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The Viewpoints

● The Context, Functional, Information, and 
Concurrency Views define what you are 
building. 
○ The static and runtime structure of the system.

● The Development, Deployment, and 
Operational Views define how you will build 
the system.
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The Viewpoints

● This class and next…
● The Development View defines how to 

implement the system.
● The Deployment View defines how to 

transition the system to live operation.
● The Operational View defines how to keep 

the system alive in the field.
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Development Viewpoint
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Designing Development Environments

● Supporting design, development, and testing 
of complex systems requires the right 
environment.
○ Code structure, dependencies, build management, 

design constraints, design standards.
● The Development View addresses the 

concerns of developers and testers.
○ All software projects involve some amount of new 

code being written.
○ This view provides a stable environment for more 

detailed design work.
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Concern: Structure Organization

● Software is often organized into groups of 
related classes or functions.
○ Some languages have built-in support for this: 

Packages in Java, Namespaces in C#.
○ We will refer to them generically as packages.

● Packages are groupings of functionality
○ Classes in Java, groups of functions in C.
○ Packages are not functional elements.
○ Elements may contain packages (for organizing 

source code).
○ Packages may depend on component interfaces.

6



Package Diagrams

Packages can be specified in design phase 
using UML Package Diagrams

Data Model Business 
Rules

Core Interface

● Folders indicate packages.
● Classes are often listed inside 

the folder (omitted to save 
space).

● Arrows indicate dependencies.
● Can be annotated with 

<<import>> (one package 
imports from another) or 
<<merge>> (a package is 
composed of multiple 
subpackages).

● Unlabeled arrow can be 
interpreted as an <<import>>

<<import>><<import>>



Layered Package Diagrams
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Package Design Activities 

● Identify and classify the packages
○ Group source code files or packages (if they exist) or 

logical element subdivisions into packages.
○ Group package when it makes sense.

● Identify the package dependencies
○ Identifies impact of making changes.

● Identify layering rules
○ Can packages call packages only in their layer and 

one above/below, or throughout structure?
○ How do you preserve performance and flexibility?
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Package Cohesion Principles

● Packages are a source code management 
and a release management idea.
○ Source management: grouping related classes.
○ Release management: for use, packages are often 

distributed as libraries
■ Jar files in Java; Assemblies in C#, .lib / .dll / .a 

files for C code.
● Package design follows principles:

○ Reuse-release equivalence principle
○ Common reuse principle
○ Common closure principle
○ Acyclic dependencies principle
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Reuse-Release Equivalence Principle

● Granule of reuse is the granule of release.
○ To reuse code, it must arrive in a complete, 

black-box, package that can be used but not 
changed.

● Packages should be tracked using 
change-control system.

● Package should be understood in terms of 
public functions / classes / interfaces.
○ No need to look at all the source code.

● Each package is treated like a product.
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Common Reuse Principle

● Improper grouping of classes creates 
unwanted dependencies.

● Classes that tend to be reused together 
belong in the same package.
○ If not, then perhaps they should be in separate 

packages.
● The classes in a package are reused 

together. If you reuse one of the classes, 
you reuse them all.
○ All classes in the package should be reusable in the 

same context.
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Common Closure Principle

● If one class needs to be changed, they all 
are likely to need to be changed. 

● Conversely, all classes within a package are 
closed to the same kinds of changes. 

● Helps pull tightly-coupled classes together in 
one package.
○ To enable easy distribution, updates, release, 

maintainability, localize all changes to a package.
○ A change will affect a minimal number of packages.
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Acyclic Dependencies Principle

● The dependency graph between packages 
must be acyclic. 
○ That is, if package A depends on package B, then B 

must not depend on A.
● Packages are units of work and reuse.

○ Versioned; clients can decide when to upgrade.
○ Changes to one package should not require an 

immediate update by other teams.
● Graph makes the dependencies of packages 

explicit.
○ Cycles in the graph would break versioning.
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Acyclic Example (Good)
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Modification Effect:
● Changes to 

MyDialogs affect 
MyTasks and 
MyApplication.

● Notification 
dependency 
between teams.

Dependency
● Testing 

MyDialogs 
requires the 
Windows 
package (or a 
mock version).



