
Architectural
Modeling and
Real-Time Systems
CSCE 742 - Lecture 20 and 21 -
11/20 and 27/2018

Our Society Depends on Software

This is software: So is this:

 Also, this:

2

Real-Time Architectures

● A system is real-time if “correctness”
depends not only on the logical answer, but
the time it was performed.
○ Hard or immediate real-time: The completion of an

operation after the deadline is useless.
■ Can cause a critical failure.

○ Soft real-time: Some lateness is tolerated, but may
cause decreased service quality.
■ (ex: omitting frames in a video)

3

Traditional Domains of Concern

4

Recent Domains of Concern

5

Structure of Real-Time Systems

6

World

Sensors

System
(“Controller”)

Actuators

Key Concepts

● Repeatedly sample inputs, assess system
state, and generate output.

● Sampling Rate: Rate at which the cycle
takes place.
○ Goal is often to approximate continuous assessment
○ Sampling rate must be “fast enough”

■ (for good approximation)
○ Rate depends on speed of computations.

7

Key Concepts

● Perform bounded amount of work per cycle.
○ Need to process the next sample!

■ Need to finish within sample time.
● Longest time to process is called

worst-case execution time (WCET).
● End-to-end latency is also important.

○ System -> Actuator -> Environment -> Sensor ->
System

○ Controller must have an accurate view of the system
○ Actuator must react “fast enough” to influence the

environment in time.

8

Concept: Tasks

● Tasks are separately scheduled units of
work
○ AKA: Threads!

● Real-time systems are split into
independent, concurrent tasks.

● A process describes a set of threads that
share an address space.
○ Each thread is a “task”.
○ May run at different sampling rates
○ (measured in cycles-per-second, Hz)
○ Threads need to be scheduled to run on CPUs.
○ May need to communicate dependencies. 9

Concept: Scheduling

● Algorithms create a guaranteed schedule or
abort (no schedule can guarantee
schedulability of system).
○ RMA: Rate-Monotonic (high throughput)
○ DMA: Deadline-Monotonic (finish critical first)

● Take as input:
○ Per task: period, WCET
○ Per processor: worst-case thread context switch,

process context switch
○ Additional constraints and frame dependencies.

■ Frame dependencies = ordering constraints for
tasks in a schedulable period (frame).

10

Scheduling

● Most tasks are
polling (cyclic).

● May also have
event-based tasks.
○ Called aperiodic

tasks.
○ Require minimum

delay between
events to schedule.

11

End-to-End Latency

● Data flows through controller from inputs to
outputs (back to environment).
○ May go through several intermediate tasks.

● End-to-End Latency describes the amount
of time required for end-to-end flow.
○ Time to impact the environment and notice the

change in the sensor readings.
● Frame dependencies change end-to-end

latency.
○ Mid-frame communications have less latency.
○ Phase-delayed communications have more.

12

Process Communication

● Several mechanisms for communication
between processes/threads.

● Logical views:
○ Message queue / pipe
○ Rendezvous
○ Remote procedure call

● Physical views:
○ Shared memory
○ Interrupt
○ Bus
○ Network

13

Polling or Event-Based?

● Do you ask sensors for a reading, or let
sensors send you readings?
○ Polling… or event-based?

● Current system uses polling for most tasks.
○ Polling processes allow simpler scheduling.
○ Maintains periodicity of threads to be scheduled.

● However, polling can be very inefficient.
○ Monitoring user interface elements (key presses).
○ Polling rate must be high (no missed state changes).
○ Also want high rate to reduce latency.
○ But most of the time, it does nothing.

● But…events can cause missed deadlines.
14

Architecture Challenges

● Scheduling tasks is extremely hard.
○ Some tasks need to run more often than others, but

have worse WCET.
○ Task A may need to run more often than task B, but

can’t preempt task B.
● Do you poll sensors or wait for events?
● Algorithms must be fast!
● Hardware can be noisy or fail.
● Environmental input can fail to arrive as

expected (too fast or too slow).

15

How do we design an
architecture for this?

16

Architectural Modeling

17

Many Errors Stem from Architecture Issues

● Global variable used in different functions:
○ Issues: inconsistent values, concurrent accesses
○ Cause: Architecture Design (use of encapsulation)

● Use of COTS elements without validation:
○ Impact: do not fit with the environment, crash
○ Cause: No Validation of Components Integration

● Timing issues
○ Impact: deadlines not enforced, bad values
○ Cause: poor integration policy, lack of analysis

● These errors could be detected during
design, but are detected instead during
integration - incurring major cost! 18

Architecture Description Languages

● Language for viewing and analyzing
“architectural” software concerns.

