
Viewpoint: Functional
CSCE 742 -
Lecture 8/9 - 09/27 and 10/02/2018

The Functional Viewpoint

● The functional view of a system defines the
architectural elements that deliver the
functions of the system being described.

● Documents the system’s functional structure:
○ Key functional elements and their responsibilities.
○ The interfaces they expose (internal/external).
○ The interactions between them.

● This view demonstrates how the system will
perform the functions required of it.

2

The Functional Viewpoint

● Cornerstone of the
architectural description.
○ Drives the definition of

Information,
Concurrency,
Development, and
Deployment Views.

● Should offer structure to
guide design without
placing too many
constraints.
○ Does not detail physical

infrastructure.

3

Key Attributes

● Concerns:
○ Functional capabilities, external interfaces, internal

structure, and functional design philosophy.
● Models: Functional structure model
● Problems and Pitfalls:

○ Poorly defined interfaces, poorly understood
responsibilities, infrastructure modeled as functional
elements, overloaded view, diagrams without
definitions, reconciling stakeholders, wrong level of
detail, and too many dependencies.

● Stakeholders: All
4

Today’s (and Next) Class

● Introduce the Functional Viewpoint.
○ How to specify and document.
○ Introduce the building blocks: elements, interfaces,

and connectors.
■ The structures, what they can do, and how they

interact.
○ Visualization using UML Context Diagrams
○ Pitfalls of functional architectural design.

5

Concern: Functional Capabilities

● Define what the system is - and is not -
required to do.

● Some projects have a agreed set of
requirements.
○ Functional View can focus on showing how the

elements provide functionality.
● Some projects will require a clear statement

of system capabilities.

6

Concern: External Interfaces

● Define data, event, and control flow between
your system and others.

● Data can flow in or out.
○ Causing or caused by internal state change.

● Events can be consumed or emitted.
○ Notifications for your system or issued to others.

● Control can be inbound or outbound.
○ Requests to or made by your system.

● Interface definitions must consider syntax
and semantics.

7

Concern: Internal Structure

● How do you construct your system?
○ How much code do you create yourself?
○ What is provided by external systems?
○ What middleware do you use?
○ What libraries do you import?

● Internal structure defined by:
○ The elements
○ What they do (how do they map to requirements?)
○ How they interact

● Choice impacts quality properties.

8

Functional View Elements

● Functional Elements
○ A well-defined part of the system that has

responsibilities and a defined interface.
○ Software subsystem, cluster of classes, a package,

a data store, a complete system.
● Interfaces

○ A well-defined mechanism by which the functions of
an element can be accessed by other elements.

○ Defined by inputs, outputs, and semantics of each
operation.

9

Functional View Elements

● Connectors
○ Define the interactions between elements.
○ Can be simple or complex.

■ Simple: A calls B.
■ More complex: message-passing (the message

could be a type of element).
● External Entities

○ Other systems, software, hardware devices, etc. that
interact with your system.

○ Also often have responsibilities and a defined
interface.

10

Functional View Elements

● Does not define how code is packaged and
executed in processes or threads.
○ Deployment and Concurrency Views

● Does not depict underlying infrastructure.
○ I.e., server or networking infrastructure.

■ Deployment View
○ Might show things like message queues that are

interelement connectors.
■ But you would omit the message broker that

provides the queues - not relevant to
functionality.

11

Functional Design Characteristics

● Coherence
○ Does the architecture have a logical structure with

elements working together to form a whole?
● Cohesion

○ To what extent are the functions provided by an
element strongly related to each other?

● Consistency
○ Are mechanisms and design decisions applied

consistently throughout the architecture?

12

Functional Design Characteristics

● Coupling
○ How strong are the element interrelationships?
○ Do changes in one element affect others?

● Extensibility
○ Will the architecture be easy to extend to allow the

system to perform new functions in the future?
● Functional Flexibility

○ How amenable is the system to supporting functional
changes?

● Generality
○ Are the mechanisms and decisions in the

architecture as general as is practicable?
13

Functional Design Characteristics

● Interdependency (Volume of Element
Interactions)
○ What proportion of processing involves interactions

between elements versus within elements?
● Separation of Concerns

○ To what extent is each internal element responsible
for a distinct part of the system’s operation?