Cyclic Example (Bad)
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Release:
● Must be simultaneous 

with MyApplication.
● But this means MyTasks 

must also be coordinated 
(it is a dependency of 
MyApplication and 
depends on MyDialogs).

● This means that it must 
also be coordinated with 
Task and Database 
(dependencies of 
MyTasks).

Testing:
● MyDialogs requires 

MyApplication, so…
● MyDialogs is dependent 

on all packages(!) for 
testing!



Fixing Circular Dependencies

● Apply the Dependency 
Inversion Principle.
○ Create an abstract class 

with the interface 
MyDialogs needs.

○ Put the class into 
MyDialogs

○ Inherit into MyApplication.
○ Reverses the 

dependency, breaking 
the cycle. 

17



Package Refactoring

● Can also create third package with class(es) 
that both MyApplication and MyDialog 
depend on.

● Package contents and dependency 
hierarchy must be actively managed and 
refactored.
○ Dependencies will change as system expands.
○ Circular dependencies must be pruned out.
○ Coordinating this movement is important job for 

architect.
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Concern: 
Standardizing Common Processing

● Isolate common processing into separate 
code packages.
○ Logging in a single package.
○ Error Management in a single package.
○ ...

● Identify and specify areas of common 
processing.

● Define design guidelines, patterns, and 
packages for these features
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Establishing Design Constraints

● Establish design principles and constraints.
○ Reduces risk and effort duplication by defining a 

standard approach to problem solving.
○ Commonality in system elements increases overall 

technical coherence and makes it easier to 
understand, maintain, and use.

● Requires definition of:
○ Common processing
○ Standard design approaches
○ Common external software elements
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Common Processing

● How do we perform…
○ Initialization and recover
○ Termination and restart
○ Message logging and instrumentation
○ Internationalization
○ Processing configuration parameters
○ Security (authentication, encryption)

● These aspects of element design benefit 
greatly from using a common approach.
○ Even if we can’t just define a single package 

containing this type of processing.

21



Example: Message Logging

● All components must log human-readable 
messages that clearly state what has occurred and 
any corrective action that is expected in response.

● Messages must be logged at one of the following 
levels: Fatal, Error, Warning, Information, Debug. 

● Elements should log messages at all five possible 
logging levels.

● Logging should be achieved via a standard library 
(as defined later) to standardize destination, format, 
configuration, and so on.
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Design Constraints

● Define standard design approaches.
○ Look for situations where common processing is 

performed orr where implementation of an element 
has system-wide impact.

○ Define the approach, where it will be used, and why 
it should be used.

○ Design patterns - recipes for solving design 
problems.

● Define common external elements
○ Identify external software that can be reused to save 

development time or effort.
○ Identify where and how it will be used.
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Example: Standard Design for 
Internationalization
● For internationalization of locale-sensitive resources, use an 

external resource catalog to store resources outside the source 
code files. 
○ This means that all strings must be extracted from a message 

catalog before they can be used in a program (e.g., to write a 
log message).

● As the server software is being written entirely in Java, the 
internationalization implementation will use the Java Platform’s 
native internationalization facilities: the resource bundle, the 
formatting classes in the java.text package, and the Locale class.

● The relationships between these different elements of the 
internationalization technology are as follows. [. . .]

● [You would place a definition of a design pattern for using the Java 
internationalization facilities here.]
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Example: Standard External 
Elements for Logging 

● All message logging must be performed 
using the standard CCJLog package, which 
is part of the standard build environment.

● The CCJLog package must be used in a 
standard way, which is documented as a 
code sample in the 
src/server/sample/logging/CCJLog 
source directory.
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Concern: 
Design and Testing Standardization

● Design
○ Software is developed by teams.
○ Try to ensure common approaches to architectural 

design, class design, use of patterns, and interface 
design.

○ Establish clear guiding principles, based on quality.

● Testing
○ Define common approaches, tool use, and testing 

conventions to ensure consistent testing efforts.
○ Requires reasonable tool chain and workflow, 

standard test data, and automation.
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Concern: Codeline Organization

● Code must be stored in directories, 
managed in source control, built and tested 
regularly, and released into production.