● Describes structure of system rather than
(functional) implementation.

● Subject of much research in late 1990s and
early 2000s.
○ Many academic ADLs
○ …and of course, UML
○ Wide range of ADLs for different kinds of software
○ Today: AADL (Architectural Analysis & Design

Language) is one of the most common.
19

Architecture Description Languages

● ADLs ≈ Multi-model architecture notations
○ Overview paper: “A classification and comparison

framework for Architecture Description Languages”
by Medvidovic and Taylor

○ http://citeseerx.ist.psu.edu/viewdoc/download?doi=1
0.1.1.151.4061&rep=rep1&type=pdf

● We have seen one (UML) in some depth
already in the viewpoints.
○ Doesn’t have (agreed upon) semantics, though.
○ Difficult to use for analysis and architecture

generation - more for human consumption.

20

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.4061&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.4061&rep=rep1&type=pdf

Why use ADLs?

● Help us understand the architecture.
○ Designed for analysis and reasoning to draw

conclusions about the performance of the model.
○ Designed to ensure consistency between

different system views.
○ Often designed to generate system skeleton.

● Medium of communication.
○ Reduce the amount of information the reader needs

to understand, and should structure the information.
● Help organize processes, teams, and

deliverables.
● ADs can be built directly from ADLs.

21

Two Architecture World Views

● Bottom up (assembly):
○ Architecture description is assembled from

viewpoints that describe different facets of
architecture.

● Top down (generative):
○ Architecture specification (in ADL) is used to

generate different viewpoints (via extraction) to
present information of interest to stakeholders.

○ Can also generate implementation skeletons.

22

Language Focus and Applications

23

ADL Features

● An ADL must provide the means to model:
○ Elements and their interfaces.

■ Interfaces are essential for demonstrating
underlying semantics of the model.

○ Connectors.
○ Architectural configurations/topologies.

● ADLs often have tool support for:
○ Showing individual views.
○ Performing automated verification of properties or

other analyses.
○ Performing model refinement.
○ Implementation generation.

24

Support for Modeling Elements

● Interface:
○ A element’s interface is a set of interaction points

between it and the external world.
○ Specifies services and constraints on their usage.

● Types:
○ Element types are abstractions that encapsulate

functionality into reusable blocks.
○ Elements can be instantiated multiple times.

● Semantics:
○ High-level model of an element’s behavior.
○ Needed to perform analysis, enforce constraints,

ensure consistent mapping between abstractions.
25

Support for Modeling Elements

● Constraints:
○ A property of or assertion about a system or one of

its parts, where a violation will reduce value.
○ Constraints needed to verify adherence to uses,

enforce boundaries, and establish dependencies.
● Evolution:

○ The modification of (a subset of) a element’s
properties, e.g., interface, behavior, or
implementation.

● Non-Functional Properties:
○ Properties that affect safety, security, performance,

portability.
26

Support for Modeling Connectors

● Interface
○ A set of interaction points between the connector

and the attached elements and other connectors.
○ Enable connectivity of elements and their interaction

● Types
○ Abstractions of element communication,

coordination, and mediation decisions.
○ Makes coordination protocols reusable within and

across architectures.
● Semantics

○ High-level model of a connector’s behavior.
○ Enables element interaction analysis.

27

Support for Modeling Connectors

● Constraints
○ Ensure adherence to intended interaction protocols,

establish intra-connector dependencies, and enforce
usage boundaries.

○ I.e., limit on number of elements that use connector.
● Evolution

○ The modification of (a subset of) its properties, e.g.,
interface, semantics, or constraints on the two.

● Non-Functional Properties
○ Properties that represent (additional) requirements

for correct connector implementation.

28

Support for Modeling Configurations

● Connected graphs of elements and
connectors that describe structure.
○ Needed to determine whether appropriate elements

are connected, that their interfaces match, that
connectors enable communication, and that
combined semantics are correct.

