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Our Society Depends on Software

This is software:                        So is this:

                                                   Also, this:
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Real-Time Architectures

● A system is real-time if “correctness” 
depends not only on the logical answer, but 
the time it was performed.
○ Hard or immediate real-time: The completion of an 

operation after the deadline is useless. 
■ Can cause a critical failure.

○ Soft real-time: Some lateness is tolerated, but may 
cause decreased service quality.
■ (ex: omitting frames in a video)
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Traditional Domains of Concern
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Recent Domains of Concern

5



Structure of Real-Time Systems
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Key Concepts

● Repeatedly sample inputs, assess system 
state, and generate output.

● Sampling Rate: Rate at which the cycle 
takes place.
○ Goal is often to approximate continuous assessment 
○ Sampling rate must be “fast enough” 

■ (for good approximation)
○ Rate depends on speed of computations.
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Key Concepts

● Perform bounded amount of work per cycle.
○ Need to process the next sample!

■ Need to finish within sample time.
● Longest time to process is called 

worst-case execution time (WCET).
● End-to-end latency is also important.

○ System -> Actuator -> Environment -> Sensor -> 
System

○ Controller must have an accurate view of the system
○ Actuator must react “fast enough” to influence the 

environment in time.
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Concept: Tasks

● Tasks are separately scheduled units of 
work
○ AKA: Threads!

● Real-time systems are split into 
independent, concurrent tasks.

● A process describes a set of threads that 
share an address space. 
○ Each thread is a “task”.
○ May run at different sampling rates
○ (measured in cycles-per-second, Hz)
○ Threads need to be scheduled to run on CPUs.
○ May need to communicate dependencies. 9



Concept: Scheduling

● Algorithms create a guaranteed schedule or 
abort (no schedule can guarantee 
schedulability of system).
○ RMA: Rate-Monotonic (high throughput)
○ DMA: Deadline-Monotonic (finish critical first)

● Take as input:
○ Per task: period, WCET
○ Per processor: worst-case thread context switch, 

process context switch
○ Additional constraints and frame dependencies.

■ Frame dependencies = ordering constraints for 
tasks in a schedulable period (frame). 
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Scheduling

● Most tasks are 
polling (cyclic).

● May also have 
event-based tasks.
○ Called aperiodic 

tasks. 
○ Require minimum 

delay between 
events to schedule.
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End-to-End Latency

● Data flows through controller from inputs to 
outputs (back to environment).
○ May go through several intermediate tasks.

● End-to-End Latency describes the amount 
of time required for end-to-end flow.
○ Time to impact the environment and notice the 

change in the sensor readings.
● Frame dependencies change end-to-end 

latency.
○ Mid-frame communications have less latency.
○ Phase-delayed communications have more.
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Process Communication

● Several mechanisms for communication 
between processes/threads.

● Logical views: 
○ Message queue / pipe
○ Rendezvous
○ Remote procedure call

● Physical views:
○ Shared memory
○ Interrupt
○ Bus
○ Network
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Polling or Event-Based?

● Do you ask sensors for a reading, or let 
sensors send you readings?
○ Polling… or event-based?

● Current system uses polling for most tasks.
○ Polling processes allow simpler scheduling.
○ Maintains periodicity of threads to be scheduled.

● However, polling can be very inefficient.
○ Monitoring user interface elements (key presses).
○ Polling rate must be high (no missed state changes).
○ Also want high rate to reduce latency.
○ But most of the time, it does nothing.

● But…events can cause missed deadlines.
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Architecture Challenges

● Scheduling tasks is extremely hard.
○ Some tasks need to run more often than others, but 

have worse WCET.
○ Task A may need to run more often than task B, but 

can’t preempt task B. 
● Do you poll sensors or wait for events?
● Algorithms must be fast!
● Hardware can be noisy or fail.
● Environmental input can fail to arrive as 

expected (too fast or too slow).
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How do we design an 
architecture for this?
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Architectural Modeling
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Many Errors Stem from Architecture Issues

● Global variable used in different functions:
○ Issues: inconsistent values, concurrent accesses
○ Cause: Architecture Design (use of encapsulation)

● Use of COTS elements without validation:
○ Impact: do not fit with the environment, crash
○ Cause: No Validation of Components Integration

● Timing issues
○ Impact: deadlines not enforced, bad values
○ Cause: poor integration policy, lack of analysis

● These errors could be detected during 
design, but are detected instead during 
integration - incurring major cost! 18



Architecture Description Languages

● Language for viewing and analyzing 
“architectural” software concerns.