● Managed through the codeline structure.
○ Source control files with a well-defined structure.
○ Stored in version management.
○ With a associated automated system to build, test, 

and release the system.
○ Should be defined as part of the development view.
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Codeline Organization

Codeline organization captures:
● How code will be organized into source files.
● How the files will be grouped into modules.
● What directory structure will be used to hold the files.
● How the source will be automatically built and tested.
● What type of tests will be run and when they are run.
● How the binaries will be released into a test or 

production environment for testing and use.
● How the source will be controlled using configuration 

management to coordinate multiple developers.
● What automated tools will be used for the build, test, 

and release process and how they will work together.
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For any system of substantial size, continuous 
integration should be the goal
Every time a commit occurs on stable or 
development branch
System is automatically rebuilt
Tests are run in increasing scope: unit / 
subsystem / system
Failures are reported to interested stakeholders
Goal: always have a shippable product.
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Continuous Integration

● Development practice that requires code be 
frequently checked into a shared repository.

● Each check-in is then verified by an 
automated build.
○ The system is compiled and subjected to an 

automated test suite, then packaged into a new 
executable.

● By integrating regularly, developers can 
detect errors quickly, and locate them more 
easily.

● Goal: always have a shippable product!



CI Practices

● Maintain a code repository.
● Automate the build.
● Make the build self-testing.
● Every commit should be built.
● Keep the build fast.
● Test in a clone of the production environment.
● Make it easy to get the latest executable.
● Everyone can see build results.
● Automate deployment.



How Integration is Performed

● Developers check out code to their machine.
● Changes are committed to the repository.
● The CI server: 

○ Monitors the repository and checks out changes 
when they occur.

○ Builds the system and runs unit/integration tests.
○ Releases deployable artefacts for testing.
○ Assigns a build label to the version of the code.
○ Informs the team of the successful build.



How Integration is Performed

● If the build or tests fail, the CI server alerts 
the team.
○ The team fixes the issue at the earliest opportunity.
○ Developers are expected not to check in code they 

know is broken.
○ Developers are expected to write and run tests on all 

code before checking it in.
○ No one is allowed to check in while a build is broken.

● Continue to continually integrate and test 
throughout the project.



Common Approaches

● Build environment
○ Machine configuration can be problematic
○ https://travis-ci.org/
○ Build from bare-bones linux platform
○ Ensures build works on clean install

● Deployment as Virtual Machine
○ Application is packaged up as part of an image 
○ Can easily be “spun up” on many machines

● Deployment as container
○ https://www.docker.com/
○ Like a “lightweight VM” 
○ Allows isolated “microcomponents” to be easily 

deployed. 34
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Food for Thought

● Have you defined a clear strategy for 
organizing the source code packages?

● Have you defined a set of rules governing 
the dependencies that can exist between 
packages at different abstraction levels?

● Have you identified all of the aspects of 
element implementation that need to be 
standardized across the system?

● Have you clearly defined how any standard 
processing should be performed?
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Food for Thought

● Have you identified standard approaches to 
design that you need all element designers 
and implementers to follow? 
○ If so, do your software developers accept and 

understand these approaches?
● Will a clear set of standard third-party 

software elements be used across all 
element implementations? 
○ Have you defined the way they should be used?
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Food for Thought

● Will the development and test environments 
work reliably and be usable and efficient for 
developers and testers to work in?

● Have you defined a set of tools to automate 
the build, integration, test, and release 
processes? 
○ Does the set of tools include internal or third-party 

tools that you require to deploy to the test and 
production environments that you are using?
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Deployment Viewpoint
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… But it worked when I tested it?!?!

Planning and documenting deployment 
is a key (and overlooked) part of 

successful development.
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The Deployment View

● Focuses on aspects of the system important 
after the system has been built and is ready 
to be put into live operation.

● Defines:
○ The physical environment it will run in.

■ Hardware and hosting environment (processing 
nodes, network interconnections, disk storage).

○ Technical environment requirements for each 
processing node.

○ Mapping of elements to the runtime environment that 
will execute them.
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When do I need this?

● When the system has…
○ Complex runtime dependencies.

