
Viewpoints:
Development,
Deployment, and
Operational
CSCE 742 - Lecture 15 - 16 -
10/30 and 11/01/2018

The Viewpoints

● The Context, Functional, Information, and
Concurrency Views define what you are
building.
○ The static and runtime structure of the system.

● The Development, Deployment, and
Operational Views define how you will build
the system.

2

The Viewpoints

● This class and next…
● The Development View defines how to

implement the system.
● The Deployment View defines how to

transition the system to live operation.
● The Operational View defines how to keep

the system alive in the field.

3

Development Viewpoint

4

Designing Development Environments

● Supporting design, development, and testing
of complex systems requires the right
environment.
○ Code structure, dependencies, build management,

design constraints, design standards.
● The Development View addresses the

concerns of developers and testers.
○ All software projects involve some amount of new

code being written.
○ This view provides a stable environment for more

detailed design work.
5

Concern: Structure Organization

● Software is often organized into groups of
related classes or functions.
○ Some languages have built-in support for this:

Packages in Java, Namespaces in C#.
○ We will refer to them generically as packages.

● Packages are groupings of functionality
○ Classes in Java, groups of functions in C.
○ Packages are not functional elements.
○ Elements may contain packages (for organizing

source code).
○ Packages may depend on component interfaces.

6

Package Diagrams

Packages can be specified in design phase
using UML Package Diagrams

Data Model Business
Rules

Core Interface

● Folders indicate packages.
● Classes are often listed inside

the folder (omitted to save
space).

● Arrows indicate dependencies.
● Can be annotated with

<<import>> (one package
imports from another) or
<<merge>> (a package is
composed of multiple
subpackages).

● Unlabeled arrow can be
interpreted as an <<import>>

<<import>><<import>>

Layered Package Diagrams

8

Package Design Activities

● Identify and classify the packages
○ Group source code files or packages (if they exist) or

logical element subdivisions into packages.
○ Group package when it makes sense.

● Identify the package dependencies
○ Identifies impact of making changes.

● Identify layering rules
○ Can packages call packages only in their layer and

one above/below, or throughout structure?
○ How do you preserve performance and flexibility?

9

Package Cohesion Principles

● Packages are a source code management
and a release management idea.
○ Source management: grouping related classes.
○ Release management: for use, packages are often

distributed as libraries
■ Jar files in Java; Assemblies in C#, .lib / .dll / .a

files for C code.
● Package design follows principles:

○ Reuse-release equivalence principle
○ Common reuse principle
○ Common closure principle
○ Acyclic dependencies principle

10

Reuse-Release Equivalence Principle

● Granule of reuse is the granule of release.
○ To reuse code, it must arrive in a complete,

black-box, package that can be used but not
changed.

● Packages should be tracked using
change-control system.

● Package should be understood in terms of
public functions / classes / interfaces.
○ No need to look at all the source code.

● Each package is treated like a product.

11

Common Reuse Principle

● Improper grouping of classes creates
unwanted dependencies.

● Classes that tend to be reused together
belong in the same package.
○ If not, then perhaps they should be in separate

packages.
● The classes in a package are reused

together. If you reuse one of the classes,
you reuse them all.
○ All classes in the package should be reusable in the

same context.
12

Common Closure Principle

● If one class needs to be changed, they all
are likely to need to be changed.

● Conversely, all classes within a package are
closed to the same kinds of changes.

● Helps pull tightly-coupled classes together in
one package.
○ To enable easy distribution, updates, release,

maintainability, localize all changes to a package.
○ A change will affect a minimal number of packages.

13

Acyclic Dependencies Principle

● The dependency graph between packages
must be acyclic.
○ That is, if package A depends on package B, then B

must not depend on A.
● Packages are units of work and reuse.

○ Versioned; clients can decide when to upgrade.
○ Changes to one package should not require an

immediate update by other teams.
● Graph makes the dependencies of packages

explicit.
○ Cycles in the graph would break versioning.

14

Acyclic Example (Good)

15

Modification Effect:
● Changes to

MyDialogs affect
MyTasks and
MyApplication.

