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In the Beginning...
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Early Business Software

● Business and Government discovered the 
value of computing.

● Business requirements were captured and 
programmed.

● Applications were designed for specific 
departments / business needs.

● Applications were monolithic.
○ Designed as one entity, combining the logic of user 

interface, business processing, and data access.
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Problem: “Silo Apps”

● Each application is self contained.
● One view of user interaction. 

○ Difficult to find clean integration points
● Because of monolithic design, updates of 

one kind of logic require testing multiple 
kinds of behavior.

● Monolithic applications are harder to 
understand, as logic is generally patched 
rather than rewritten.
○ Rewrites are risky, “house of cards” effect.
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Problem: “Silo Apps”

● Lack of standards makes it 
difficult to integrate with or to 
other applications.

● Leads to duplication:
○ If we don’t plan for reuse, 

reuse will not happen.
○ Applications contain 

nearly-duplicate functionality: 
■ Authentication, business logic, 

storage management, logging.
○ Business units have 

nearly-duplicate applications.
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The Times, They Are Changing.

● Reuse of existing software assets.
● Integration between separately developed 

business applications.
○ …Using different languages.
○ …Using heterogeneous hardware.

● Easily support corporate change:
○ Mergers / acquisitions.
○ Reorganization.
○ AKA - can we continue to support and use this 

application after employee turnover.
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Services and 
Service-Oriented 
Architecture (SOA)
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What is a Service?

● From the dictionary:
○ A facility supplying some public demand.
○ The work performed by one that serves.

■ See also: help, use, benefit
● In economics, a service is the non-material 

equivalent of a good. 
○ Service provision is an economic activity that does 

not result in ownership.
○ It is claimed to be a process that creates benefits 

by facilitating either a change in customers, a 
change in their physical possessions, or a change in 
their intangible assets.

8



What is a Service?

● A service handles a business process, a 
technical task, or provides business data. 
○ Process: Calculating an insurance quote.
○ Task: Accessing a database.
○ Data: Details needed to construct a GUI.

● A service can access another service and 
respond to different kinds of requesters.

● A service is relatively independent. 
○ Changes to a requester require few or no changes to 

the service.
○ Changes to the internal logic of a service require few 

or no changes to the requester.
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Properties of Services

● A service logically represents a business 
activity with a specified outcome.

● A service is self-contained.
○ Designed to maintain loose coupling.

● A service is a black box for its consumers.
○ Only its interface needs to be understood.
○ Can handle interactions within and outside your 

company, geographically distributed across the 
world.

● A service may consist of other underlying 
services.
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Service-Oriented Architecture (SOA)

● A way of organizing software so that 
companies can respond quickly to the 
changing requirements of the marketplace.

● The architecture of a system links services. 
○ Small, customized units of software that run in a 

network.
○ Developers make services available over a network 

to allow users to combine and reuse them.
○ Services communicate by passing data in a 

well-defined, shared format, or by coordinating 
activity between other services.
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SOA Manifesto

1. Business value over technical strategy.
2. Strategic goals over project-specific 

benefits.
3. Intrinsic interoperability over custom 

integration.
4. Shared services over specific-purpose 

implementations.
5. Flexibility over optimization.
6. Evolutionary refinement over initial 

perfection.
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Service Hierarchy

● Services tend to naturally 
form a layered architecture.
○ Data abstraction layer retrieves 

and writes to underlying 
databases.

○ Data services transform that 
data and provide messaging 
queues.

○ Services offer low-level business 
tasks, may be combined to 
perform “high-level” tasks by the 
process/orchestration layer.

○ Top levels perform integration 
and monitoring of the whole 
system. 

○ Security and governance 
services work across the layers. 13



Service Interactions

14Slide by Arnon Rotem-Gal-Oz



Standardized Service Contract

● Services within the same service inventory 
should be in compliance with the same 
contract design standards.
○ Services share schema and contract, not class.
○ Service compatibility is based on policy

● A service contract is a promise of the 
purpose and capabilities of a service.
○ Its public interface.
○ The nature and quantity of content that it will publish.
○ How do services express functionality?
○ How are data types/models defined?
○ How are policies asserted and attached?
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Standardized Service Contract

● The service contract should govern all 
services that you offer in one “inventory”.
○ Consists of a functional expression 

standardization - defining the interface, input, and 
output (WSDL).