■ Third party libraries, network services.
○ Complex runtime environments.

■ Elements distributed across many machines.
○ Dependencies on unfamiliar HW/SW.

■ Deployed on cloud hardware.
● When the system will be deployed in…

○ Wildly varying software environments.
■ Commercial software run on a PC.

○ Wildly varying physical environments.
■ Specialist or unfamiliar hardware.
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Concern: Runtime Platform Required

● Must identify the runtime platform and role of 
each part.
○ Compute nodes, special-purpose nodes for 

databases, storage, print and input devices, network 
services (firewalls), specialist hardware, etc.

● Must define how the platform is provided.
○ In-house physical hardware, virtual servers in the 

cloud from a third party, public cloud, etc.
○ Define physical location of each part of the platform.

● Define types of processing elements, 
dependencies between them, and mapping 
of functional elements to processing. 42



Concern: Specification and Quantity 
of Hardware or Hosting

● Physical model of the hardware needed.
● Can specify hardware you will purchase or 

for abstract virtual machines.
● Developers are interested in:

○ Intel or Sun CPUs, Linux or Windows, resources
● System admins are interested in:

○ What hardware and how much.
● What service level will you maintain?
● Do you need specific hardware, or general 

purpose?
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Concern: 3rd Party Software

● Most systems rely on 3rd party OS, libraries, 
messaging, application servers, databases.

● Make clear all dependencies between your 
system and any 3rd party products.

● Are there hardware requirements for these?
● Tells developers what they can make use of.
● Tells sys admins what they need to install 

and maintain.
● Analysis shows gaps in context and 

functional views.
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Concern: Network Environments

● Elements may be deployed on multiple 
machines. Some interelement interactions 
are actually network interactions.
○ What services are required on the network?
○ How are machines linked?
○ What communication protocols are used?
○ Do we require load balancing, firewalls, encryption?
○ What is the required capacity, latency, and reliability 

of the links?
■ How much traffic will be carried over each 

intermachine link?
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Runtime Platform Elements

● Runtime model defines the set of hardware 
nodes, how nodes connect via interfaces, 
which software elements are on which 
hardware nodes.

● Processing nodes
○ Each computer is represented by a processing node.
○ Allows estimation of the resources needed for 

deploying the system.
○ Where similar machines are required (server farms), 

can summarize as groups of nodes.
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Runtime Platform Elements

● Client Nodes
○ Also represent client hardware (in less detail).
○ Less control, but can note type and quantity.
○ Speciality hardware is considered a “client node” 

(printers, touch screens).
● Runtime Containers

○ Special virtual machines that provide a sandboxed 
runtime environment for deployed elements.

● Online Storage Hardware
○ How much storage, what type, how partitioned.
○ Required reliability and speed.
○ Where does processing take place.

47



Runtime Platform Elements

● Offline Storage Hardware
○ Archival and backup of data.
○ Ensure capacity, sufficient hardware speed, and 

network bandwidth.
● Network Links

○ Links between hardware nodes.
○ Network model captures more detail.

● Other Hardware Components
○ Network security, user authentication, special 

interfacing with systems, specialist processing.
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Mapping Elements to Nodes

● Need to map functional elements to the 
processing nodes where they execute.

● Processes from Concurrency View can be 
mapped to processing nodes. 

● If not concurrent, map elements directly to 
nodes. 

● Captured as a UML deployment diagram 
showing nodes, storage, interconnections, 
and software elements.
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Runtime Platform Model
● Nodes represent computational resources.
● Execution environments (VM, containers) run 

on nodes.
● Artifacts represent software elements.
● Nodes connected through communication 

paths.
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<<processing node>>
Primary Server

{model = HP BL87,
OS = “Ubuntu 18.04”
CPU = 24 x 2.8 GHz

Mem = 256 GB}

<<artifact>>
Data Capture Service

<<artifact>>
Data Access Service

<<processing node>>
Database Server

{model = HP SD2-8,
OS = “Ubuntu 18.04”
CPU = 4 x 2.7 GHz

Mem = 256 GB}

<<execution 
environment>>

Oracle 11.1 DBMS

<<artifact>>
CalcDB Schema



Runtime Platform Model
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<<processing node>>
Primary Server

