explicitly assigning 

priorities. Complicates model, and can cause 
problems.

● If needed, keep assignments simple and 
regular. Reassess throughout development.

28



Analyze Deadlock and Contention

● Deadlock occurs when a process fails to 
release a shared resource, and all others 
wait forever for it.
○ Analysis techniques can identify likely sources of 

deadlock (i.e., petri net analysis)
● Contention occurs when multiple tasks want 

a shared resource concurrently.
○ If contention is high, system will slow dramatically.
○ Estimate how many tasks will need a resource 

concurrently, establish likely wait times.

29



Concurrency Pitfalls

30



Modeling the Wrong Aspects

● Your role is on the system as a whole.
○ Low-level individual thread structure and 

coordination is an implementation detail.
● Model overall concurrency structure and 

mapping of elements to that structure. 
● Specify overall approaches and patterns.
● Focus on architectural significance.
● Involve developers as early as possible so 

they can plan detailed aspects of problem.

31



Resource Contention

● Usually manifested as long wait times for 
shared resources.

● Often impossible to eliminate entirely.
○ Reduce to an acceptable level.
○ Usage scenarios can be used to predict where there 

will be high levels of concurrency.
○ Decompose locks on large resources into 

finer-grained locks (reduce time locks held).
○ Perform optimistic locking.
○ Remove shared resources or make immutable.
○ Reduce concurrency around contention points.
○ Avoid locking by using approximately correct results.

32



Deadlock

● Manifests when processes are waiting for a 
locked resource that never unlocks.

● Try to redesign to avoid deadlock points.
● Ensure resources are allocated and locked 

in a fixed order.
● Isolate parallel tasks and control timing.
● Reduce number or duration of locks.
● Some commercial products (DBMS) provide 

tools for handling deadlock. Use, but be 
careful that they integrate into your project.

33



Race Conditions

● Occurs when two tasks try to perform the 
same action concurrently.
○ Problem if system not planned to deal with 

concurrent attempts to perform an action.
○ Can result in data loss or corruption.

● Ensure no unprotected shared resources.
● Use immutable data structures.
● Ensure each element interface states 

whether the interface is re-entrant.

34



Concurrency is Hard

● Rather than one sequence of instructions, 
you must consider sequences in parallel.

● Without assistance, you will get it wrong.
○ Application servers (EJB, CICS) ensure sequential 

access to transactions (“beans”).
○ Polling-concurrent systems do not deadlock (though 

they can livelock and have race-conditions).
○ Several design styles can be used to ensure 

deadlock freedom (but may cause contention).
○ Tools such as model checkers or theorem provers 

are necessary for reasoning about “tricky” 
concurrent code.

35



Fallacies of Distributed Computing

● The network is reliable
● Latency is zero
● Bandwidth is infinite
● The network is secure
● Topology doesn't change
● There is one administrator
● None of these are true.

36



The Network is Not Reliable

● Hardware can fail, power can fail, mistakes 
happen, and the software can (of course) fail

● More complicated if your system works with 
external systems. You lack control.

● Security threats can take down networks.
● You must consider hw/sw redundancy.
● In software, consider how messages or calls 

can be lost. 
○ Retry, use acknowledgements, ignore duplicates.
○ Verify message integrity.
○ Be able to reorder messages (or ignore order).

37



Latency is not Zero

● Time it takes for data to move from one 
place to another.
○ Good on a LAN, goes down quickly over the internet
○ More problematic than bandwidth.

● Do not treat calls over a network like local 
calls. Do not assume distributed objects act 
like local objects.
○ Make fewer calls. Move more data with each call. 
○ AJAX: While user reads data, retrieve more data.

■ Latency still matters - background downloads 
must still complete in time.

○ Opnet Modeler, Shunra allow network simulation.
38



Bandwidth is not Infinite

● While bandwidth grows, so does the amount 
of information we download.

● Packet loss is a problem for online 
applications, and we cannot control it.
○ Solution is usually to use larger packet sizes.
○ More data per packet, but fewer need to get through.

● Server: Do not send data until requested.
● Client: Only ask for data you need.

○ And do so in one call. 

39



Networks are always Insecure

● Even if behind multiple firewalls.
● Even if not connected to the internet.
● Some statistics [Symantec 2012]:

○ Net attacks growing by 42% / year
○ Total identities stolen: ~100 Million
○ Avg. exposed identities per breach: 604k
○ Overall e-mail virus rate: 1 per 291 emails
○ Avg. targeted attacks per day: 116

● Perform threat modeling.
○ Decide how to mitigate worst risks.

● Network traffic should always be encrypted.
○ Even behind a firewall.

● Handle security on network, infrastructure and in the 
software. 40



Network Topologies Change

● Ops team adds/removes servers and 
changes network implementation.

● Server/network faults change routing.
● Do not depend on specific endpoints/routes.

○ Provide local transparency (multicast) or use 
discovery services (Active Directory)

○ Abstract physical structure of network.
■ Moving webpages: DNS routing tables can 

change IP address a domain points to without 
problems, as transparency is provided to client.

41



There are Multiple Administrators

● Most groups have many administrators.
● Your service might interface with services 

owned by other organizations.
● You have no control over who has admin 

rights in these organizations (or in your own)
○ Other domains may not trust your app.
○ Restrictions on allows APIs.
○ Must provide tools to admins to diagnose problems.
○ Other domains may upgrade (or not) services. You 

lack control.

42



General Concurrency Principles

● When possible, let someone else do it!
○ Middleware
○ Component frameworks

● Manage synchronization between threads 
using asynchronous queues.
○ Languages have thread-safe queueing primitives
○ Removes most issues with deadlock, race conditions

● Try not to share data between threads
○ No concurrency issues if data is not shared!
○ “Globals” for threads can use thread-local storage

● Communicate in large chunks
○ Use bandwidth efficiently

43



Food for Thought

● Is there a clear concurrency model?
● Are your models at the right level of 

abstraction? Have you focused on the 
architecturally significant aspects?

● Can you simplify your concurrency design?
● Do all interested parties understand the 

overall concurrency strategy?
● Have you mapped all functional elements to 

a process (and thread if necessary)?

44



Food for Thought

● Have you defined interprocess 
communication mechanisms?
○ Have you minimized intertask communication and 

synchronization?
● Are all shared resources protected?

○ Do you have any resource hot spots? 
○ If so, have you estimated likely throughput? 
○ Do you know how you would reduce contention at 

these points if forced to later?
● Can the system possibly deadlock? 

○ Do you have a strategy for recognizing and dealing 
with this when it occurs?

45



Next Time

● Development and Deployment Viewpoints
○ Sources: Rozanski & Woods, Ch. 20-21

● Homework: 
○ Assignment 2 - Due tonight!
○ Reading Assignment 2 - Due November 1st

■ Arnon Rotem-Gal-Oz, “Fallacies of Distributed 
Computing Explained”
● Summarize the fallacies. 
● Do you believe that these problems still stand today? (The 

paper is from 2014!)
● Do you believe these problems can be overcome in the 

future?

46



Project Part 3

● Due Nov 18 (Get Started!)
● Describe the architecture at multiple layers 

of abstraction and also from multiple 
viewpoints. 
○ For the system itself and a chosen subsystem, 

document the functional view and one other view.
○ Discuss how perspectives impact these views.
○ Functional view should include UML sequence 

diagrams to illustrate scenarios.
○ Propose either a refactoring to the architecture or a 

concrete extension. 

47


