
Architectural Style:
Service-Oriented
Architectures
CSCE 742 - Lecture 22 - 11/29/2018

In the Beginning...

2

Early Business Software

● Business and Government discovered the
value of computing.

● Business requirements were captured and
programmed.

● Applications were designed for specific
departments / business needs.

● Applications were monolithic.
○ Designed as one entity, combining the logic of user

interface, business processing, and data access.

3

Problem: “Silo Apps”

● Each application is self contained.
● One view of user interaction.

○ Difficult to find clean integration points
● Because of monolithic design, updates of

one kind of logic require testing multiple
kinds of behavior.

● Monolithic applications are harder to
understand, as logic is generally patched
rather than rewritten.
○ Rewrites are risky, “house of cards” effect.

4

Problem: “Silo Apps”

● Lack of standards makes it
difficult to integrate with or to
other applications.

● Leads to duplication:
○ If we don’t plan for reuse,

reuse will not happen.
○ Applications contain

nearly-duplicate functionality:
■ Authentication, business logic,

storage management, logging.
○ Business units have

nearly-duplicate applications.

5

The Times, They Are Changing.

● Reuse of existing software assets.
● Integration between separately developed

business applications.
○ …Using different languages.
○ …Using heterogeneous hardware.

● Easily support corporate change:
○ Mergers / acquisitions.
○ Reorganization.
○ AKA - can we continue to support and use this

application after employee turnover.

6

Services and
Service-Oriented
Architecture (SOA)

7

What is a Service?

● From the dictionary:
○ A facility supplying some public demand.
○ The work performed by one that serves.

■ See also: help, use, benefit
● In economics, a service is the non-material

equivalent of a good.
○ Service provision is an economic activity that does

not result in ownership.
○ It is claimed to be a process that creates benefits

by facilitating either a change in customers, a
change in their physical possessions, or a change in
their intangible assets.

8

What is a Service?

● A service handles a business process, a
technical task, or provides business data.
○ Process: Calculating an insurance quote.
○ Task: Accessing a database.
○ Data: Details needed to construct a GUI.

● A service can access another service and
respond to different kinds of requesters.

● A service is relatively independent.
○ Changes to a requester require few or no changes to

the service.
○ Changes to the internal logic of a service require few

or no changes to the requester.
9

Properties of Services

● A service logically represents a business
activity with a specified outcome.

● A service is self-contained.
○ Designed to maintain loose coupling.

● A service is a black box for its consumers.
○ Only its interface needs to be understood.
○ Can handle interactions within and outside your

company, geographically distributed across the
world.

● A service may consist of other underlying
services.

10

Service-Oriented Architecture (SOA)

● A way of organizing software so that
companies can respond quickly to the
changing requirements of the marketplace.

● The architecture of a system links services.
○ Small, customized units of software that run in a

network.
○ Developers make services available over a network

to allow users to combine and reuse them.
○ Services communicate by passing data in a

well-defined, shared format, or by coordinating
activity between other services.

11

SOA Manifesto

1. Business value over technical strategy.
2. Strategic goals over project-specific

benefits.
3. Intrinsic interoperability over custom

integration.
4. Shared services over specific-purpose

implementations.
5. Flexibility over optimization.
6. Evolutionary refinement over initial

perfection.
12

Service Hierarchy

● Services tend to naturally
form a layered architecture.
○ Data abstraction layer retrieves

and writes to underlying
databases.

○ Data services transform that
data and provide messaging
queues.

○ Services offer low-level business
tasks, may be combined to
perform “high-level” tasks by the
process/orchestration layer.

○ Top levels perform integration
and monitoring of the whole
system.

○ Security and governance
services work across the layers. 13

Service Interactions

14Slide by Arnon Rotem-Gal-Oz

Standardized Service Contract

● Services within the same service inventory
should be in compliance with the same
contract design standards.
○ Services share schema and contract, not class.
○ Service compatibility is based on policy

● A service contract is a promise of the
purpose and capabilities of a service.
○ Its public interface.
○ The nature and quantity of content that it will publish.
○ How do services express functionality?
○ How are data types/models defined?
○ How are policies asserted and attached?

15

Standardized Service Contract

● The service contract should govern all
services that you offer in one “inventory”.
○ Consists of a functional expression

standardization - defining the interface, input, and
output (WSDL).

○ A data model (XML schema) - defining formats.
○ A policy document - defining terms of use.