{model = HP BL87,
OS = “Ubuntu 18.04”
CPU = 24 x 2.8 GHz

Mem = 256 GB}

<<artifact>>
Data Capture Service

<<artifact>>
Data Access Service

<<processing node>>
Database Server

{model = HP SD2-8,
OS = “Ubuntu 18.04”
CPU = 4 x 2.7 GHz

Mem = 256 GB}

<<execution 
environment>>

Oracle 11.1 DBMS

<<artifact>>
CalcDB Schema

Production Line 
Interface

Production Planner PC
{CPU = 1 x 3.5 GHz

Mem = 512 MB}

<<execution 
environment>>

JRE 1.8_20

<<artifact>>
PlannerClient.jar

Specialized Hardware

Online and Offline Storage

<<disk>> 
Disk Array

{size = 2 TB, type 
= L1 storage}

<<disk>> 
Tape Storage

{size = 16 TB, model = 
StorageTek SL300}

Client Node



Runtime Modeling Activities

● Design the deployment environment
○ Identify key servers
○ Identify important client hardware requirements
○ Identify network links between nodes
○ Add special-purpose hardware, specify hardware 

and software configurations for each node.
● Map elements to hardware

○ May suggest changes to deployment environment.
○ Manage dependencies.
○ Ensure machine capacity is available.
○ Make quality trade-offs (security vs performance)
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Runtime Modeling Activities

● Estimate the Hardware Requirements
○ Perform an initial estimation, then revise as the 

architecture and design progress. 
○ Processing power, memory, disk space, bandwidth. 

● Conduct a Technical Evaluation
○ Prototype element development, perform 

benchmarks, perform compatibility tests.
○ Create mock systems to test integration and 

throughput.
● Assess Constraints

○ Formal standards, informal guidelines, assumptions.
○ Review your design to ensure all are met.
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Network Models

● If networking environment is complex, you 
may need a network model detailing:
○ Which nodes need to be connected.
○ Specific network services required (firewalls, 

compression, packet encryption)
○ Bandwidth requirements and quality properties.

● Logical model, not a physical one.
○ Service-based view of the network.

● Valuable for customers planning to deploy 
your software in their organization.
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Network Model Elements

● Processing Nodes
○ Elements that use the network to transport data.
○ Should match set from runtime platform model.

● Network Nodes
○ New nodes added that represent network services 

you expect to be available.
○ Firewall security, load balancing, encryption.

● Network Connections
○ Links between network and processing nodes.
○ Should describe service you expect link to provide.
○ Bandwidth, latency, quality of service, reliability, or 

other network qualities.
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Network Models
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<<network node>>
Production Operator PC

Production Line 
Interface

<<network node>>
Primary Server

{network = 3 x 1 GB,
 lines = leased}

Firewall

<<network node>>
Database Server

{network = 2 x 1 GB}

Firewall<<network node>>
Production Planner PC

Traffic from WAN 
filtered by host 
address at this 
point

Corporate 
WAN

<<network link>>
{ type - ethernet 100 MB}

<<network link>>
{ type - ethernet}



Network Modeling Activities

● Design the Network
○ Establish connections, capacity, quality of service, 

and security.
○ Logical design, which is handed to specialist network 

designers for physical design.
● Estimate Capacity and Latency

○ Realistic estimation of the magnitude of traffic to be 
carried and expected round-trip time.

○ Capacity: Peak transaction throughput and a rough 
approximation of the size of messages required.

○ Latency: Standard metrics, distance between nodes.
○ Plan for scalability.
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Technology Dependency Models

● When possible, it is ideal to bundle software 
and dependencies into one executable.
○ Not always possible due to efficiency, cost, 

licensing, flexibility.
● Deployment view should document the 

dependencies on a node-by-node basis.
● Can be captured in a simple table.

○ SW dependencies may have already been captured 
in Development View.