● Notification
dependency
between teams.

Dependency
● Testing

MyDialogs
requires the
Windows
package (or a
mock version).

Cyclic Example (Bad)

16

Release:
● Must be simultaneous

with MyApplication.
● But this means MyTasks

must also be coordinated
(it is a dependency of
MyApplication and
depends on MyDialogs).

● This means that it must
also be coordinated with
Task and Database
(dependencies of
MyTasks).

Testing:
● MyDialogs requires

MyApplication, so…
● MyDialogs is dependent

on all packages(!) for
testing!

Fixing Circular Dependencies

● Apply the Dependency
Inversion Principle.
○ Create an abstract class

with the interface
MyDialogs needs.

○ Put the class into
MyDialogs

○ Inherit into MyApplication.
○ Reverses the

dependency, breaking
the cycle.

17

Package Refactoring

● Can also create third package with class(es)
that both MyApplication and MyDialog
depend on.

● Package contents and dependency
hierarchy must be actively managed and
refactored.
○ Dependencies will change as system expands.
○ Circular dependencies must be pruned out.
○ Coordinating this movement is important job for

architect.

18

Concern:
Standardizing Common Processing

● Isolate common processing into separate
code packages.
○ Logging in a single package.
○ Error Management in a single package.
○ ...

● Identify and specify areas of common
processing.

● Define design guidelines, patterns, and
packages for these features

19

Establishing Design Constraints

● Establish design principles and constraints.
○ Reduces risk and effort duplication by defining a

standard approach to problem solving.
○ Commonality in system elements increases overall

technical coherence and makes it easier to
understand, maintain, and use.

● Requires definition of:
○ Common processing
○ Standard design approaches
○ Common external software elements

20

Common Processing

● How do we perform…
○ Initialization and recover
○ Termination and restart
○ Message logging and instrumentation
○ Internationalization
○ Processing configuration parameters
○ Security (authentication, encryption)

● These aspects of element design benefit
greatly from using a common approach.
○ Even if we can’t just define a single package

containing this type of processing.

21

Example: Message Logging

● All components must log human-readable
messages that clearly state what has occurred and
any corrective action that is expected in response.

● Messages must be logged at one of the following
levels: Fatal, Error, Warning, Information, Debug.

● Elements should log messages at all five possible
logging levels.

● Logging should be achieved via a standard library
(as defined later) to standardize destination, format,
configuration, and so on.

22

Design Constraints

● Define standard design approaches.
○ Look for situations where common processing is

performed orr where implementation of an element
has system-wide impact.

○ Define the approach, where it will be used, and why
it should be used.

○ Design patterns - recipes for solving design
problems.

● Define common external elements
○ Identify external software that can be reused to save

development time or effort.
○ Identify where and how it will be used.

23

Example: Standard Design for
Internationalization
● For internationalization of locale-sensitive resources, use an

external resource catalog to store resources outside the source
code files.
○ This means that all strings must be extracted from a message

catalog before they can be used in a program (e.g., to write a
log message).

● As the server software is being written entirely in Java, the
internationalization implementation will use the Java Platform’s
native internationalization facilities: the resource bundle, the
formatting classes in the java.text package, and the Locale class.

● The relationships between these different elements of the
internationalization technology are as follows. [. . .]

● [You would place a definition of a design pattern for using the Java
internationalization facilities here.]

24

Example: Standard External
Elements for Logging

● All message logging must be performed
using the standard CCJLog package, which
is part of the standard build environment.

● The CCJLog package must be used in a
standard way, which is documented as a
code sample in the
src/server/sample/logging/CCJLog
source directory.

25

Concern:
Design and Testing Standardization

● Design
○ Software is developed by teams.
○ Try to ensure common approaches to architectural

design, class design, use of patterns, and interface
design.

○ Establish clear guiding principles, based on quality.

● Testing
○ Define common approaches, tool use, and testing

conventions to ensure consistent testing efforts.
○ Requires reasonable tool chain and workflow,

standard test data, and automation.
26

Concern: Codeline Organization

● Code must be stored in directories,
managed in source control, built and tested
regularly, and released into production.