● Service contracts ensure services are
consistent, reliable, and governable.
○ Standards must be applied correctly. Service

contracts avoid ambiguity.

16

Contracts and Policies

Contacts can be established at design and run-time.
Policies are constraints that ensure contracts are met.

17Slide by Arnon Rotem-Gal-Oz

Principles of Services
and SOA

18

Service Abstraction

● Public information on a service should be
limited to what it required for use.
○ Too much knowledge of the inner workings of a

service leads to increased coupling to a particular
implementation.

● Functional abstraction: How much of the
service logic is exposed to the public?
○ Public vs private functionality - what logic can

consumers access?
○ In the service contract, do not discuss inner details

of business rules and validation logic.

19

Service Abstraction

● Technology information abstraction:
○ Do not tell consumers how the service logic and

implementation are designed.
● Logic abstraction:

○ Do not provide too much detail on how service
performs functionality, as consumers may be
designed around that knowledge.

○ Risks hampering logic refactoring.
● Quality abstraction:

○ Only provide details that help in determining
reliability and availability, not on other quality
attributes.

20

Service Granularity

● How much does a service do?
○ Business Function:

■ Each service operation maps to a single business function. Can
be violated if combination does not add design complexity or
increase message size.

○ Performance:
■ The service should use a minimal number of service requests.

○ Message Size:
■ Services should only transmit data required. Try to reduce

message sizes.
○ Quality of service characteristics:

■ Each operation should perform a single system transaction and
leave cross-border data integrity to the consumer.

21

Loose Coupling

● Services must be as independent as
possible from other services.

● Run-time coupling:
○ Other services may not always be available.
○ Resend messages.
○ Cache results when:

■ The known interval for service updates,
■ Client uptime requirements stricter than service

uptime requirements,
■ There are bandwidth problems in distribution.

22

Loose Coupling

● Interface coupling:
○ Should be able to exchange services with

compatible interfaces. Data should be published in
standard formats.

○ Interfaces need to evolve over time. Support multiple
versions to allow client migration

● Multiple types of interface coupling:
○ Logic-to-contract: Behavior dictated by contract.
○ Contract-to-logic: Contract dictated by existing logic.
○ Contract-to-implementation/technology: Contract

dictated by implementation details or technology.
○ Contract-to-consumer: Contract written for a client.

23

Loose Coupling

● Service reference autonomy:
○ Services should only be aware of the existence of

other services.
○ Only all services through their public API.
○ Any services offering the same interface can be

swapped.
● Service location transparency:

○ Services can be called from anywhere in the
network, no matter where it is present.

○ Online, or on a local network.
○ Services can be located anywhere in the world, as

long as they are accessible on the network.
24

Service Autonomy

● Services should exercise a high level of
control over their execution environment.
○ A service should not contain logic dependent on

anything external to the service - data models,
information systems, shared resources.

○ A service cannot be reusable if its logic is coupled to
external artifacts.

● Design-time autonomy: Can the service be
evolved without impacting consumers?
○ Enabled by loose coupling and abstraction.
○ Shields contract from logic and implementation,

allowing redesign.
25

Service Autonomy

● Run-time autonomy:
○ Can a service control how their logic is processed by

the runtime environment?
○ More control = more reliable behavior.
○ If the service is memory-intensive, deploy to a server

with reserved resources.
○ Provide locally cached copies of data to reduce

dependency on a shared database.
● Increasing design-time autonomy increases

run-time control over the environment.
● May require customized environments.

26

Service Statelessness

● Scalability requires separating services from
their state data whenever possible.
○ Reduces the resources consumed by a service, as

state management is delegated to the consumer.
○ Increases the number of requests that can be

handled by the service.
● Core tenant of REST (a form of SOA), other

SOA styles may relax to varying degrees.
○ May need to retain some business data (i.e.,

customer records) or session data between tasks.
○ Still, must allow multiple concurrent connections with

no side effects.
27

Service Discoverability

● Services should be supplemented with
meta-data that can be used to allow
discovery by other services.
○ Supports reuse and composability.
○ Allows developers to identify existing services that

fulfill generic requirements of the process being
automated.

● Services are registered to a service registry.
○ Java - Maven Repository
○ Bluetooth Service Discovery Protocol

28

Service Boundaries are Explicit

● A service edge is a natural boundary.
● Services should not cross those boundaries

when performing computations or working
with data.