○ A data model (XML schema) - defining formats.
○ A policy document - defining terms of use.

● Service contracts ensure services are 
consistent, reliable, and governable.
○ Standards must be applied correctly. Service 

contracts avoid ambiguity. 
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Contracts and Policies

Contacts can be established at design and run-time. 
Policies are constraints that ensure contracts are met.
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Principles of Services 
and SOA
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Service Abstraction

● Public information on a service should be 
limited to what it required for use.
○ Too much knowledge of the inner workings of a 

service leads to increased coupling to a particular 
implementation.

● Functional abstraction: How much of the 
service logic is exposed to the public?
○ Public vs private functionality - what logic can 

consumers access?
○ In the service contract, do not discuss inner details 

of business rules and validation logic.
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Service Abstraction

● Technology information abstraction:
○ Do not tell consumers how the service logic and 

implementation are designed.
● Logic abstraction:

○ Do not provide too much detail on how service 
performs functionality, as consumers may be 
designed around that knowledge. 

○ Risks hampering logic refactoring.
● Quality abstraction:

○ Only provide details that help in determining 
reliability and availability, not on other quality 
attributes.
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Service Granularity

● How much does a service do?
○ Business Function:

■ Each service operation maps to a single business function. Can 
be violated if combination does not add design complexity or 
increase message size.

○ Performance:
■ The service should use a minimal number of service requests.

○ Message Size:
■ Services should only transmit data required. Try to reduce 

message sizes.
○ Quality of service characteristics:

■ Each operation should perform a single system transaction and 
leave cross-border data integrity to the consumer.
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Loose Coupling

● Services must be as independent as 
possible from other services.

● Run-time coupling:
○ Other services may not always be available.
○ Resend messages.
○ Cache results when: 

■ The known interval for service updates, 
■ Client uptime requirements stricter than service 

uptime requirements, 
■ There are bandwidth problems in distribution.
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Loose Coupling

● Interface coupling:
○ Should be able to exchange services with 

compatible interfaces. Data should be published in 
standard formats.

○ Interfaces need to evolve over time. Support multiple 
versions to allow client migration

● Multiple types of interface coupling:
○ Logic-to-contract: Behavior dictated by contract.
○ Contract-to-logic: Contract dictated by existing logic.
○ Contract-to-implementation/technology: Contract 

dictated by implementation details or technology.
○ Contract-to-consumer: Contract written for a client.
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Loose Coupling

● Service reference autonomy:
○ Services should only be aware of the existence of 

other services.
○ Only all services through their public API.
○ Any services offering the same interface can be 

swapped.
● Service location transparency:

○ Services can be called from anywhere in the 
network, no matter where it is present.

○ Online, or on a local network.
○ Services can be located anywhere in the world, as 

long as they are accessible on the network.
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Service Autonomy

● Services should exercise a high level of 
control over their execution environment.
○ A service should not contain logic dependent on 

anything external to the service - data models, 
information systems, shared resources.

○ A service cannot be reusable if its logic is coupled to 
external artifacts.

● Design-time autonomy: Can the service be 
evolved without impacting consumers?
○ Enabled by loose coupling and abstraction.
○ Shields contract from logic and implementation, 

allowing redesign.
25



Service Autonomy

● Run-time autonomy: 
○ Can a service control how their logic is processed by 

the runtime environment?
○ More control = more reliable behavior.
○ If the service is memory-intensive, deploy to a server 

with reserved resources. 
○ Provide locally cached copies of data to reduce 

dependency on a shared database.
● Increasing design-time autonomy increases 

run-time control over the environment. 
● May require customized environments.
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Service Statelessness

● Scalability requires separating services from 
their state data whenever possible.
○ Reduces the resources consumed by a service, as 

state management is delegated to the consumer.
○ Increases the number of requests that can be 

handled by the service.
● Core tenant of REST (a form of SOA), other 

SOA styles may relax to varying degrees.
○ May need to retain some business data (i.e., 

customer records) or session data between tasks. 
○ Still, must allow multiple concurrent connections with 

no side effects.
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Service Discoverability

● Services should be supplemented with 
meta-data that can be used to allow 
discovery by other services.
○ Supports reuse and composability. 
○ Allows developers to identify existing services that 

fulfill generic requirements of the process being 
automated.