● Describes structure of system rather than 
(functional) implementation.

● Subject of much research in late 1990s and 
early 2000s.
○ Many academic ADLs
○ …and of course, UML
○ Wide range of ADLs for different kinds of software 
○ Today: AADL (Architectural Analysis & Design 

Language) is one of the most common.
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Architecture Description Languages

● ADLs ≈ Multi-model architecture notations
○ Overview paper:  “A classification and comparison 

framework for Architecture Description Languages” 
by Medvidovic and Taylor

○ http://citeseerx.ist.psu.edu/viewdoc/download?doi=1
0.1.1.151.4061&rep=rep1&type=pdf

● We have seen one (UML) in some depth 
already in the viewpoints.
○ Doesn’t have (agreed upon) semantics, though.
○ Difficult to use for analysis and architecture 

generation - more for human consumption.
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Why use ADLs?

● Help us understand the architecture.  
○ Designed for analysis and reasoning to draw 

conclusions about the performance of the model.
○ Designed to ensure consistency between 

different system views.
○ Often designed to generate system skeleton.

● Medium of communication.  
○ Reduce the amount of information the reader needs 

to understand, and should structure the information.
● Help organize processes, teams, and 

deliverables.
● ADs can be built directly from ADLs.
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Two Architecture World Views

● Bottom up (assembly): 
○ Architecture description is assembled from 

viewpoints that describe different facets of 
architecture.

● Top down (generative): 
○ Architecture specification (in ADL) is used to 

generate different viewpoints (via extraction) to 
present information of interest to stakeholders.

○ Can also generate implementation skeletons.
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Language Focus and Applications
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ADL Features

● An ADL must provide the means to model:
○ Elements and their interfaces.

■ Interfaces are essential for demonstrating 
underlying semantics of the model.

○ Connectors.
○ Architectural configurations/topologies.

● ADLs often have tool support for:
○ Showing individual views.
○ Performing automated verification of properties or 

other analyses.
○ Performing model refinement.
○ Implementation generation.
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Support for Modeling Elements

● Interface: 
○ A element’s interface is a set of interaction points 

between it and the external world. 
○ Specifies services and constraints on their usage.

● Types: 
○ Element types are abstractions that encapsulate 

functionality into reusable blocks.
○ Elements can be instantiated multiple times.

● Semantics: 
○ High-level model of an element’s behavior.
○ Needed to perform analysis, enforce constraints, 

ensure consistent mapping between abstractions.
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Support for Modeling Elements

● Constraints: 
○ A property of or assertion about a system or one of 

its parts, where a violation will reduce value.
○ Constraints needed to verify adherence to uses, 

enforce boundaries, and establish dependencies.
● Evolution: 

○ The modification of (a subset of) a element’s 
properties, e.g., interface, behavior, or 
implementation.

● Non-Functional Properties: 
○ Properties that affect safety, security, performance, 

portability.
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Support for Modeling Connectors

● Interface
○ A set of interaction points between the connector 

and the attached elements and other connectors.
○ Enable connectivity of elements and their interaction

● Types
○ Abstractions of element communication, 

coordination, and mediation decisions.
○ Makes coordination protocols reusable within and 

across architectures.
● Semantics

○ High-level model of a connector’s behavior.
○ Enables element interaction analysis.
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Support for Modeling Connectors

● Constraints
○ Ensure adherence to intended interaction protocols, 

establish intra-connector dependencies, and enforce 
usage boundaries.

○ I.e., limit on number of elements that use connector.
● Evolution

○ The modification of (a subset of) its properties, e.g., 
interface, semantics, or constraints on the two.

● Non-Functional Properties
○ Properties that represent (additional) requirements 

for correct connector implementation.
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Support for Modeling Configurations

● Connected graphs of elements and 
connectors that describe structure.
○ Needed to determine whether appropriate elements 

are connected, that their interfaces match, that 
connectors enable communication, and that 
combined semantics are correct.

● Modeling enables assessment of 
concurrent/distributed behavior.
○ Deadlock/starvation, performance, reliability, security

● Enable analysis of architectures for 
adherence to design rules.
○ Too many direct communication links harm evolution 29



Support for Modeling Configurations

● Understandable Specifications
○ Model structural (topological) information with simple 

and understandable syntax. System structure should 
be clear from the configuration.