○ To what extent is common processing performed in
only one place?

● Simplicity
○ Are the design solutions used within the system the

simplest ones that would be suitable?
14

Functional Design Characteristics

● Achieving characteristics affects quality.
○ High cohesion, low coupling improve modifiability.
○ Separation of concerns, simplicity improve security.
○ Consistency improves performance, scalability.

● However, “good” design can also negatively
impact qualities.
○ Low coupling may degrade performance by

increasing the number of communication steps.
● Establish architectural principles to prioritize

favored design characteristics.

15

Documenting the
Functional View

16

Functional View Notation

● UML Component Diagram
● Elements

● Data Stores

17

Variable Capture <<external>>
Temperature Monitor

<<infrastructure>>
Message Queue

User Data

Functional View Notation

● Interfaces
○ Attached to an

element (half-circle
facing away from its
element)

○ Named and tagged
with attribute-value
pairs that
characterize the
interface.

18

Variable Capture

<<external>>
Temperature Monitor

Alarm Initiator

LimitCondition

VariableReporting
{ concurrentLimit = “10”,
protocol = “HTTP”,
type = “XMLRPC” }

Functional View Notation

● Information Flow
○ Elements may

exchange data
outside of direct
connectors.

○ Show flow of
information (i.e.,
messages)

○ Boxes at ends are
message ports
(sending/receiving,
based on direction)

19

Order Processor

<<external>>
Order Fulfillment

<<pub/sub topic>>
Order Change Message

Order message
propagated via PUR1
EAI message
endpoint to order
fulfillment

Example - Vacation Reservations

20

Example - Web Store

21

Example - Web Store

22

● What this tells us
○ Up to 1000

customers, 80 care
reps, 15 admins may
access the system at
once.

○ Interaction between
Product Catalog and
Stock Inventory
takes place using a
specific protocol.

○ Unadorned communication
takes place via a standard
remote procedure call.

Example - Web Store

● What this model does NOT tell us
○ Element responsibilities are not clear.
○ Details of interfaces are not clear.
○ Details of how components interact are not clear.

● No one diagram will fill in all details.
○ This is an overview, detail all elements, interfaces,

and connectors using text descriptions.
○ Scenario models can fill in additional details.

23

Elements

24

Element Definition

● Szyperski Definition:
○ An element has the following characteristic

properties:
■ A software element is a unit of composition with

contractually specified interfaces and explicit
context dependencies only.

■ A software element can be deployed
independently and is subject to composition by
third party.

25

Element Definition

● Szyperski definition implies that:
○ For an element to be deployed independently, a

clear distinction from its environment and other
elements is required.

○ An element must have clearly specified interfaces.
○ The implementation must be encapsulated in the

element and is not directly reachable from the
environment.

26

Element Definition

● D’Souza and Wills definition:
○ An element is a reusable part of software, which is

independently developed, and can be brought
together with other elements to build larger units.

○ It may be adapted but may not be modified.
○ An element can be compiled code without a source.

● To describe an element completely, the
element should consist of:
○ A set of interfaces provided to or required from the

environment.
○ Executable code which can be coupled to the code

of other elements through these interfaces.
27

Identifying Elements

1. Work through functional requirements,
deriving key system-level responsibilities.

2. Identify the functional elements that will
perform the responsibilities.

3. Assess against desired design criteria.
4. Iterate and refine until sound.
5. If an element is pre-defined (libraries or

existing systems), understand their
responsibilities and how they affect the
architecture.

28

Refining the Element Set

● Generalization
○ Identify common responsibilities across elements,

introduce new elements encapsulating those.
○ Allows reuse of elements across systems.

● Decomposition
○ Break complex elements into smaller subelements.
○ Often needed in large systems to produce

manageable subsystem-level elements.

29

Refining the Element Set

● Amalgamation
○ Replace small elements with a larger element that

includes all functions of smaller ones.
○ Group similar standalone elements into one to

increase cohesion.
● Replication

○ Replicate either an element or a piece of processing.
○ Data validation might be repeated across multiple

external interfaces.
○ Can bring performance benefits, but makes

consistency difficult.