● Services are registered to a service registry.
○ Java - Maven Repository
○ Bluetooth Service Discovery Protocol
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Service Boundaries are Explicit

● A service edge is a natural boundary. 
● Services should not cross those boundaries 

when performing computations or working 
with data.

● Crossing boundaries is costly:
○ Location of targeted service may be unknown.
○ Security models are likely to differ.
○ Data representations differ publicly and privately.
○ Services evolve and are reconfigured.
○ Consumers are unaware of how internal processes 

are implemented, and have limited control.
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Service Boundaries are Explicit

● Do not use RPCs when crossing borders. 
Instead, use messages.
○ RPCs trick us into thinking there is no substantial 

difference between local and remote objects.
● Messages will be lost. Design them to be 

retransmitted. 
○ Idempotence - as long as request is processed at 

least once, we will see correct behavior.
○ Multiple instances of a request should do the same 

thing. No side effects. 
○ Modern systems must be designed to be 

idempotent.
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Idempotence
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Service Composability

● Services should be designed to be reused 
as part of systems-of-services.
○ All software should be reusable. We should be able 

to build a system by webbing together existing parts.
○ Services should be designed to be used either as a 

service that controls other services, or as a service 
that provides a function to other services.

○ Service contract must present functionality based on 
varying levels of input and output.
■ If a composition member, input is more 

fine-grained than when it is a controller.
○ Services must be as stateless as possible.

32



Service Composability

● Factors determining composability include:
○ Ability to provide functionality at different levels 

within a process. 
■ Surfacing proper interfaces.

○ Message exchange pattern.
■ One-way (request/reaction) versus duplex 

(request/reply)?
○ Whether the service supports transactions and 

rollback/compensation features.
○ Support for exception handling.
○ Availability of meta-data about service capabilities 

and behavior. 
■ (discoverability)
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SOAP and REST
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Creating a Web Service

● Online services can be used by external 
organizations and systems.

● Services communicate through message 
passing. Therefore, we need standardized 
means of sending messages across 
networks.

● Most common: REST and SOAP.
○ We already discussed REST. 
○ Now, for SOAP.
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Simple Object Access Protocol 
(SOAP)

● Lightweight protocol used for exchange of 
messages in a decentralized, distributed 
environment.
○ Used to perform Remote Procedure Calls.

● By default, uses XML as payload message 
format and HTTP or SMTP as transport.

● Facilitates interoperability in a 
platform-independent manner.
○ XML and HTTP are open standard, running on all 

operating systems.
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SOAP Ecosystem
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SOAP Elements

● Envelope (mandatory)
○ Top element of the XML document.
○ Defines message structure and how to process it. 

● Header (optional)
○ Determines how a recipient of a SOAP message 

should process the message.
○ Adds features to the SOAP message such as 

authentication, transaction management, payment, 
message routes, etc.

● Body (mandatory)
○ Includes information for the recipient of the message
○ Typical use is for RPC calls and error reporting.
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Simple Example
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SOAP Request
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<SOAP-ENV:Envelope 
   xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”>

</SOAP-ENV:Envelope>

   <SOAP-ENV:Header>
      <t:transId xmlns:t=“http://a.com/trans”>345</t:transId>
   </SOAP-ENV:Header>
<SOAP-ENV:Body>
      <m:Add xmlns:m=“http://a.com/Calculator”>
         <n1>3</n1>
         <n2>4</n2>
      </m:Add>
   </SOAP-ENV:Body>



SOAP Request
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<SOAP-ENV:Envelope 
   xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”>

…

</SOAP-ENV:Envelope>

Scopes the message to the SOAP namespace 
describing the SOAP envelope

Establishes the type of encoding that is used within 
the message (the different data types supported)



SOAP Request
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   <SOAP-ENV:Header>
      <t:transId xmlns:t=“http://a.com/trans”>345</t:transId>
   </SOAP-ENV:Header>

<SOAP-ENV:Body>
      <m:Add xmlns:m=“http://a.com/Calculator”>
         <n1>3</n1>
         <n2>4</n2>
      </m:Add>
   </SOAP-ENV:Body>

Qualifies the transaction ID

Defines the procedure to call



SOAP Response
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<SOAP-ENV:Envelope 
   xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”
   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”>

</SOAP-ENV:Envelope>

   <SOAP-ENV:Header>
      <t:transId xmlns:t=“http://a.com/trans”>345</t:transId>
   </SOAP-ENV:Header>

<SOAP-ENV:Body>
      <m:AddResponse xmlns:m=“http://a.com/Calculator”>
         <result>7</result>
      </m:AddResponse>
   </SOAP-ENV:Body>



SOAP Encoding

● Based on a simple type system that has 
common features with programming 
languages and databases.