○ HW dependencies can be derived from test and 
development environment, manufacturer specs, 
testing you conduct.
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Technology Dependence Model
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Component Requires

Data Access Service HP-UX 64-bit 11.23+ patch bundle B.11.23.0703
HP aCC C++ runtime A.03.73

Data Capture Service HP-UX 64-bit 11.23+ patch bundle B.11.23.0703
HP aCC C++ runtime A.03.73
Oracle OCI libraries 11.1.0.7

HP aCC C++ Compiler 
& Runtime

HP patch PHSS_35102
HP patch PHSS_35103

Oracle OCI 11.1.0.7 HP-UX optional package X11MotifDevKit.MOTIF21
HP-UX patch PHSS_37958



Intermodel Relationships

● Runtime Platform Model: 
Used by group 
responsible for 
deployment early in the 
project.

● Network Model: Used by 
specialist networking 
group

● Technology 
Dependency Model: 
Used by system 
administrators during 
installation planning.
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Pitfall: 
Missing or Inaccurate Dependencies

● “You need Oracle and Linux”
○ Too vague to allow safe deployment.
○ Which versions? What patches? Optional updates?

● Capture clear, detailed dependencies 
between SW, runtime environment, HW.

● Capture dependencies between 3rd party 
SW and the runtime environment.

● Perform compatibility testing.
● Use existing, proven combinations of 

technologies with well-understood relations.
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Risk: Unproven Technology

● New tech can bring great benefits...
○ Often more features, improved performance.

● Or great risk…
○ Functional shortcomings, poor performance, 

availability, security. 
● Use existing hardware and software that you 

can test before committing to.
● Get advice from people who have used a 

technology before.
● Create prototypes and benchmarks.
● Perform compatibility testing.
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Risk: Lack of Specialist Knowledge

● System design requires significant 
knowledge about many subjects.
○ Teams of people specializing in different 

technologies and aspects of the system.
● Can easily end up in a situation where you 

lack detailed knowledge of a technology and 
must rely on vendor claims.

● Bring in new specialists when needed.
● Obtain external review of your architecture.
● Obtain binding contracts from suppliers.
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Risk: Late Consideration of 
Deployment Environment

● Problems occur when you consider system 
purely from a software-oriented perspective.
○ Can make a system unusable.
○ Impacts how software is designed and implemented.
○ Can be expensive to change.

■ I.e., if you need a group of small machines 
instead of one large machine, architecture differs.

● Design deployment as part of architecture 
design, not after system has been 
developed.

● Obtain external review to get early feedback.
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Risk: Ignoring Intersite Complexity

● Many systems “live” in multiple locations.
○ Cloud computing environment, servers in different 

geographic locations.
● Important to consider impact early.

○ Impacts security, performance, scalability.
○ Network latency, increased security burden, 

synchronization between sites.
● Consider impact on system qualities.
● Work with infrastructure team.
● Test representative aspects as soon as 

possible “in the field”.
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Risk: 
Not Specifying Disaster Recovery

● How can the system be kept operational in 
the event of a significant failure.
○ Power loss
○ Storage failure
○ Natural disasters

● Often involves deployment of a special 
operational environment in a different 
location.
○ May have lower specification than production 

environment.
○ Should be considered as part of Deployment View.
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Food for Thought

● Have you mapped functional elements to a 
type of element in your runtime platform? 
○ Have you mapped them to specific hardware 

devices if appropriate? 
● Is the role of each piece of your runtime 

platform fully understood? 
○ Is the hardware or service suitable for the role?

● Have you established detailed specifications 
for hardware devices or hosted services? 
○ Do you know exactly how many of each device or 

how much of each service is required? 
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Food for Thought

● Have you identified third-party software and 
documented dependencies?

● Are the network topology and services 
understood and documented?
○ Have you estimated and validated the required 

network capacity? 
○ Can the proposed network topology be built to 

support this capacity?
● Have you performed compatibility testing to 

ensure that the elements can be combined 
as desired?
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Food for Thought

● Have you used prototypes, benchmarks, and 
other practical tests when evaluating?

● Can you create a realistic test environment?
● Are you confident that the deployment 

environment will work as designed? 
○ Have you obtained external review?

● Can physical constraints (floor space, power, 
cooling) can be met?

● Do you have a specification of a disaster 
recovery environment, if required?
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Operational Viewpoint
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What does it mean when the swap  
file is full?