● Managed through the codeline structure.
○ Source control files with a well-defined structure.
○ Stored in version management.
○ With a associated automated system to build, test,

and release the system.
○ Should be defined as part of the development view.

27

Codeline Organization

Codeline organization captures:
● How code will be organized into source files.
● How the files will be grouped into modules.
● What directory structure will be used to hold the files.
● How the source will be automatically built and tested.
● What type of tests will be run and when they are run.
● How the binaries will be released into a test or

production environment for testing and use.
● How the source will be controlled using configuration

management to coordinate multiple developers.
● What automated tools will be used for the build, test,

and release process and how they will work together.
28

For any system of substantial size, continuous
integration should be the goal
Every time a commit occurs on stable or
development branch
System is automatically rebuilt
Tests are run in increasing scope: unit /
subsystem / system
Failures are reported to interested stakeholders
Goal: always have a shippable product.

29

Continuous Integration

● Development practice that requires code be
frequently checked into a shared repository.

● Each check-in is then verified by an
automated build.
○ The system is compiled and subjected to an

automated test suite, then packaged into a new
executable.

● By integrating regularly, developers can
detect errors quickly, and locate them more
easily.

● Goal: always have a shippable product!

CI Practices

● Maintain a code repository.
● Automate the build.
● Make the build self-testing.
● Every commit should be built.
● Keep the build fast.
● Test in a clone of the production environment.
● Make it easy to get the latest executable.
● Everyone can see build results.
● Automate deployment.

How Integration is Performed

● Developers check out code to their machine.
● Changes are committed to the repository.
● The CI server:

○ Monitors the repository and checks out changes
when they occur.

○ Builds the system and runs unit/integration tests.
○ Releases deployable artefacts for testing.
○ Assigns a build label to the version of the code.
○ Informs the team of the successful build.

How Integration is Performed

● If the build or tests fail, the CI server alerts
the team.
○ The team fixes the issue at the earliest opportunity.
○ Developers are expected not to check in code they

know is broken.
○ Developers are expected to write and run tests on all

code before checking it in.
○ No one is allowed to check in while a build is broken.

● Continue to continually integrate and test
throughout the project.

Common Approaches

● Build environment
○ Machine configuration can be problematic
○ https://travis-ci.org/
○ Build from bare-bones linux platform
○ Ensures build works on clean install

● Deployment as Virtual Machine
○ Application is packaged up as part of an image
○ Can easily be “spun up” on many machines

● Deployment as container
○ https://www.docker.com/
○ Like a “lightweight VM”
○ Allows isolated “microcomponents” to be easily

deployed. 34

https://travis-ci.org/
https://www.docker.com/

Food for Thought

● Have you defined a clear strategy for
organizing the source code packages?

● Have you defined a set of rules governing
the dependencies that can exist between
packages at different abstraction levels?

● Have you identified all of the aspects of
element implementation that need to be
standardized across the system?

● Have you clearly defined how any standard
processing should be performed?

35

Food for Thought

● Have you identified standard approaches to
design that you need all element designers
and implementers to follow?
○ If so, do your software developers accept and

understand these approaches?
● Will a clear set of standard third-party

software elements be used across all
element implementations?
○ Have you defined the way they should be used?

36

Food for Thought

● Will the development and test environments
work reliably and be usable and efficient for
developers and testers to work in?

● Have you defined a set of tools to automate
the build, integration, test, and release
processes?
○ Does the set of tools include internal or third-party

tools that you require to deploy to the test and
production environments that you are using?

37

Deployment Viewpoint

38

… But it worked when I tested it?!?!

Planning and documenting deployment
is a key (and overlooked) part of

successful development.
39

The Deployment View

● Focuses on aspects of the system important
after the system has been built and is ready
to be put into live operation.

● Defines:
○ The physical environment it will run in.

■ Hardware and hosting environment (processing
nodes, network interconnections, disk storage).

○ Technical environment requirements for each
processing node.

○ Mapping of elements to the runtime environment that
will execute them.