● Modeling enables assessment of
concurrent/distributed behavior.
○ Deadlock/starvation, performance, reliability, security

● Enable analysis of architectures for
adherence to design rules.
○ Too many direct communication links harm evolution 29

Support for Modeling Configurations

● Understandable Specifications
○ Model structural (topological) information with simple

and understandable syntax. System structure should
be clear from the configuration.

● Compositionality
○ A mechanism that allows architectures to describe

software systems at different levels of detail.
○ Can show complex information in detail, or abstract

it into a subelement that is modeled elsewhere.
● Refinement and Traceability

○ Enable correct and consistent refinement of
architectures into executable systems and
traceability of changes across levels of refinement.

30

Support for Modeling Configurations

● Heterogeneity
○ Facilitate development of large-scale systems.

■ Pre-existing elementsand connectors of varying granularity
■ Different formal modeling languages and programming languages
■ Varying operating system requirements
■ Different communication protocols

● Scalability
○ Provide developers with abstractions needed to

cope with the issues of complexity and size.
● Evolvability

○ Incremental addition, removal, replacement, and
reconnection in a configuration.

31

Support for Modeling Configurations

● Dynamism
○ Modifying the architecture and enacting those

modifications while the system is executing.
● Constraints

○ Depict dependencies in a configuration complement
those specific to individual elements and connectors.

● Non-Functional Properties
○ Used to select appropriate elements and connectors,

perform analysis, enforce constraints, map
architectural building blocks to processors, and aid
in project management.

32

Architecture Analysis
and Description
Language (AADL)

33

What is AADL?

● Architecture modeling language, developed
for the embedded system communities.

● Uses component-based notation for the
specification of task and communication
architectures of real-time systems.

● Offers tool-based analysis in Eclipse
framework (OSATE).

34

Embedded Architecture

35

Analysis Support

36

● Reduced model validation cost due to single source model.
● AADL offers an estensible domain model with strong

semantics and an XML-based interchange format.

The AADL Language

● Precise execution semantics for components
○ Thread, process, data, subprogram, system, processor,

memory, bus, device, virtual processor, virtual bus.
● Continuous control/event processing

○ Data and event flow, synchronous call/return, shared access.
○ End-to-End flow specifications.

● Operational modes/fault tolerant configs.
○ Modes & mode transition

● Modeling of large-scale systems
○ Component variants, layered system modeling, packaging,

abstract, prototype, parameterized templates, arrays of
components and connection patterns.

37

AADL Representation Forms

38

Component-Based Representation

● Specifies a well-formed interface.
○ Component type allow for multiple implementations

with extensions.
○ All external interaction points defined as features.
○ Data and event flows through component, across

multiple components.
○ Properties to specify component characteristics.

● Components organized into a hierarchy.
○ Component interaction declarations must follow

system hierarchy.

39

Basic System Properties

● AADL defines standard properties for
systems, including:
○ System startup:

■
● A property of type , assigned () a value of 0.5

seconds.
■ Value is a floating point number with a time unit.
■ Time units include ps, ns, ms, s, m, h, d.

○ Time to load all programs and data into the system:
■

● Two values indicate a time interval (between 0.1 to 0.25 sec)
■

40

Example System: Car

41

Example: Car with Braking
Subsystem

42

Architecture Software Components

43

Process Components

● Processes represent protected virtual
address spaces.
○ Address space boundaries are enforced at run-time.
○ A property setting allows to disable the protection.

● Contains executable and data needed for
execution and must be loaded into memory.
○ Process is stored in ROM
○ Process is loaded at system startup
○ Process may be unloaded when it is not active

● A process must contain at least one thread
subcomponent to be executable.

44

Process Properties

● Process at run-time
○

■ No runtime enforcement of space protection.
○

■ Time to load image into memory.
○
○

■ Time to start process after loading (to create threads).
○

● Relationship to implementation in a
programming language
○
○

45

Thread Components

● Represents a schedulable and executable
entity in a system.
○ Concurrent and Active tasks.

● Threads execute based on time or
thread-external events.
○ Periodically every 50ms, e.g., a data sampling

thread in a control system.
○ Process a message upon arrival with arbitrary arrival

pattern, e.g., a thread in a camera processing image
data when the shutter button is pressed.

46

Thread Components

● Threads are mapped onto operating system
threads for execution.
○ One or more application threads per OS thread.

● Interacts with other threads through port
connections, subprogram calls, and shared
data access.

● Executes within the virtual address space of
its enclosing process.