● Operational aspects of systems are often 
ignored during design.

● This is a significant contributor to 
unexpected system down time.
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The Operational Viewpoint

● Identifies a system-wide strategy for 
addressing operational concerns.
○ Helps to ensure system is a reliable and effective 

part of its environment.
○ For packaged software, helps illustrate the types of 

issues that could occur once installed.
○ Documents how the system can be architected to 

reduce or address these concerns.
● Often least well-defined view, as many of the 

details are not fully-defined until construction 
is underway. 
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Concern: Installation and Upgrade

● [Insert your own installation horror story]
● How is installation performed?

○ Your team performs the install.
○ Users install and configure themselves.
○ Resources allocated to a cloud environment.

● Is this a pure installation or an upgrade?
○ Upgrades can be more complex.
○ Must respect existing data and settings, state of 

running elements.
○ Can you keep the system running during update?

● Ensure the system can be installed or 
updated successfully.
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Documenting Installation and Upgrade

● Help the reader understand:
○ What needs to be installed or upgraded to move the 

system into production.
○ What dependencies exist between groups of items 

to be installed or upgraded (determines event order).
○ What constraints exist on the installation process.
○ What needs to be done to abandon and undo the 

installation/upgrade if there is a problem.
● Do not need a complete guide.

○ Instead, constraints the architecture imposes on 
installation and upgrade.
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Installation Documentation Activities

● Identify the Installation Groups
○ Group related elements. For each group, define 

what elements it contains and how they will be 
installed or ugraded.

● Identify Dependencies
○ Identify dependencies between groups to identify 

order elements must be installed in.
● Identify Constraints

○ Do you need to start an element immediately after 
installation? Do you need to restart machines?

● Identify Backout Approach
○ What do you need to do to undo any tasks?
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Concern: Functional Migration

● Process of replacing existing capabilities 
with your new capabilities.
○ Migrating users of an older system to your system
○ Big bang: Migration at a single point in time.
○ Parallel: New and old versions of a system used 

side-by-side until buy-in.
○ Staged: Parts of a process of system swapped over 

time to manage risk.
● Problems: risk and cost

○ Big bang is cheapest, but no recovery route.
○ Others reduce risk, but more expensive.
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Concern: Data Migration

● Loading data from existing systems into the 
new ones.
○ Should be automated as much as possible.

● May change format of GB - TB of data.
○ Data may not match new format exactly, may require 

conversion in parallel with live updates.
● Moving data between locations may add 

security and performance concerns.
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Concern: Data Migration

● Migrating taxpayer 
database to new 
system.
○ Extraction - 3-5 days.
○ Sorting - 1 day.
○ Loading - 10 days.

● 100K updates 
expected.
○ Cannot stop tax 

collection for two 
weeks.

● Capture updates and 
apply in bulk once 
data migration is 
complete. 78



Documenting Migration

● Does not require a complete plan, but 
defines overall strategy and constraints.

● Allow reader to understand:
○ What strategies can be employed to migrate 

information and users to the system.
○ How the system will be populated with information 

from the existing environment.
○ How information in new and old environments can 

be kept synchronized.
○ How to revert to the old system if problems emerge.
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Migration Documentation Activities

● Define the Migration Strategy
○ Big bang vs parallel vs staged.
○ How would this work?
○ What are the tradeoffs?

■ How long will this process takes?
■ Will it disrupt business?
■ Does this meet stakeholder needs?

● Design the Data Migration Approach
○ How to populate the system with the existing 

information. 
○ How long will it require?
○ What resources are needed?
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Migration Documentation Activities

● Design Information 
Synch Approach
○ Especially in parallel run.
○ Unidirectional (into new 

system) or bidirectional?
● Identify the Backout 

Strategy
○ Can you back out to the 

existing system?
○ Reverse data migration 

may not be practical.
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Concern: 
Operational Monitoring and Control

● Systems require routine monitoring.
● Control operations can be used to keep the 

system running correctly.
○ Startup, shutdown, transaction resubmission.

● How much is required depends on how 
many unexpected operational conditions are 
likely to occur. 