40

When do I need this?

● When the system has…
○ Complex runtime dependencies.

■ Third party libraries, network services.
○ Complex runtime environments.

■ Elements distributed across many machines.
○ Dependencies on unfamiliar HW/SW.

■ Deployed on cloud hardware.
● When the system will be deployed in…

○ Wildly varying software environments.
■ Commercial software run on a PC.

○ Wildly varying physical environments.
■ Specialist or unfamiliar hardware.

41

Concern: Runtime Platform Required

● Must identify the runtime platform and role of
each part.
○ Compute nodes, special-purpose nodes for

databases, storage, print and input devices, network
services (firewalls), specialist hardware, etc.

● Must define how the platform is provided.
○ In-house physical hardware, virtual servers in the

cloud from a third party, public cloud, etc.
○ Define physical location of each part of the platform.

● Define types of processing elements,
dependencies between them, and mapping
of functional elements to processing. 42

Concern: Specification and Quantity
of Hardware or Hosting

● Physical model of the hardware needed.
● Can specify hardware you will purchase or

for abstract virtual machines.
● Developers are interested in:

○ Intel or Sun CPUs, Linux or Windows, resources
● System admins are interested in:

○ What hardware and how much.
● What service level will you maintain?
● Do you need specific hardware, or general

purpose?
43

Concern: 3rd Party Software

● Most systems rely on 3rd party OS, libraries,
messaging, application servers, databases.

● Make clear all dependencies between your
system and any 3rd party products.

● Are there hardware requirements for these?
● Tells developers what they can make use of.
● Tells sys admins what they need to install

and maintain.
● Analysis shows gaps in context and

functional views.
44

Concern: Network Environments

● Elements may be deployed on multiple
machines. Some interelement interactions
are actually network interactions.
○ What services are required on the network?
○ How are machines linked?
○ What communication protocols are used?
○ Do we require load balancing, firewalls, encryption?
○ What is the required capacity, latency, and reliability

of the links?
■ How much traffic will be carried over each

intermachine link?

45

Runtime Platform Elements

● Runtime model defines the set of hardware
nodes, how nodes connect via interfaces,
which software elements are on which
hardware nodes.

● Processing nodes
○ Each computer is represented by a processing node.
○ Allows estimation of the resources needed for

deploying the system.
○ Where similar machines are required (server farms),

can summarize as groups of nodes.

46

Runtime Platform Elements

● Client Nodes
○ Also represent client hardware (in less detail).
○ Less control, but can note type and quantity.
○ Speciality hardware is considered a “client node”

(printers, touch screens).
● Runtime Containers

○ Special virtual machines that provide a sandboxed
runtime environment for deployed elements.

● Online Storage Hardware
○ How much storage, what type, how partitioned.
○ Required reliability and speed.
○ Where does processing take place.

47

Runtime Platform Elements

● Offline Storage Hardware
○ Archival and backup of data.
○ Ensure capacity, sufficient hardware speed, and

network bandwidth.
● Network Links

○ Links between hardware nodes.
○ Network model captures more detail.

● Other Hardware Components
○ Network security, user authentication, special

interfacing with systems, specialist processing.

48

Mapping Elements to Nodes

● Need to map functional elements to the
processing nodes where they execute.

● Processes from Concurrency View can be
mapped to processing nodes.

● If not concurrent, map elements directly to
nodes.

● Captured as a UML deployment diagram
showing nodes, storage, interconnections,
and software elements.

49

Runtime Platform Model
● Nodes represent computational resources.
● Execution environments (VM, containers) run

on nodes.
● Artifacts represent software elements.
● Nodes connected through communication

paths.