47

Thread Dispatch Protocols

48

Thread Properties

● Properties related to thread dispatch
○

■ Any from previous slide.
○

■ Required for periodic, sporadic, timed, hybrid threads.

● Properties needed for thread scheduling
○

■ Execution time range of thread (upper is worst-case).
■ Optional, defaults to period.

○
■ For periodic threads: indicate delayed dispatch relative to other

periodic threads.
○

49

Thread Example: GPS Data Filtering

50

Thread States

51

Ports and Connectors

● Ports: interaction points
○ Model transfer of data and control.
○ Ports are declared as features in

component types.
○ Data port: non-queued data.
○ Event port: queued signals.
○ Event data port: queued messages.

● Feature group: aggregates ports
into a single connection point.

● Connections: connect ports in
the direction of data/control flow.
○ uni- or bi-directional.

52

Port Properties

● Queuing of events and messages
○

■ Default: no connection needed.
○
○

■ Handling of incoming event and message
queues.

○
○
○

■ To resolve conflicts if queues are not empty.

53

Port Properties

● Frequency of data input and output
○

○
● Mapping to variable in an implementation

○

54

Connections Between Ports

55

An AADL port connection connects:
● Two ports of subcomponents in the same component implementation (1).

○ Communication inside a component – identical port directions.
● A port of a component implementation with a port of one of its

subcomponents (2).
○ Communication with the outside – complementary port directions

● A port can have multiple outgoing connections (fan-out) (3).
● Data ports can have one, other ports can have multiple incoming

connections (fan-in).
● Connections can be bi-directional (<->).

Data Components

● Data components can represent:
○ Data shared between threads or subprograms.
○ Local data in a thread or subprogram.
○ Type of data exchanged through data/event ports.
○ The type of subprogram parameters.

● AADL models should contain information
about data that is relevant to analyses of the
architecture:
○ Bandwidth analysis – size of data elements,

frequency of data exchanges.
○ Model consistency – size, value ranges, and

physical units of exchanged data.
56

Shared Data Access

A data component can be shared among components.
● Data access features: model required or provided access to a shared data

component.
● Access connections: model access paths to the shared data component.
● Data ports must have same type, implementations of data must be

identical.

57

Flows

● Model logical flow of data and control
through a sequence of components and
connections.
○ Support analysis of data flow and control flow.

● Provide the capability of specifying
end-to-end flows to support analyses:
○ End-to-end timing and latency.
○ Fault propagation.
○ Resource management based on operational flows.
○ Security based on information flows.

58

Flow Sources, Paths, Sinks

59

Flow Implementation

60

End to End Flow Example

61

Execution Platform Components

62

Execution Platform Components

● Represent hardware components:
○ Processor timing, hardware clock period/jitter
○ Bus transmission time, latency
○ Memory capacity, access time, RAM/ROM

● Represent logical resources:
○ Thread scheduling policy of a processor.
○ Communication protocol over a network connection.
○ Transactional characteristics of a database modeled

as a memory component.
○ Virtual bus/processor represent only logical aspects.

● These two aspects reflected in properties
applied to the components.

63

Processor Components

● As a hardware component:
○ Processors include a CPU, memory, bus, a

hardware clock that can interrupt the processor
○ Have a MIPS rating, size, weight

● As a logical resource:
○ Processors schedule threads
○ Processors execute software to provide scheduling

and other runtime system functionality.
● Threads are bound to processors
● Processors may access memory and device

components via buses, execute software
associated with devices. 64

Processor Properties

● Logical Resource (Thread Scheduling)
○
○

■ Cost of context switching
○
○
○

■ File containing the runtime system.

● Hardware Component (Clock Properties)
○ Clock_Period => 10ms;

■ Time between two interrupts.
○ Clock_Jitter => 2ms;

■ Difference between interrupt handling start in multicore system.

65

Bus Components

● As a hardware component:
○ A bus provides the physical connection between

hardware components.
○ Inside a hardware component, e.g., PCI bus in a PC.
○ Between hardware components, e.g., a USB

connection between a PC and a camera.
● As a logical resource:

○ A bus represents the protocol(s) by which connected
components communicate.

● Components are connected to a bus with a
bus access connection.
○ A bus is shared by all components that access it.