● Balance against cost and time.
● Consider deployment environment to identify 

solutions.
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Concern: Alerting

● A system should send notifications when 
something bad happens.
○ Technical: Unable to connect to database.
○ Functional: Bad data on an automated input.
○ Significant non-error conditions (startup, shutdown)

● Active function of a system.
○ Sent to appropriate humans for action.

● Define which events require alerts, what 
information should be included, and where it 
should be sent.

● Avoid sending too many alerts.
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Concern: Backup and Restore

● Data must be protected and insured.
○ Backup processes should be designed, built, and 

tested regularly.
● It must be possible to restore data from a 

backup in a transactionally consistent state.
○ All updates committed to the restored database or 

not recovered at all.
○ Consider data lost as part of restoring (at least any 

transactions active during failure).
● Failure in one element could corrupt system.

○ Recover or recreate lost data.
○ Revert system to older state.
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Concern: Backup and Restore

85

● Academic records in databases. 
○ Exam results database.
○ Scores database transforms data into a overall score.

● Corruption requires restoration of exam database.
○ Over three months old.
○ Results from those months will need to be reentered.
○ However, student scores already reflect that data. Must prevent 

reentered data from changing scores. 



Documenting System Administration

● Monitoring and control facilities
○ How to monitor and adjust the system.
○ Custom utilities, existing management environments.
○ Basic message log to full-blown infrastructure.
○ Define what features you will offer, how to use them, 

and any limitations.
● Required routine procedures

○ What needs to be performed regularly?
○ Backup and health check procedures.
○ Define purpose of each procedure, when performed, 

who performs it, and the steps involved.
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Documenting System Administration

● Likely error conditions
○ Error conditions may require administrative 

intervention (disk full, network failure).
○ What is unique about your architecture?
○ Explain error conditions, when they occur, how to 

recognize them, and HOW to correct them.
● Performance monitoring facilities

○ Watch the system for performance problems.
○ Extracted and analyzed routinely.
○ Explain measures taken, how they can be extracted 

and analyzed.
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Do not use operations documentation as an 
excuse for bad software!

● Examples: 
○ Los Angeles air traffic control: reboot system every 

30 days to prevent a timer overflow or system will 
crash

○ Patriot missile system: reboot system every 12 hours 
or it won’t track incoming missles correctly

○ Therac 25: don’t press keys too quickly or use 
backspace key or system will give incorrect radiation 
dose

● Operations documents can become a CYA 
tool for bad software
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Food for Thought

● Do you know how to install your system?
● Can you back out a failed installation?
● Can you upgrade an existing version of the 

system (if required)?
● Do you understand the facilities and 

constraints of the production environment?
○ Can you live with or mitigate these if not ideal?

● Do you know how information will be moved 
from the existing environment into the new 
system?
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Food for Thought

● Do you have a clear migration strategy to 
move workload to the new system? 
○ Can you reverse the migration if you need to? 

● How will you deal with data synchronization? 
● How will the system be backed up? 
● Will the approach identified allow reliable 

restoration in an acceptable time period?
● Can the administrators monitor and control 

the system in production?
● Do the administrators understand the 

procedures they need to perform? 90



Food for Thought

● How will performance metrics be captured 
for the system’s elements?

● Can you manage configuration of all of the 
system’s elements?

● Is there consistency between the admin 
model and Development view?

● Is the data migration architecture compatible 
with the amount of time available to perform 
the data migration? 
○ Are there catch-up mechanisms in place where the 

source data is volatile during the data migration?
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Key Points

● Context/Functional/Information/Concurrency 
Views define what you are building. 

● The Development, Deployment, and 
Operational Views define how you will build 
the system.
○ The Development View defines how to implement 

the system.
○ The Deployment View defines how to transition the 

system to live operation.
○ The Operational View defines how to keep the 

system alive in the field.
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Next Time

● No class November 6th
○ Election Day!

● Perspective: Performance & Scalability
○ R&W: Ch. 26
○ Bass, Clements, Kazman: Ch. 8

● Homework: 
○ Reading Assignment 2 - Tonight!
○ Project, Part 3 - Due on Nov 18
○ Assignment 3 - Nov 29
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