50

<<processing node>>
Primary Server

{model = HP BL87,
OS = “Ubuntu 18.04”
CPU = 24 x 2.8 GHz

Mem = 256 GB}

<<artifact>>
Data Capture Service

<<artifact>>
Data Access Service

<<processing node>>
Database Server

{model = HP SD2-8,
OS = “Ubuntu 18.04”
CPU = 4 x 2.7 GHz

Mem = 256 GB}

<<execution
environment>>

Oracle 11.1 DBMS

<<artifact>>
CalcDB Schema

Runtime Platform Model

51

<<processing node>>
Primary Server

{model = HP BL87,
OS = “Ubuntu 18.04”
CPU = 24 x 2.8 GHz

Mem = 256 GB}

<<artifact>>
Data Capture Service

<<artifact>>
Data Access Service

<<processing node>>
Database Server

{model = HP SD2-8,
OS = “Ubuntu 18.04”
CPU = 4 x 2.7 GHz

Mem = 256 GB}

<<execution
environment>>

Oracle 11.1 DBMS

<<artifact>>
CalcDB Schema

Production Line
Interface

Production Planner PC
{CPU = 1 x 3.5 GHz

Mem = 512 MB}

<<execution
environment>>

JRE 1.8_20

<<artifact>>
PlannerClient.jar

Specialized Hardware

Online and Offline Storage

<<disk>>
Disk Array

{size = 2 TB, type
= L1 storage}

<<disk>>
Tape Storage

{size = 16 TB, model =
StorageTek SL300}

Client Node

Runtime Modeling Activities

● Design the deployment environment
○ Identify key servers
○ Identify important client hardware requirements
○ Identify network links between nodes
○ Add special-purpose hardware, specify hardware

and software configurations for each node.
● Map elements to hardware

○ May suggest changes to deployment environment.
○ Manage dependencies.
○ Ensure machine capacity is available.
○ Make quality trade-offs (security vs performance)

52

Runtime Modeling Activities

● Estimate the Hardware Requirements
○ Perform an initial estimation, then revise as the

architecture and design progress.
○ Processing power, memory, disk space, bandwidth.

● Conduct a Technical Evaluation
○ Prototype element development, perform

benchmarks, perform compatibility tests.
○ Create mock systems to test integration and

throughput.
● Assess Constraints

○ Formal standards, informal guidelines, assumptions.
○ Review your design to ensure all are met.

53

Network Models

● If networking environment is complex, you
may need a network model detailing:
○ Which nodes need to be connected.
○ Specific network services required (firewalls,

compression, packet encryption)
○ Bandwidth requirements and quality properties.

● Logical model, not a physical one.
○ Service-based view of the network.

● Valuable for customers planning to deploy
your software in their organization.

54

Network Model Elements

● Processing Nodes
○ Elements that use the network to transport data.
○ Should match set from runtime platform model.

● Network Nodes
○ New nodes added that represent network services

you expect to be available.
○ Firewall security, load balancing, encryption.

● Network Connections
○ Links between network and processing nodes.
○ Should describe service you expect link to provide.
○ Bandwidth, latency, quality of service, reliability, or

other network qualities.
55

Network Models

56

<<network node>>
Production Operator PC

Production Line
Interface

<<network node>>
Primary Server

{network = 3 x 1 GB,
 lines = leased}

Firewall

<<network node>>
Database Server

{network = 2 x 1 GB}

Firewall<<network node>>
Production Planner PC

Traffic from WAN
filtered by host
address at this
point

Corporate
WAN

<<network link>>
{ type - ethernet 100 MB}

<<network link>>
{ type - ethernet}

Network Modeling Activities

● Design the Network
○ Establish connections, capacity, quality of service,

and security.
○ Logical design, which is handed to specialist network

designers for physical design.
● Estimate Capacity and Latency

○ Realistic estimation of the magnitude of traffic to be
carried and expected round-trip time.

○ Capacity: Peak transaction throughput and a rough
approximation of the size of messages required.

○ Latency: Standard metrics, distance between nodes.
○ Plan for scalability.

57

Technology Dependency Models

● When possible, it is ideal to bundle software
and dependencies into one executable.
○ Not always possible due to efficiency, cost,

licensing, flexibility.
● Deployment view should document the

dependencies on a node-by-node basis.
● Can be captured in a simple table.

○ SW dependencies may have already been captured
in Development View.

○ HW dependencies can be derived from test and
development environment, manufacturer specs,
testing you conduct.