● Crossing boundaries is costly:
○ Location of targeted service may be unknown.
○ Security models are likely to differ.
○ Data representations differ publicly and privately.
○ Services evolve and are reconfigured.
○ Consumers are unaware of how internal processes

are implemented, and have limited control.
29

Service Boundaries are Explicit

● Do not use RPCs when crossing borders.
Instead, use messages.
○ RPCs trick us into thinking there is no substantial

difference between local and remote objects.
● Messages will be lost. Design them to be

retransmitted.
○ Idempotence - as long as request is processed at

least once, we will see correct behavior.
○ Multiple instances of a request should do the same

thing. No side effects.
○ Modern systems must be designed to be

idempotent.
30

Idempotence

31Slide by Pat Helland

Service Composability

● Services should be designed to be reused
as part of systems-of-services.
○ All software should be reusable. We should be able

to build a system by webbing together existing parts.
○ Services should be designed to be used either as a

service that controls other services, or as a service
that provides a function to other services.

○ Service contract must present functionality based on
varying levels of input and output.
■ If a composition member, input is more

fine-grained than when it is a controller.
○ Services must be as stateless as possible.

32

Service Composability

● Factors determining composability include:
○ Ability to provide functionality at different levels

within a process.
■ Surfacing proper interfaces.

○ Message exchange pattern.
■ One-way (request/reaction) versus duplex

(request/reply)?
○ Whether the service supports transactions and

rollback/compensation features.
○ Support for exception handling.
○ Availability of meta-data about service capabilities

and behavior.
■ (discoverability)

33

SOAP and REST

34

Creating a Web Service

● Online services can be used by external
organizations and systems.

● Services communicate through message
passing. Therefore, we need standardized
means of sending messages across
networks.

● Most common: REST and SOAP.
○ We already discussed REST.
○ Now, for SOAP.

35

Simple Object Access Protocol
(SOAP)

● Lightweight protocol used for exchange of
messages in a decentralized, distributed
environment.
○ Used to perform Remote Procedure Calls.

● By default, uses XML as payload message
format and HTTP or SMTP as transport.

● Facilitates interoperability in a
platform-independent manner.
○ XML and HTTP are open standard, running on all

operating systems.

36

SOAP Ecosystem

37

SOAP Elements

● Envelope (mandatory)
○ Top element of the XML document.
○ Defines message structure and how to process it.

● Header (optional)
○ Determines how a recipient of a SOAP message

should process the message.
○ Adds features to the SOAP message such as

authentication, transaction management, payment,
message routes, etc.

● Body (mandatory)
○ Includes information for the recipient of the message
○ Typical use is for RPC calls and error reporting.

38

Simple Example

39
Slide from: www.cs.columbia.edu/~knarig/SOAP.ppt

SOAP Request

40
Slide from: www.cs.columbia.edu/~knarig/SOAP.ppt

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”>

</SOAP-ENV:Envelope>

 <SOAP-ENV:Header>
 <t:transId xmlns:t=“http://a.com/trans”>345</t:transId>
 </SOAP-ENV:Header>
<SOAP-ENV:Body>
 <m:Add xmlns:m=“http://a.com/Calculator”>
 <n1>3</n1>
 <n2>4</n2>
 </m:Add>
 </SOAP-ENV:Body>

SOAP Request

41
Slide from: www.cs.columbia.edu/~knarig/SOAP.ppt

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”>

…

</SOAP-ENV:Envelope>

Scopes the message to the SOAP namespace
describing the SOAP envelope

Establishes the type of encoding that is used within
the message (the different data types supported)

SOAP Request

42
Slide from: www.cs.columbia.edu/~knarig/SOAP.ppt

 <SOAP-ENV:Header>
 <t:transId xmlns:t=“http://a.com/trans”>345</t:transId>
 </SOAP-ENV:Header>

<SOAP-ENV:Body>
 <m:Add xmlns:m=“http://a.com/Calculator”>
 <n1>3</n1>
 <n2>4</n2>
 </m:Add>
 </SOAP-ENV:Body>

Qualifies the transaction ID

Defines the procedure to call

SOAP Response

43
Slide from: www.cs.columbia.edu/~knarig/SOAP.ppt

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”>

</SOAP-ENV:Envelope>

 <SOAP-ENV:Header>
 <t:transId xmlns:t=“http://a.com/trans”>345</t:transId>
 </SOAP-ENV:Header>

<SOAP-ENV:Body>
 <m:AddResponse xmlns:m=“http://a.com/Calculator”>
 <result>7</result>
 </m:AddResponse>
 </SOAP-ENV:Body>

SOAP Encoding

● Based on a simple type system that has
common features with programming
languages and databases.