30

Assigning Responsibility

31

● Once elements are created, they must be assigned
clear responsibilities.
Web Shop ● Present customers with an HTML-based user interface they can

access with a Web browser.
● Manage all state related to the customer interface session.
● Interact with other parts of the system to allow customers to view the

catalog and stock levels, buy goods, and view their customer
information.

Customer
Information
System

● Manage all persistent information about customers of the system.
● Provide a query-only interface that can be used to retrieve

information held on a particular customer that should be visible to
that customer.

● Provide an information management programmatic interface that can
be used to create customer information management applications.

● Provide an event-driven message-handling interface to accept
details of orders placed by customers and the state changes of
those orders

Interfaces and
Connectors

32

Interface Definition

● An interface of an element can be defined as
a specification of its access point, offering no
direct implementation for any of its
operations.
○ The implementation can be replaced without

replacing the interface.
○ New interfaces can be added without changing the

existing implementation.

33

Interface Definition

● An interface defines a contract specifying
how elements interact:
○ Set of participating elements
○ Role of each element, specified through its

contractual obligations (i.e., data type).
○ Invariants to be maintained by elements.

■ Pre and post-conditions on calls to interface.
○ Specification of the methods that instantiate the

contract.

34

Element Replacement

● Substituting element Y for element X is said
to be safe if all systems that work with X will
also work with Y.

● From a syntactic viewpoint, an element can
safely be replaced if:
○ The new element implements at least the same

interfaces as the older elements, or
○ The interface of the new element is a subtype of the

interface of the old element.

35

Importance of Interfaces

● Architectural thinking depends on interfaces!
○ Partitioning
○ Structuring
○ Testability
○ Reuse
○ Portability
○ Scalability
○ All depend on the interfaces that you design or that

are made available.

36

Designing the Interfaces

● The definition of an interface must include:
○ The operations that the interface offers
○ Inputs, outputs, pre-conditions, and post-conditions

of each operation.
○ Nature of the interface

■ (messaging, procedure call, web service, etc.)
■ Computational Interfaces: Clients invoke

defined functions.
■ Data-oriented Interfaces: Clients communicate

through unidirectional data transfer.

37

Design by Contract

● Define an interface by establishing promises
with the user of an element.
○ Pre-conditions: What the client must promise to the

element in order to expect correct behavior.
■ (Binary Search: the input array must be sorted)

○ Post-conditions: What the element promises will
happen on return.
■ (Quick Sort: the array will be sorted numerically)

○ Invariants: Conditions that will be met during
execution of the operation.

38

Computational Interfaces

● Elements publish a set of operations that
can be invoked. Clients call these operations
to have the element perform them.

● Can be directly defined in a program.
○ Simple, but ties you to use of that language.

● Can be defined through interface definition
languages (IDLs).

○ .NET IDL, CORBA IDL, Web Services
Description Language (WSDL)

○ Programming language independent

39

Computational Interfaces

Responses are synchronous or asynchronous.
● Synchronous

○ Typical approach.
○ Acts like a function call in a normal program.

● Asynchronous
○ Type 1: Client provides an interface for callback

when complete
○ Type 2: Client receives a token object (sometimes

called a future) that will eventually hold output.

40

Interface Consistency

● We say a two elements have consistent
interfaces if:
○ Interface names match.
○ Provided and required function lists match.
○ Function parameter lists match.

41

Behavioral Consistency

● Interfaces of interacting elements may
match, but behaviors may not.
○ Example: subtraction

■ subtract(Integer x, Integer y) returns Integer;
■ Do we know what the subtract operation does?

○ Example: QueueClient and QueueServer elements
■ QueueClient

● pre-condition q.size >= 1;
● post-condition q’.size = q.size;

■ QueueServer
● pre-condition q.size > 0;
● post-condition q’.size = q.size - 1;

■ Pre-conditions are consistent,
Post-conditions are not. 42

Interfaces and Parameters

● Structure depends on distribution model.
○ Function calls within a program are very cheap.
○ Calls between processes on the same machine are 100x

- 1000x more expensive.
○ Calls between machines are (at least) 100,000x more

expensive and are much more likely to fail.
● Parameter passing via interfaces

○ Base types (bool, int, float, char, etc.): passed by value
○ Data structures: can be passed by reference if

synchronized; must be passed by value if asynchronous.
○ References to other elements; get back a reference and

make calls to it to get data.