● Compositionality
○ A mechanism that allows architectures to describe 

software systems at different levels of detail.
○ Can show complex information in detail, or abstract 

it into a subelement that is modeled elsewhere.
● Refinement and Traceability

○ Enable correct and consistent refinement of 
architectures into executable systems and 
traceability of changes across levels of refinement.
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Support for Modeling Configurations

● Heterogeneity
○ Facilitate development of large-scale systems.

■ Pre-existing elementsand connectors of varying granularity
■ Different formal modeling languages and programming languages
■ Varying operating system requirements
■ Different communication protocols

● Scalability
○ Provide developers with abstractions needed to 

cope with the issues of complexity and size.
● Evolvability

○ Incremental addition, removal, replacement, and 
reconnection in a configuration.

31



Support for Modeling Configurations

● Dynamism
○ Modifying the architecture and enacting those 

modifications while the system is executing.
● Constraints

○ Depict dependencies in a configuration complement 
those specific to individual elements and connectors.

● Non-Functional Properties
○ Used to select appropriate elements and connectors, 

perform analysis, enforce constraints, map 
architectural building blocks to processors, and aid 
in project management.

32



Architecture Analysis 
and Description 
Language (AADL)
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What is AADL?

● Architecture modeling language, developed 
for the embedded system communities.

● Uses component-based notation for the 
specification of task and communication 
architectures of real-time systems. 

● Offers tool-based analysis in Eclipse 
framework (OSATE).
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Embedded Architecture
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Analysis Support
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● Reduced model validation cost due to single source model.
● AADL offers an estensible domain model with strong 

semantics and an XML-based interchange format.



The AADL Language

● Precise execution semantics for components
○ Thread, process, data, subprogram, system, processor, 

memory, bus, device, virtual processor, virtual bus.
● Continuous control/event processing

○ Data and event flow, synchronous call/return, shared access.
○ End-to-End flow specifications.

● Operational modes/fault tolerant configs.
○ Modes & mode transition

● Modeling of large-scale systems
○ Component variants, layered system modeling, packaging, 

abstract, prototype, parameterized templates, arrays of 
components and connection patterns.
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AADL Representation Forms
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Component-Based Representation

● Specifies a well-formed interface.
○ Component type allow for multiple implementations 

with extensions.
○ All external interaction points defined as features.
○ Data and event flows through component, across 

multiple components.
○ Properties to specify component characteristics.

● Components organized into a hierarchy.
○ Component interaction declarations must follow 

system hierarchy.
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Basic System Properties

● AADL defines standard properties for 
systems, including:
○ System startup:

■
● A property of type , assigned ( ) a value of 0.5 

seconds.
■ Value is a floating point number with a time unit.
■ Time units include ps, ns, ms, s, m, h, d.

○ Time to load all programs and data into the system:
■

● Two values indicate a time interval (between 0.1 to 0.25 sec)
■
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Example System: Car

41



Example: Car with Braking 
Subsystem
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Architecture Software Components
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Process Components

● Processes represent protected virtual 
address spaces.
○ Address space boundaries are enforced at run-time.
○ A property setting allows to disable the protection.

● Contains executable and data needed for 
execution and must be loaded into memory.
○ Process is stored in ROM
○ Process is loaded at system startup
○ Process may be unloaded when it is not active

● A process must contain at least one thread 
subcomponent to be executable.
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Process Properties

● Process at run-time
○

■ No runtime enforcement of space protection.
○

■ Time to load image into memory.
○
○

■ Time to start process after loading (to create threads).
○

● Relationship to implementation in a 
programming language
○
○
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Thread Components

● Represents a schedulable and executable 
entity in a system.
○ Concurrent and Active tasks.

● Threads execute based on time or 
thread-external events.
○ Periodically every 50ms, e.g., a data sampling 

thread in a control system.
○ Process a message upon arrival with arbitrary arrival 

pattern, e.g., a thread in a camera processing image 
data when the shutter button is pressed.
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Thread Components

● Threads are mapped onto operating system 
threads for execution.
○ One or more application threads per OS thread.

● Interacts with other threads through port 
connections, subprogram calls, and shared 
data access.

● Executes within the virtual address space of 
its enclosing process.
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Thread Dispatch Protocols
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Thread Properties

● Properties related to thread dispatch
○

■ Any from previous slide.
○

■ Required for periodic, sporadic, timed, hybrid threads.