● Types are either simple (scalar) or a
composite of several parts.

● An XML schema which is consistent with this
type system can be constructed.
○ Use of schemas is encouraged but NOT required.

44
Slide from: www.cs.columbia.edu/~knarig/SOAP.ppt

REST Bookstore

45
Slide from DevelopMentor: REST and SOAP

SOAP Bookstore

46
Slide from DevelopMentor: REST and SOAP

SOAP from a REST Viewpoint:
Addressing

● REST architectures utilize the existing web
addressing model:
○ Standard URI schemes subsume protocols (http, ftp)
○ Standardized distributed naming authorities (DNS).
○ Standardized way of discovering, referring to

resources (URIs).
● SOAP applications define their own

addressing schemes
○ Web service entrypoints have URIs.
○ Resources have custom, service-specific addresses.
○ No standardized way of discovering, referring to

resources.
47

Slide from DevelopMentor: REST and SOAP

SOAP from a REST Viewpoint:
Addressing Issues in SOAP

● Intermediaries (proxies, caching) cannot
operate solely on URI.

● Simple URI-based technologies (XSLT,
XInclude) hampered.

● Integrating disparate applications requires
custom logic.

● "Deep linking" into applications not generally
possible.

48
Slide from DevelopMentor: REST and SOAP

SOAP from a REST Viewpoint:
Generic Interfaces

● REST emphasizes standardized, generic
operations:
○ HTTP provides PUT, GET, POST, DELETE.
○ Allows for uniform manipulation of URI-identified

resources.
● SOAP does not provide for generic

operations:
○ Each application defines its own set of operations
○ Creates need for description, discovery mechanisms
○ Knowledge of semantics of operation is out-of-band.

49
Slide from DevelopMentor: REST and SOAP

SOAP from a REST Viewpoint:
Generic Interface Issues

● Clients need knowledge of description,
discovery mechanisms.

● Clients need foreknowledge of specific
service semantics.

● Generic clients not universally feasible (local
standardization).

50
Slide from DevelopMentor: REST and SOAP

SOAP from a REST Viewpoint: State
Management

● REST apps have explicit state transitions:
○ Servers & intermediaries are inherently stateless.
○ Resources contain data, links to valid state

transitions.
○ Clients maintain state, traverse links in generic

manner.
● SOAP apps have implicit state transitions:

○ Servers & intermediaries may (should!) be stateless.
○ Messages contain only data (not valid state

transitions).
○ Clients maintain state, require knowledge of state

machine.
51

Slide from DevelopMentor: REST and SOAP

SOAP from a REST Viewpoint: State
Management Issues

● Clients need foreknowledge of service's
state machine.

● Generic clients not universally feasible (local
standardization).

● Limits independent evolution of client/server
state machine.

● State machine description needed for
automated discovery.

52
Slide from DevelopMentor: REST and SOAP

REST from a SOAP Viewpoint

● SOAP & related technologies have broad
industry support.

● Client & server toolkits are widely deployed.
○ Tool support on client & server matters.

● SOAP headers provide a widely adopted
extensibility model
○ Despite presence of HTTP extension mechanisms.

● SOAP can be bound to non-HTTP transports
○ Important for richer XML messaging in the future.

● SOAP 1.2 can be used in a RESTful manner
○ "Can't we all just get along?"

53

Key Points

● Services are small programs that do “a
single job” and encapsulate their own data.
○ Services can be reused endlessly.
○ Changes to services should not affect the rest of the

system.
● Service-oriented architectures create

systems from a collection of services.
○ Services “talk” by exchanging messages.
○ Often performed using REST or SOAP.

■ SOAP offers richer implementations, but lacks
standardization of REST.

54

Next Time

● Machine Learning for Software Architects
○ Guest speaker - Dr. Jamshidi
○ (This will be on the final, so don’t skip!)

● Practice Final
○ On site, without answers.
○ We will go over on December 6

● Homework:
○ Project, Part 4 - Due on December 6
○ Assignment 3 - Due on December 9

55