43

Remote Procedure Calls

● Can use the resources of multiple servers to
solve a client’s goal.
○ Synchronous timing: Client blocks during call, so

familiar computational model (function call)
○ Load Balancing: If interfaces are stateless, then it

is possible to throttle scale RPCs through
load-balancing across multiple servers

○ Speed: RPCs are faster than messaging for call and
response operations.

44

Remote Procedure Calls

● Unreliable Communication &
Idempotence: RPCs are difficult to make
100% reliable. Need to ensure that
operations are idempotent!
○ Idempotent - messages/data is retransmitted if there

is a failure.
● Thread management: Servers can handle

many concurrent clients.

45

Data Transfer Objects

● Remote calls (i.e., through web services) are
expensive and failure-prone.
○ Majority of the cost is related to round-trip time

between client and server.
● DTOs carry data between processes.

○ Aggregate data that would be transferred over
several calls, and handle it in a single call.

● Offer storage, retrieval, serialization, and
deserialization of data, but no other
functionality.

46

Data Transfer Objects

Without DTO

47

With DTO:

Data-Oriented Interfaces

● Elements communicate through
unidirectional data transfer.
○ Data defines the means of communication.
○ Messages or documents are transferred, initiating a

process.
● Common for elements that perform

event-based actions, rather than
on-command actions.
○ Pipe and filter, real-time architecture, message

queueing systems.

48

Data Interface Considerations

● Message (packet) vs Stream:
○ Are items batched and sent as individual messages

(packets), or are items processed immediately (sent
through an open stream to the element)?

● Are messages queued by the element?
○ If a job is in-process, are new requests queued or

ignored?
● Is data transferred using lossy or guaranteed

delivery?
○ TCP vs UDP
○ UDP allows faster transfer, but lacks error checking.
○ TCP guarantees correct data, but transfers may fail.

49

Data Interface Advantages

● Can transfer packets of data frequently,
immediately, reliably, and asynchronously
using customizable formats.

● Variable timing
○ Unlike RPCs, sender and receiver can work at their

own pace.
● Throttling

○ Because receiver buffers requests, it can control rate
at which they are consumed so to avoid overload.

● Reliable Communication
○ “Store and forward” communication ensures

delivery. 50

Data Interface Advantages

● Disconnected Operation:
○ Can run client applications disconnected with server

and then synchronize when connection is available
● Mediation

○ Messaging system acts as a mediator between all
programs that send and receive messages. If an
application becomes disconnected, it must only
reconnect with messaging system, not other apps.

● Thread management
○ Threads do not block waiting for remote server.

51

Data Interface Challenges

● Complex Programming Model
○ Messaging requires developers work with an

event-driven programming model; applications must
have callbacks for events from remote applications

● Sequence Issues
○ Message channels guarantee delivery, but not when

message will be delivered. This can lead to
messages being delivered out of sequence

● Synchronous scenarios
○ Many times we want application to behave

synchronously. Data interfaces tend to be
asynchronous.

52

Data Interface Challenges

● Performance
○ Messaging systems add overhead to

communications for each message.
○ Structuring messages correctly is important to

performance.
● Vendor Lock-in

○ Many messaging systems rely on proprietary
protocols.

○ Even specifications such as JMS do not control the
physical implementation of the solution, so different
messaging systems may not connect to one another,
leading to yet another integration problem.

53

Connectors

● Elements must communicate in order to
achieve system goals.

● Connectors link elements and the interfaces
of elements they depend on.
○ How we implement a data or procedure-based

interface (RPC, messaging, file transfer, etc)
● Must consider:

○ Synchronous or asynchronous communication
○ Resiliency of the connector
○ Concurrent users
○ Acceptable latency of connections

54

Connectors on One Machine

● Tend to be simple
○ Procedure call
○ Data interfaces:

■ Message queueing through a mutex-protected
queue object.

■ “Last update” through mutex-protected shared
memory.

○ What about when we move to multiple machines?

55

Moving to Remote Access

56

Object Request Brokers

● Middleware that allows program calls to be
made from one computer to another.
○ Allows objects from one process to be used in

another process as though they were part of the
same process.

● Transform in-process data structures into a
byte sequence, and transmit it over a
network to another process (serialization).

57

Object Request Brokers

● Client creates a
stub object and
call a method.