● Properties needed for thread scheduling
○

■ Execution time range of thread (upper is worst-case).
■ Optional, defaults to period.

○
■ For periodic threads: indicate delayed dispatch relative to other 

periodic threads.
○
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Thread Example: GPS Data Filtering
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Thread States
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Ports and Connectors

● Ports: interaction points
○ Model transfer of data and control.
○ Ports are declared as features in 

component types.
○ Data port: non-queued data.
○ Event port: queued signals.
○ Event data port: queued messages.

● Feature group: aggregates ports 
into a single connection point.

● Connections: connect ports in 
the direction of data/control flow.
○ uni- or bi-directional.

52



Port Properties

● Queuing of events and messages
○

■ Default: no connection needed.
○
○

■ Handling of incoming event and message 
queues.

○
○
○

■ To resolve conflicts if queues are not empty.

53



Port Properties

● Frequency of data input and output
○

○
● Mapping to variable in an implementation

○
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Connections Between Ports
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An AADL port connection connects:
● Two ports of subcomponents in the same component implementation (1).

○ Communication inside a component – identical port directions.
● A port of a component implementation with a port of one of its 

subcomponents (2).
○ Communication with the outside – complementary port directions

● A port can have multiple outgoing connections (fan-out) (3).
● Data ports can have one, other ports can have multiple incoming 

connections (fan-in).
● Connections can be bi-directional (<->).



Data Components

● Data components can represent:
○ Data shared between threads or subprograms.
○ Local data in a thread or subprogram.
○ Type of data exchanged through data/event ports.
○ The type of subprogram parameters.

● AADL models should contain information 
about data that is relevant to analyses of the 
architecture:
○ Bandwidth analysis – size of data elements, 

frequency of data exchanges.
○ Model consistency – size, value ranges, and 

physical units of exchanged data.
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Shared Data Access

A data component can be shared among components.
● Data access features: model required or provided access to a shared data 

component.
● Access connections: model access paths to the shared data component.
● Data ports must have same type, implementations of data must be 

identical.
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Flows

● Model logical flow of data and control 
through a sequence of components and 
connections.
○ Support analysis of data flow and control flow.

● Provide the capability of specifying 
end-to-end flows to support analyses:
○ End-to-end timing and latency.
○ Fault propagation.
○ Resource management based on operational flows.
○ Security based on information flows.
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Flow Sources, Paths, Sinks
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Flow Implementation
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End to End Flow Example
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Execution Platform Components
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Execution Platform Components

● Represent hardware components:
○ Processor timing, hardware clock period/jitter
○ Bus transmission time, latency
○ Memory capacity, access time, RAM/ROM

● Represent logical resources:
○ Thread scheduling policy of a processor.
○ Communication protocol over a network connection.
○ Transactional characteristics of a database modeled 

as a memory component.
○ Virtual bus/processor represent only logical aspects.

● These two aspects reflected in properties 
applied to the components.
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Processor Components

● As a hardware component:
○ Processors include a CPU, memory, bus, a 

hardware clock that can interrupt the processor
○ Have a MIPS rating, size, weight

● As a logical resource:
○ Processors schedule threads
○ Processors execute software to provide scheduling 

and other runtime system functionality.
● Threads are bound to processors
● Processors may access memory and device 

components via buses, execute software 
associated with devices. 64



Processor Properties

● Logical Resource (Thread Scheduling)
○
○

■ Cost of context switching
○
○
○

■ File containing the runtime system.

● Hardware Component (Clock Properties)
○ Clock_Period => 10ms;

■ Time between two interrupts.
○ Clock_Jitter => 2ms;

■ Difference between interrupt handling start in multicore system.
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Bus Components

● As a hardware component:
○ A bus provides the physical connection between 

hardware components.
○ Inside a hardware component, e.g., PCI bus in a PC.
○ Between hardware components, e.g., a USB 

connection between a PC and a camera.
● As a logical resource:

○ A bus represents the protocol(s) by which connected 
components communicate.

● Components are connected to a bus with a 
bus access connection.
○ A bus is shared by all components that access it.
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Bus Properties

● Logical Resource
○ Constraints on transported content

■

● What can be transmitted over the bus?
■

○ Protocols and protocol properties 
■

● Supported protocols and QoS
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Bus Properties

● Hardware Component
○ Constraints on physical connectivity

■

● What may be connected to the bus.
○ Properties related to data transmission time

■
■
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Memory Components

● Represent randomly accessible physical 
storage (e.g. RAM, ROM).

