
Perspective: 
Availability
CSCE 742 - Lecture 19 - 11/15/2018



Availability

● Is the software there and ready to carry out 
its task when you need it to be?
○ Encompasses reliability and repair.
○ Reliability: Does the system tend to demonstrate 

correct behavior?
○ Repair: Can the system recover from an error?

● Availability refers to the ability of a system 
to mask or repair faults such that the 
cumulative service outage does not exceed 
a required value over a time interval.

2



Availability

● Closely related to security and performance.
○ Security: A DDOS attack is designed to make the 

system unavailable.
○ Performance: Has the system failed, or is it 

recovering or limiting the damage from a hazard?
● Availability is about minimizing outage time 

by mitigating faults.
○ A failure is a visible deviation from expected 

behavior (crash, incorrect output).
○ Failures are caused by faults - a mistake in the 

source code.

3



Availability

● Achieving availability requires understanding 
the nature of the failures that can arise.

● Faults and failures can be prevented, 
tolerated, removed, or forecasted. 
○ How are faults detected?
○ How frequently do failures occur?
○ What happens when a failure occurs?
○ How long can the system be out of operation?
○ When can faults or failures occur safely?
○ Can faults or failures be prevented?
○ What notifications are required when failure occurs?

4



Measuring Availability

● Time to repair is the time until failure is no 
longer observable.

● “Observability” can be hard to define.
○ Stuxnet caused problems for months before being 

noticed. How does that impact availability?
● Software can remain partially available more 

easily than hardware.
○ “Degraded operating modes”

● If code containing a fault is executed, but the 
system is able to recover, there was no 
failure.

5



Measuring Availability

● Availability is the probability that the system 
will provide a service within required bounds 
over a specified time interval.
○ Availability = MTBF / (MTBF + MTTR)

■ MTBF: Mean time between failures.
■ MTTR: Mean time to repair

● Scheduled downtime often does not count.
● Pay attention to the significant figures!

○ 0.99999 = down for 5 minutes per year (high avail.)
○ 0.9999 = down for 52 minutes per year
○ 0.99 = down for 3 days per year

6



Impact on Views

● Context:
○ Consider how your system’s availability is impacted 

by availability of external systems.
● Functional:

○ Availability is a key concern to user and acquirer 
stakeholders. 

○ Functional changes may be needed to support 
availability requirements, such as the ability to 
operate in an offline mode when a network is 
unavailable.

7



Impact on Views

● Information:
○ Consider the set of processes and systems for 

backup and recovery. 
■ Systems must be backed up in such a way that 

they can be recovered in a reasonable amount of 
time if a disaster occurs. 

■ Backups should not impact online availability, or 
if they do, they may need to be scheduled to 
occur outside the online day

● Concurrency:
○ Features such as hardware replication and failover 

may imply changes to your concurrency model.
8



Impact on Views

● Development:
○ Achieving availability may impose constraints on 

software development. 
○ All elements may have to support start, stop, pause, 

and restart commands.
● Deployment:

○ Availability has major impact on deployment.
○ Requirements may mandate environment where 

hardware is duplicated or a recovery site that can be 
activated if production environment goes down.

○ May need special software to support hardware 
redundancy and clustering.

9



Impact on Views

● Operational:
○ Processes to identify and recover from problems 

may be required.
○ May be a need for geographically-separate disaster 

recovery facilities. 
○ Processes for main site failover, network failover, 

data recovery must be designed, tested, and built.
○ If standby site is physically separate from production 

site, processes are needed to move staff between 
locations.

10



Planning for Failure

11



“Failure is not an Option”

● Failure is absolutely an option.
○ Failure is inevitable.

● Making a system safe and available requires 
planning for and handling failures.
○ First step - understanding what kinds of failures the 

system is prone to and the consequences.
● Techniques:

○ Hazard Analysis
○ Fault Tree Analysis

12



Hazard Analysis

● Catalog the hazards that can occur, 
classified by severity.

● Example from Aeronautics:
○ Catastrophic: Represents the loss of critical function 

required to safely fly and land aircraft.
○ Hazardous: Failure has a large negative impact on 

safety, performance, or ability to operate the aircraft.
○ Major: Leads to passenger discomfort or increases 

crew workload to the point where safety is affected.
○ Minor: Causes passenger inconvenience or a routine 

flight plan change.
○ No Effect: No impact on safety, crew, or operation.