58

Technology Dependence Model

59

Component Requires

Data Access Service HP-UX 64-bit 11.23+ patch bundle B.11.23.0703
HP aCC C++ runtime A.03.73

Data Capture Service HP-UX 64-bit 11.23+ patch bundle B.11.23.0703
HP aCC C++ runtime A.03.73
Oracle OCI libraries 11.1.0.7

HP aCC C++ Compiler
& Runtime

HP patch PHSS_35102
HP patch PHSS_35103

Oracle OCI 11.1.0.7 HP-UX optional package X11MotifDevKit.MOTIF21
HP-UX patch PHSS_37958

Intermodel Relationships

● Runtime Platform Model:
Used by group
responsible for
deployment early in the
project.

● Network Model: Used by
specialist networking
group

● Technology
Dependency Model:
Used by system
administrators during
installation planning.

60

Pitfall:
Missing or Inaccurate Dependencies

● “You need Oracle and Linux”
○ Too vague to allow safe deployment.
○ Which versions? What patches? Optional updates?

● Capture clear, detailed dependencies
between SW, runtime environment, HW.

● Capture dependencies between 3rd party
SW and the runtime environment.

● Perform compatibility testing.
● Use existing, proven combinations of

technologies with well-understood relations.
61

Risk: Unproven Technology

● New tech can bring great benefits...
○ Often more features, improved performance.

● Or great risk…
○ Functional shortcomings, poor performance,

availability, security.
● Use existing hardware and software that you

can test before committing to.
● Get advice from people who have used a

technology before.
● Create prototypes and benchmarks.
● Perform compatibility testing.

62

Risk: Lack of Specialist Knowledge

● System design requires significant
knowledge about many subjects.
○ Teams of people specializing in different

technologies and aspects of the system.
● Can easily end up in a situation where you

lack detailed knowledge of a technology and
must rely on vendor claims.

● Bring in new specialists when needed.
● Obtain external review of your architecture.
● Obtain binding contracts from suppliers.

63

Risk: Late Consideration of
Deployment Environment

● Problems occur when you consider system
purely from a software-oriented perspective.
○ Can make a system unusable.
○ Impacts how software is designed and implemented.
○ Can be expensive to change.

■ I.e., if you need a group of small machines
instead of one large machine, architecture differs.

● Design deployment as part of architecture
design, not after system has been
developed.

● Obtain external review to get early feedback.
64

Risk: Ignoring Intersite Complexity

● Many systems “live” in multiple locations.
○ Cloud computing environment, servers in different

geographic locations.
● Important to consider impact early.

○ Impacts security, performance, scalability.
○ Network latency, increased security burden,

synchronization between sites.
● Consider impact on system qualities.
● Work with infrastructure team.
● Test representative aspects as soon as

possible “in the field”.
65

Risk:
Not Specifying Disaster Recovery

● How can the system be kept operational in
the event of a significant failure.
○ Power loss
○ Storage failure
○ Natural disasters

● Often involves deployment of a special
operational environment in a different
location.
○ May have lower specification than production

environment.
○ Should be considered as part of Deployment View.

66

Food for Thought

● Have you mapped functional elements to a
type of element in your runtime platform?
○ Have you mapped them to specific hardware

devices if appropriate?
● Is the role of each piece of your runtime

platform fully understood?
○ Is the hardware or service suitable for the role?

● Have you established detailed specifications
for hardware devices or hosted services?
○ Do you know exactly how many of each device or

how much of each service is required?
67

Food for Thought

● Have you identified third-party software and
documented dependencies?

● Are the network topology and services
understood and documented?
○ Have you estimated and validated the required

network capacity?
○ Can the proposed network topology be built to

support this capacity?
● Have you performed compatibility testing to

ensure that the elements can be combined
as desired?

68

Food for Thought

● Have you used prototypes, benchmarks, and
other practical tests when evaluating?

● Can you create a realistic test environment?
● Are you confident that the deployment

environment will work as designed?
○ Have you obtained external review?

● Can physical constraints (floor space, power,
cooling) can be met?

● Do you have a specification of a disaster
recovery environment, if required?