● May also be used to model complex 
permanent storage (e.g. disks, database).

● Processes must be in memory at startup to 
be executed.
○ Stored permanently in ROM, loaded into RAM.

● Processors need access to memory.
○ Processor and memory connected via a shared bus.
○ Memory is contained in the processor.
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Bringing Software and Execution 
Platform Together

● Software relies on computational resources 
for execution of threads and communication 
among threads/between threads and 
devices.

● In a model, software and execution platform 
often form independent system hierarchies.
○ AADL provides binding properties to describe how 

software components are allocated to the execution 
platform.
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Binding Properties

● Map software elements to platform elements 
using binding properties:
○  

■ Specify which processor schedules and executes 
a thread or executes a device driver.

○  
■ Specify the memory components in which 

executable code (process components) and data 
(data component) reside.

○  
■ Specify the communication channels that are 

used by logical connections.
71
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1. Open OSATE Framework
2. Go over Toy Example
3. Look at both textual and 

graphical representation.



Compositional 
Verification Using 
AGREE
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Compositional Verification

● Complex systems are usually designed as a 
hierarchical federation of elements.
○ As we descend the hierarchy, the design of some 

level becomes the requirements of elements at the 
next level of abstraction.

● We need to verify requirements and 
architectural design.
○ What can we assume about an element’s input?
○ What do we guarantee about an element’s output?
○ Do these assumptions and guarantees hold 

throughout the hierarchy?
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Hierarchical Reasoning

● Avionic System Requirement:
○ Under single-fault assumption, GC 

output transient response is 
bounded in time and magnitude

● Relies on:
○ Accuracy of air data sensors
○ Control commands from FCS
○ Mode of FGS
○ FGS control law behavior
○ Failover behavior between FGS 

systems
○ …. 
○ Response of Actuators
○ Timing/Lag/Latency of 

Communications
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Compositional Reasoning for Active 
Standby
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● Want to prove a transient response property:
○ The autopilot will not cause a sharp change 

in pitch of aircraft.
○ Even when one FGS fails and the other 

assumes control
● Given assumptions about the environment:

○ The sensed aircraft pitch from the air data 
system is within some absolute bound and 
doesn’t change too quickly

○ The discrepancy in sensed pitch between left 
and right side sensors is bounded.

● and guarantees provided by elements:
○ When a FGS is active, it will generate an 

acceptable pitch rate
● As well as facts provided by pattern application

○ Leader selection: at least one FGS will always 
be active (modulo one “failover” step)



Contracts

● AGREE annotates AADL elements with:
○ Assumptions that elements make about the 

environment (input).
○ Guarantees that elements make about their output.

■ … As long as the assumptions are met.
● Each layer of the hierarchy is verified 

individually.
● AGREE attempts to prove the system-level 

guarantees in terms of the guarantees of its 
elements.
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Contracts

Want to show that the system-level property holds, given 
the guarantees provided by the elements and the system 
assumption.
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System-Level: 
●

●

A
●

●

B
●
●

C
●



AGREE Language Basics

● Data types: integer, float, boolean
○ Integers can be 8-64 bit, signed or unsigned.
○ Float can be 32 or 64 bit.

● Variables can include AADL data classes.
○ Alarm offers Boolean , integer 

■

● uses the value of  from the last 
computational cycle.
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AGREE Language Basics

● Equation statements create local variable 
declarations.
○
○ Variable that counts up from 0.
○ “Intermediate” expressions that prove guarantees. 

● Properties allow specification of named 
Boolean expressions.
○

● Constants can be defined:
○
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1. Go over Toy Example
2. Execute AGREE
3. Examine Counterexample
4. Fix Model



Key Points

● Real-Time Systems have strict timing 
requirements, and tend to react to and 
influence an environment.

● Architecting them is difficult and requires 
careful task scheduling.

● Architectural Description Languages often 
have constructs for analyzing combinations 
of hardware and software with timing 
constraints.
○ AADL/AGREE designed for this purpose!
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Next Time

● Service-Oriented Architecture

● Homework: 
○ Reading Assignment 3 - Tonight!
○ Project, Part 4 - 12/06
○ Assignment 3 - 12/09
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