13



Hazard Analysis

● Requires assessment of probability a hazard 
will occur. 
○ If (cost * probability) > threshold, we must develop a 

way to mitigate the hazard.
● Common Thresholds

○ Probable: Probability of occurrence per operational hour is 
greater than 1 * 10-5

○ Remote: Probability of occurrence per operational hour is less 
than 1 * 10-5 and greater than 1 * 10-7

○ Extremely Remote: Probability per operational hour is less 
than 1 * 10-7 and greater than 1 * 10-9

○ Extremely Improbable: Probability of occurrence per 
operational hour is less than 1 * 10-9

14



Fault Tree Analysis

● Specifies a state of the system that impacts 
safety or reliability, then analyzes operation 
to find all ways that the state could occur.

● Fault tree identifies all sequential and 
parallel sequences of contributing faults that 
could result in the failure.
○ Can be hardware, human, or software faults.
○ Can be events that drive the system out of normal 

operating conditions.

15



Fault Tree Notation

16

Basic Event 
(generally an 
environmental 
factor or input)

Intermediate 
Event (generally 
a failure)

Undeveloped 
Event (we are not 
modeling it or 
digging into it)



Fault Tree Notation

17



Fault Tree Example

18

Car 
Accident

Car Fails to 
Stop

Brakes Fail

Brakes 
Applied

Driver 
Distracted

Deer in 
Road

Non-Deer 
Accident

OR

OR

AND

● Each event assigned a probability. 
● If events are independent, we 

propagate using:
○ P(X or Y) = P(X) + P(Y) - (P(X) * P(Y))
○ P(X and Y) = P(X) * P(Y)

0.999

0.00020.001

0.00120.0026

3.12 * 10-6

2.12 * 10-4

2.15 * 10-4



Availability Scenarios

19



Availability Quality Scenarios

● The ability of the system to mask or repair 
faults such that the outage period does not 
exceed a required value over a time period.

● Measure how the system responds to failure.
○ When the system breaks, how long does it take to 

resume normal operation?
● Stimuli should always be a failure.
● Response measures should always include 

a measure of availability:
○ availability percentage, time to detect or repair fault, 

time system in degraded mode, no down time, etc. 
20



Availability Quality Scenarios

● Scenarios must distinguish physical failures 
in the system and the software’s perception 
of the failure.
○ Do not assume software is omniscient. 

● Scenarios tend to deal with:
○ Failure of a physical component or external system.
○ Reconfiguration of the physical system.
○ Maintenance or reconfiguration of the software.

21



Generic Availability Scenario

● Overview: Description of the scenario.
● System/environment state: The state of the system when 

the fault or failure occurs may also affect the desired system 
response. If the system has already failed and is not in 
normal mode, it may be desirable to shut it down. If this is the 
first failure, degradation of response time or functions may be 
preferred.

● External Stimulus: Differentiate between internal and 
external origins of failure because desired system response 
may be different. Stimuli is an omission (a component fails to 
respond to an input), a crash (component repeatedly suffers 
omission faults), timing (a component responds but the 
response is early or late) or response (a component 
responds with an incorrect value).

22



Generic Availability Scenario

● Required system behavior: There are a number of possible 
reactions to a failure. Fault must be detected and isolated 
before any other response is possible. After the fault is 
detected, the system must recover from it. Actions include 
logging the failure, notifying selected users or other systems, 
taking actions to limit the damage caused by the fault, 
switching to a degraded mode with either less capacity or 
less function, shutting down external systems, or becoming 
unavailable during repair.

● Response measure: Can specify an availability percentage, 
or it can specify a time to detect the fault, time to repair the 
fault, times or time intervals where system must be available, 
or duration for which the system must be available.

23



Availability Scenario

Availability while adding new taps
● Overview: How the system handles additional taps being added to 

the system.
● System/environment state: The system is operating normally, 

without problems.
● External Stimulus: A user powers up a new Kegboard on the 

network with six additional taps.
● Required system behavior: The kegboards send init messages to 

the central Kegbot server. The server interrogates the kegboards 
and adds the additional taps to the inventory of taps. The system 
continues to service the existing taps without interruption.

● Response measure: There is no interruption of service to existing 
taps. Within 1 second, the new kegboard is added to the 
administrative interface on the KegBot web server for administraton 
configuration.

24



Availability Scenario 2
Web server failure at e-commerce site
● Overview: One of the client-facing web servers fails during transmission of 

client page update.
● System/environment state: System is working correctly under normal 

load. Customer has generated a “add item to shopping cart” post, which 
was routed to web server <X> in transaction pool.

● External Stimulus: Web server <X> crashes during response generation.
● Required system behavior: Response page may be corrupted on client 

browser. Load balancer component no longer receives heartbeat message 
from web server and so removes it from the pool of available servers after 
2s of missed messages, or upon next request sent to the server. Load 
balancer will remove the server from the pool of available servers. From 
client’s perspective, a page reload will be automatically routed to alternate 
server by load balancer and page will be correctly displayed.