69

Operational Viewpoint

70

What does it mean when the swap
file is full?

● Operational aspects of systems are often
ignored during design.

● This is a significant contributor to
unexpected system down time.

71

The Operational Viewpoint

● Identifies a system-wide strategy for
addressing operational concerns.
○ Helps to ensure system is a reliable and effective

part of its environment.
○ For packaged software, helps illustrate the types of

issues that could occur once installed.
○ Documents how the system can be architected to

reduce or address these concerns.
● Often least well-defined view, as many of the

details are not fully-defined until construction
is underway.

72

Concern: Installation and Upgrade

● [Insert your own installation horror story]
● How is installation performed?

○ Your team performs the install.
○ Users install and configure themselves.
○ Resources allocated to a cloud environment.

● Is this a pure installation or an upgrade?
○ Upgrades can be more complex.
○ Must respect existing data and settings, state of

running elements.
○ Can you keep the system running during update?

● Ensure the system can be installed or
updated successfully.

73

Documenting Installation and Upgrade

● Help the reader understand:
○ What needs to be installed or upgraded to move the

system into production.
○ What dependencies exist between groups of items

to be installed or upgraded (determines event order).
○ What constraints exist on the installation process.
○ What needs to be done to abandon and undo the

installation/upgrade if there is a problem.
● Do not need a complete guide.

○ Instead, constraints the architecture imposes on
installation and upgrade.

74

Installation Documentation Activities

● Identify the Installation Groups
○ Group related elements. For each group, define

what elements it contains and how they will be
installed or ugraded.

● Identify Dependencies
○ Identify dependencies between groups to identify

order elements must be installed in.
● Identify Constraints

○ Do you need to start an element immediately after
installation? Do you need to restart machines?

● Identify Backout Approach
○ What do you need to do to undo any tasks?

75

Concern: Functional Migration

● Process of replacing existing capabilities
with your new capabilities.
○ Migrating users of an older system to your system
○ Big bang: Migration at a single point in time.
○ Parallel: New and old versions of a system used

side-by-side until buy-in.
○ Staged: Parts of a process of system swapped over

time to manage risk.
● Problems: risk and cost

○ Big bang is cheapest, but no recovery route.
○ Others reduce risk, but more expensive.

76

Concern: Data Migration

● Loading data from existing systems into the
new ones.
○ Should be automated as much as possible.

● May change format of GB - TB of data.
○ Data may not match new format exactly, may require

conversion in parallel with live updates.
● Moving data between locations may add

security and performance concerns.

77

Concern: Data Migration

● Migrating taxpayer
database to new
system.
○ Extraction - 3-5 days.
○ Sorting - 1 day.
○ Loading - 10 days.

● 100K updates
expected.
○ Cannot stop tax

collection for two
weeks.

● Capture updates and
apply in bulk once
data migration is
complete. 78

Documenting Migration

● Does not require a complete plan, but
defines overall strategy and constraints.

● Allow reader to understand:
○ What strategies can be employed to migrate

information and users to the system.
○ How the system will be populated with information

from the existing environment.
○ How information in new and old environments can

be kept synchronized.
○ How to revert to the old system if problems emerge.

79

Migration Documentation Activities

● Define the Migration Strategy
○ Big bang vs parallel vs staged.
○ How would this work?
○ What are the tradeoffs?

■ How long will this process takes?
■ Will it disrupt business?
■ Does this meet stakeholder needs?

● Design the Data Migration Approach
○ How to populate the system with the existing

information.
○ How long will it require?
○ What resources are needed?

80

Migration Documentation Activities

● Design Information
Synch Approach
○ Especially in parallel run.
○ Unidirectional (into new

system) or bidirectional?
● Identify the Backout

Strategy
○ Can you back out to the

existing system?
○ Reverse data migration

may not be practical.

81

Concern:
Operational Monitoring and Control

● Systems require routine monitoring.
● Control operations can be used to keep the

system running correctly.
○ Startup, shutdown, transaction resubmission.

● How much is required depends on how
many unexpected operational conditions are
likely to occur.