66

Bus Properties

● Logical Resource
○ Constraints on transported content

■

● What can be transmitted over the bus?
■

○ Protocols and protocol properties
■

● Supported protocols and QoS

67

Bus Properties

● Hardware Component
○ Constraints on physical connectivity

■

● What may be connected to the bus.
○ Properties related to data transmission time

■
■

68

Memory Components

● Represent randomly accessible physical
storage (e.g. RAM, ROM).

● May also be used to model complex
permanent storage (e.g. disks, database).

● Processes must be in memory at startup to
be executed.
○ Stored permanently in ROM, loaded into RAM.

● Processors need access to memory.
○ Processor and memory connected via a shared bus.
○ Memory is contained in the processor.

69

Bringing Software and Execution
Platform Together

● Software relies on computational resources
for execution of threads and communication
among threads/between threads and
devices.

● In a model, software and execution platform
often form independent system hierarchies.
○ AADL provides binding properties to describe how

software components are allocated to the execution
platform.

70

Binding Properties

● Map software elements to platform elements
using binding properties:
○

■ Specify which processor schedules and executes
a thread or executes a device driver.

○
■ Specify the memory components in which

executable code (process components) and data
(data component) reside.

○
■ Specify the communication channels that are

used by logical connections.
71

72

1. Open OSATE Framework
2. Go over Toy Example
3. Look at both textual and

graphical representation.

Compositional
Verification Using
AGREE

73

Compositional Verification

● Complex systems are usually designed as a
hierarchical federation of elements.
○ As we descend the hierarchy, the design of some

level becomes the requirements of elements at the
next level of abstraction.

● We need to verify requirements and
architectural design.
○ What can we assume about an element’s input?
○ What do we guarantee about an element’s output?
○ Do these assumptions and guarantees hold

throughout the hierarchy?

74

Hierarchical Reasoning

● Avionic System Requirement:
○ Under single-fault assumption, GC

output transient response is
bounded in time and magnitude

● Relies on:
○ Accuracy of air data sensors
○ Control commands from FCS
○ Mode of FGS
○ FGS control law behavior
○ Failover behavior between FGS

systems
○ ….
○ Response of Actuators
○ Timing/Lag/Latency of

Communications

75

Compositional Reasoning for Active
Standby

76

● Want to prove a transient response property:
○ The autopilot will not cause a sharp change

in pitch of aircraft.
○ Even when one FGS fails and the other

assumes control
● Given assumptions about the environment:

○ The sensed aircraft pitch from the air data
system is within some absolute bound and
doesn’t change too quickly

○ The discrepancy in sensed pitch between left
and right side sensors is bounded.

● and guarantees provided by elements:
○ When a FGS is active, it will generate an

acceptable pitch rate
● As well as facts provided by pattern application

○ Leader selection: at least one FGS will always
be active (modulo one “failover” step)

Contracts

● AGREE annotates AADL elements with:
○ Assumptions that elements make about the

environment (input).
○ Guarantees that elements make about their output.

■ … As long as the assumptions are met.
● Each layer of the hierarchy is verified

individually.
● AGREE attempts to prove the system-level

guarantees in terms of the guarantees of its
elements.

77

Contracts

Want to show that the system-level property holds, given
the guarantees provided by the elements and the system
assumption.

78

System-Level:
●

●

A
●

●

B
●
●

C
●

AGREE Language Basics

● Data types: integer, float, boolean
○ Integers can be 8-64 bit, signed or unsigned.
○ Float can be 32 or 64 bit.

● Variables can include AADL data classes.
○ Alarm offers Boolean , integer

■

● uses the value of from the last
computational cycle.

79

AGREE Language Basics

● Equation statements create local variable
declarations.
○
○ Variable that counts up from 0.
○ “Intermediate” expressions that prove guarantees.

● Properties allow specification of named
Boolean expressions.
○

● Constants can be defined:
○

80

81

1. Go over Toy Example
2. Execute AGREE
3. Examine Counterexample
4. Fix Model

Key Points

● Real-Time Systems have strict timing
requirements, and tend to react to and
influence an environment.

● Architecting them is difficult and requires
careful task scheduling.

● Architectural Description Languages often
have constructs for analyzing combinations
of hardware and software with timing
constraints.
○ AADL/AGREE designed for this purpose!

82

Next Time

● Service-Oriented Architecture

● Homework:
○ Reading Assignment 3 - Tonight!
○ Project, Part 4 - 12/06
○ Assignment 3 - 12/09

83