● Response measure: Upon client-side page refresh, client state and 
display contains state after last transaction. Time for re-routed refresh is 
equivalent to “standard” refresh (<1 second 95% of the time).

25



Availability Tactics

26



Availability Tactics

27



Detect Faults

● Before we can take action, the presence of a 
fault must be detected or anticipated.

● Ping/Echo:
○ Asynchronous request/response message 

exchanged between nodes to determine reachability 
and round-trip delay.

○ Echo determines that a pinged element is alive.
○ Ping often sent be a system monitor.
○ Time threshold determines how long to wait for the 

echo before timing out.
○ Standard implementations available through IP. 

28



Detect Faults

● Monitor:
○ Element that monitors the health of processes, 

CPUs, I/O, memory, etc.
○ Can detect failure or congestion in network and 

shared resources,initiate system self-tests, and 
detect timing issues.
■ “Watchdog” that monitors overall system.

● Heartbeat:
○ Message exchange between monitor and a process.
○ Process resets watchdog timer in monitor.
○ Often merged with other control messages to avoid 

performance or scalability issues.
○ Difference with ping: process has the responsibility. 29



Detect Faults

● Time Stamp:
○ Detect incorrect sequences of events.
○ Time stamps established using local clocks.
○ Can use a sequence number of time is not important

● Sanity Check/Condition Monitoring:
○ Checks validity or reasonableness of specific 

operations or outputs of a component. 
○ Requires well-specified properties.
○ Employed at interfaces to examine information flow.
○ Monitor must be simple to avoid introducing new 

errors through the overhead of monitoring.

30



Detect Faults

● Voting:
○ Run three elements that “do the same job”, apply 

same input to each, then compare the output.
■ Often three copies of the same process.

○ Detect inconsistency among the three output states.
○ If there are disagreements, report a fault.
○ Use majority as the “official” output.

31



Failure Recovery

● Prevention-and-repair tactics attempt to retry 
computations or introduce redundancy.

● Active Redundancy (Hot Spare):
○ A protection group is a group of processing nodes 

where one or more nodes are “active,” with the 
remaining nodes serving as redundant spares.

○ In this configuration, all nodes (active or redundant) 
process input in parallel, allowing redundant spares 
to synchronize with active nodes.

○ Because redundant nodes has identical state, it can 
take over from a failed element in milliseconds.

32



Failure Recovery

● Passive Redundancy (Warm Spare):
○ Only active members of a production group process 

input, and provide redundant spares with status 
updates.

○ State of redundant nodes is only loosely coupled to 
active nodes. 

○ Enables availability with lower performance cost.
● Spare (Cold Spare):

○ Redundant nodes remain out of service until a failure 
occurs, then they replace the active nodes.

○ Poor recovery performance, but improves reliability.

33



Failure Recovery

● Exception Handling:
○ Once an exception is detected, the system must 

handle it.
○ Easiest thing to do is crash, but this is not desirable.
○ Offer error messages, details on why the program 

failed (cause and location of the failure).
○ Mask the fault and restore the program to a usable 

state or retry an operation.
● Rollback:

○ Revert to a known good state (“rollback line”).
○ Continue from restored state. 
○ Often paired with redundancy.
○ Can update stored state when convenient. 34



Failure Recovery

● Retry:
○ Assumes fault is transient. Retries the failed 

operation. Often used in networked environments.
○ Limit number of retries.

● Ignore Faulty Behavior:
○ Block all messages from a source known to be faulty
○ Common tactic for avoiding DDOS attacks.

● Degradation:
○ Drop non-critical functions after a failure and 

maintain the functioning critical services.
● Reconfiguration:

○ Reassign responsibilities to remaining resources.
35



Failure Recovery

● Reintroduction restores failed elements after correction.
● Shadow:

○ Operate a failed or in-service component in a 
“shadow” mode for a period of time before restoring 
to active service.

○ During this time, its behavior is monitored for 
correctness and state is re-populated incrementally.

● State Resynchronization:
○ With active redundancy: States of active and passive 

elements are compared to ensure synchronization.
○ With passive redundancy: State of passive elements 

is periodically updated by active elements.

36



Failure Recovery

● Escalating Restart:
○ Allows the system to recover from failures by varying 

the granularity of the elements restarted and 
minimizing level of service affected.

○ Level 0: Employ a warm spare. All child threads of 
the faulty element are killed and recreated.

○ Level 1: Frees and reinitializes all unprotected 
memory.

○ Level 2: Frees and reinitializes all memory, forcing 
all elements to reload and reinitialize.