● Types are either simple (scalar) or a 
composite of several parts.

● An XML schema which is consistent with this 
type system can be constructed.
○ Use of schemas is encouraged but NOT required.
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REST Bookstore
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SOAP Bookstore
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SOAP from a REST Viewpoint: 
Addressing

● REST architectures utilize the existing web 
addressing model:
○ Standard URI schemes subsume protocols (http, ftp)
○ Standardized distributed naming authorities (DNS).
○ Standardized way of discovering, referring to 

resources (URIs).
● SOAP applications define their own 

addressing schemes
○ Web service entrypoints have URIs.
○ Resources have custom, service-specific addresses.
○ No standardized way of discovering, referring to 

resources.
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SOAP from a REST Viewpoint: 
Addressing Issues in SOAP

● Intermediaries (proxies, caching) cannot 
operate solely on URI.

● Simple URI-based technologies (XSLT, 
XInclude) hampered.

● Integrating disparate applications requires 
custom logic.

● "Deep linking" into applications not generally 
possible.
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SOAP from a REST Viewpoint: 
Generic Interfaces

● REST emphasizes standardized, generic 
operations:
○ HTTP provides PUT, GET, POST, DELETE.
○ Allows for uniform manipulation of URI-identified 

resources.
● SOAP does not provide for generic 

operations:
○ Each application defines its own set of operations
○ Creates need for description, discovery mechanisms
○ Knowledge of semantics of operation is out-of-band.
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SOAP from a REST Viewpoint: 
Generic Interface Issues

● Clients need knowledge of description, 
discovery mechanisms.

● Clients need foreknowledge of specific 
service semantics.

● Generic clients not universally feasible (local 
standardization).
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SOAP from a REST Viewpoint: State 
Management

● REST apps have explicit state transitions:
○ Servers & intermediaries are inherently stateless.
○ Resources contain data, links to valid state 

transitions.
○ Clients maintain state, traverse links in generic 

manner.
● SOAP apps have implicit state transitions:

○ Servers & intermediaries may (should!) be stateless.
○ Messages contain only data (not valid state 

transitions).
○ Clients maintain state, require knowledge of state 

machine.
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SOAP from a REST Viewpoint: State 
Management Issues

● Clients need foreknowledge of service's 
state machine.

● Generic clients not universally feasible (local 
standardization).

● Limits independent evolution of client/server 
state machine.

● State machine description needed for 
automated discovery.

52
Slide from DevelopMentor: REST and SOAP



REST from a SOAP Viewpoint

● SOAP & related technologies have broad 
industry support.

● Client & server toolkits are widely deployed.
○ Tool support on client & server matters.

● SOAP headers provide a widely adopted 
extensibility model
○ Despite presence of HTTP extension mechanisms.

● SOAP can be bound to non-HTTP transports
○ Important for richer XML messaging in the future.

● SOAP 1.2 can be used in a RESTful manner
○ "Can't we all just get along?"
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Key Points

● Services are small programs that do “a 
single job” and encapsulate their own data.
○ Services can be reused endlessly.
○ Changes to services should not affect the rest of the 

system.
● Service-oriented architectures create 

systems from a collection of services.
○ Services “talk” by exchanging messages.
○ Often performed using REST or SOAP.

■ SOAP offers richer implementations, but lacks 
standardization of REST. 
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Next Time

● Machine Learning for Software Architects
○ Guest speaker - Dr. Jamshidi
○ (This will be on the final, so don’t skip!)

● Practice Final
○ On site, without answers.
○ We will go over on December 6

● Homework: 
○ Project, Part 4 - Due on December 6
○ Assignment 3 - Due on December 9
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