● Balance against cost and time.
● Consider deployment environment to identify

solutions.
82

Concern: Alerting

● A system should send notifications when
something bad happens.
○ Technical: Unable to connect to database.
○ Functional: Bad data on an automated input.
○ Significant non-error conditions (startup, shutdown)

● Active function of a system.
○ Sent to appropriate humans for action.

● Define which events require alerts, what
information should be included, and where it
should be sent.

● Avoid sending too many alerts.
83

Concern: Backup and Restore

● Data must be protected and insured.
○ Backup processes should be designed, built, and

tested regularly.
● It must be possible to restore data from a

backup in a transactionally consistent state.
○ All updates committed to the restored database or

not recovered at all.
○ Consider data lost as part of restoring (at least any

transactions active during failure).
● Failure in one element could corrupt system.

○ Recover or recreate lost data.
○ Revert system to older state.

84

Concern: Backup and Restore

85

● Academic records in databases.
○ Exam results database.
○ Scores database transforms data into a overall score.

● Corruption requires restoration of exam database.
○ Over three months old.
○ Results from those months will need to be reentered.
○ However, student scores already reflect that data. Must prevent

reentered data from changing scores.

Documenting System Administration

● Monitoring and control facilities
○ How to monitor and adjust the system.
○ Custom utilities, existing management environments.
○ Basic message log to full-blown infrastructure.
○ Define what features you will offer, how to use them,

and any limitations.
● Required routine procedures

○ What needs to be performed regularly?
○ Backup and health check procedures.
○ Define purpose of each procedure, when performed,

who performs it, and the steps involved.

86

Documenting System Administration

● Likely error conditions
○ Error conditions may require administrative

intervention (disk full, network failure).
○ What is unique about your architecture?
○ Explain error conditions, when they occur, how to

recognize them, and HOW to correct them.
● Performance monitoring facilities

○ Watch the system for performance problems.
○ Extracted and analyzed routinely.
○ Explain measures taken, how they can be extracted

and analyzed.

87

Do not use operations documentation as an
excuse for bad software!

● Examples:
○ Los Angeles air traffic control: reboot system every

30 days to prevent a timer overflow or system will
crash

○ Patriot missile system: reboot system every 12 hours
or it won’t track incoming missles correctly

○ Therac 25: don’t press keys too quickly or use
backspace key or system will give incorrect radiation
dose

● Operations documents can become a CYA
tool for bad software

88

Food for Thought

● Do you know how to install your system?
● Can you back out a failed installation?
● Can you upgrade an existing version of the

system (if required)?
● Do you understand the facilities and

constraints of the production environment?
○ Can you live with or mitigate these if not ideal?

● Do you know how information will be moved
from the existing environment into the new
system?

89

Food for Thought

● Do you have a clear migration strategy to
move workload to the new system?
○ Can you reverse the migration if you need to?

● How will you deal with data synchronization?
● How will the system be backed up?
● Will the approach identified allow reliable

restoration in an acceptable time period?
● Can the administrators monitor and control

the system in production?
● Do the administrators understand the

procedures they need to perform? 90

Food for Thought

● How will performance metrics be captured
for the system’s elements?

● Can you manage configuration of all of the
system’s elements?

● Is there consistency between the admin
model and Development view?

● Is the data migration architecture compatible
with the amount of time available to perform
the data migration?
○ Are there catch-up mechanisms in place where the

source data is volatile during the data migration?
91

Key Points

● Context/Functional/Information/Concurrency
Views define what you are building.

● The Development, Deployment, and
Operational Views define how you will build
the system.
○ The Development View defines how to implement

the system.
○ The Deployment View defines how to transition the

system to live operation.
○ The Operational View defines how to keep the

system alive in the field.
92

Next Time

● No class November 6th
○ Election Day!

● Perspective: Performance & Scalability
○ R&W: Ch. 26
○ Bass, Clements, Kazman: Ch. 8

● Homework:
○ Reading Assignment 2 - Tonight!
○ Project, Part 3 - Due on Nov 18
○ Assignment 3 - Nov 29

93