○ Level 3: Completely reload and reinitialize the 
executable image and associated data.

○ Useful for enabling graceful degradation.
37



Failure Prevention

● Removal from Service:
○ Temporarily place elements in out-of-service states 

to mitigate potential system failures.
○ Take an element out of service and reset it to scrub 

latent faults (memory leaks, fragmentation, caching 
errors) before they cause a failure.

● Transactions:
○ Ensure that all asynchronous messages are:

■ Atomic (each transaction treated as a single unit, and either 
succeeds or fails completely)

■ Consistent (data changes must be valid)
■ Isolated (concurrent updates have same effect as sequential)
■ Durable (once completed, a transaction remains committed even 

in case of a failure).
38



Failure Prevention

● Transactions:
○ Usually implemented through two-phase commit.

■ All processes in the transaction asked whether to 
commit or abort the transaction.

■ Then, a manager decided whether to commit 
based on process votes.

○ Prevents race conditions from processes attempting 
to update at the same time.

39



Failure Prevention

● Predictive Model
○ A monitor uses a model to predict when the system 

has stepped outside of normal operating 
parameters, and takes action.

○ Uses performance metrics to predict failure.
■ Session establishment rate (for a server).
■ Process state (in-service, out-of-service, under 

maintenance, idle).
■ Message queue length.
■ Task completion speed.

40



Failure Prevention

● Exception Prevention
○ Prevent exceptions from occuring.
○ Use “wrappers” around common datatypes to 

prevent misuse of that type.
■ Prevent dangling pointers, semaphore access 

violations, null pointers, out-of-bounds access.
○ Use smart pointers to do bounds-checking on 

pointers and ensure that resources are automatically 
deallocated when no data refers to it.
■ Avoids resource leaks.

41



Availability Design 
Guidelines

42



Allocation of Responsibilities

● Determine system responsibilities that need 
to be highly available. 

● For each, ensure that the system can:
○ Detect an omission, crash, incorrect timing, or 

incorrect response.
○ Log the failure and details on underlying fault.
○ Notify appropriate people or systems.
○ Disable the source of events causing the failure.
○ Be temporarily unavailable.
○ Fix or mask the fault or failure.
○ Operate in a degraded mode.

43



Coordination Model

● For each responsibility that must remain 
highly available:
○ Can coordination mechanisms detect the failure?

■ Is guaranteed delivery of messages necessary? 
■ Will coordination work under degraded communication?

○ Can the coordination mechanism replace the failed 
element?
■ Does replacement of a server allow the system to still operate?

○ Can coordination still function under degraded 
conditions?
■ How much lost information can the model withstand?

44



Data Model

● For each element that must be highly 
available:
○ Which data abstractions, operations, or properties 

could cause a failure?
○ For each data abstraction, operation, or property, 

can it be disabled, temporarily unavailable, fixed, or 
masked?
■ Can write requests be cached if a server is 

temporarily down, then performed once it is 
returned to service?

45



Mapping Among Elements

● What processes, CPUs, persistent storage, 
etc. can produce a failure?

● Ensure that mapping of elements to runtime 
elements is flexible enough to permit 
recovery.
○ Which processes need to be reassigned at runtime?
○ Which CPUs, data stores, etc. can be activated or 

reassigned at runtime? 
○ How can data on failed CPUs or storage be 

replaced?
○ How quickly can the system be reinstalled?

46



Resource Management

● What critical resources are needed to continue 
operating in the presence of a fault?
○ Ensure sufficient resources to log the fault, notify 

people and systems, disable the events causing the 
fault, fix or mask the fault, and operate in a degraded 
mode.

○ Determine availability time for critical resources, 
what resources must be available at specified time 
intervals, and repair time.

○ Ensure critical resources are available during these 
intervals. (i.e., make sure input queues are large 
enough to buffer if a server fails).

47



Key Points

● Availability is the ability of the system to be 
available for use, especially after a failure.

● Failures must be recognized or prevented.
○ System response can range from “ignore it” to “keep 

on going as if it didn’t occur”. 
● Availability tactics detect faults, recover from 

failures, and prevent failures.
○ Detection depends on signs of life.
○ Recovery involves retrying operations or maintaining 

redundant data or computations.
○ Prevention depends on removing elements from 

service or limiting scope of failures.
48



Next Time

● Embedded System Architecture and 
Architecture Design Languages
○ Sources: 

■ Medvidovic and Taylor, “A classification and 
comparison framework for Architecture 
Description Languages”

■ “Architecture Analysis with AADL”

● Homework: 
○ Project, Part 3 - Due on Nov 18
○ Reading Assignment 3 - Due on Nov 27

49