● Client-side ORB
serializes data
and transfers to
server-side ORB.

● Server-side ORB
executes operation
and returns result.

58

● Same semantics
whether or not
client and server
are on same
computer.

Message-Oriented Middleware

● One-way message is queued and later
processed (asynchronous)
○ Decouples sender and receiver
○ Message queues ensure that messages are not lost

● Message relate to transaction to be
executed
○ Example: SMTP (e-mail) 59

More Subtle Than It Looks...

● Possible to implement message-oriented
middleware through remote procedure calls,
and vice-versa.

● Possible to implement asynchronous
communication over RPCs.
○ Pass in a “callback interface”
○ Once task is completed, result is returned to the

client through callback.

60

Interfaces and Distribution

For distributed interfaces, should
synchronous or asynchronous interaction
be preferred?

61

● Often asynchronous:
○ Higher availability, higher throughput,

higher performance
○ Implement through messaging, RPCs

with “callbacks”

Interfaces and Distribution

When communicating with a remote
component or service, the chance of failure
goes up dramatically. Why? How can we
address it?

62

● Idempotence (resend messages)
● Statelessness (ensure we do not corrupt

state when something goes wrong)
● Component and service isolation

○ Can service continue if something happens?
○ Cache data, preload data, defer processing

Functional View Pitfalls

63

Refining the Functional View

● Check the functional traceability.
○ Ensure all functional requirements are met by the

proposed functional structure.
○ Table relating requirements to elements.

● Walk through common scenarios.
○ Use the functional view to illustrate how the system

behaves in a scenario.
○ Explain how the elements would interact to

implement that scenario.
○ Will point out weaknesses (i.e., too much interaction)

or missing elements.

64

Refining the Functional View

● Analyze the interactions.
○ Analyze the chosen structure based on the number

of interelement interactions taken during processing.
○ Reducing interactions results in better structure,

efficiency, reliability.
○ Revised system must still be appropriately

partitioned, without undesirable redundancy.
● Analyze for flexibility.

○ Walk through “what-if” changes to see if the
proposed structure can change with minimal impact.

○ Often conflicts with interaction analysis. Must trade
efficiency for flexibility where it makes sense.

65

Pitfall: Poorly Defined Interfaces

● Without good interface definition,
development teams will make
implementation mistakes.
○ Leads to build errors, obviously incorrect behavior,

subtle unreliability.
● To reduce risk:

○ Define interfaces and connectors clearly and early.
○ Review frequently to ensure clear understanding.
○ Do not consider element definition complete until

interfaces have been designed.
○ Make sure interface definitions include operations,

their semantics, and examples.
66

Pitfall: Poorly Understood Responsibilities

● If you don’t define all responsibilities of the
elements, confusion can remain over exactly
what each element is meant to do.
○ Can lead to missing or duplicated functionality.

● To reduce risk:
○ Ensure responsibilities are formally defined early.
○ Do not allow development to drift into element

design without responsibilities being formally defined
○ Make sure all implementers understand where their

boundaries are (and why they are there).
○ Make sure all requirements have been mapped to

elements that implement them.
67

Pitfall: Infrastructure Modeled as Functional
Elements

● Include infrastructure elements only if
important to understanding functional view.
○ Include a messaging gateway that performs some

functional processing, but not the application server
you are using.

● To reduce risk:
○ Avoid modeling infrastructure elements as you

develop your initial model. Focus on functional
elements that solve part of the problem.

○ Question any elements that do not have names
related to the problem domain.

○ Address infrastructure concerns in deployment view.
68

Pitfall: Overloaded View

● Often tempting to add deployment or
concurrency information to this view.
○ Do not allow functional view to become overloaded.

Will be harder to understand and follow.
● To reduce risk:

○ Remove everything except for items related to the
functional elements, interfaces, and connectors.

○ Create other views to describe the other aspects of
your architecture.

○ Develop the other views in parallel and
cross-reference between views to illustrate other
aspects of the architecture.

69

Example: Overloaded View

70

Pitfall: Wrong Level of Detail

● If too detailed, or define too many layers of
elements, you are constraining design.
○ Can lead to mistakes on your behalf.

● Too little detail risks misinterpretation.
● To reduce risk:

○ Avoid defining more than 2-3 levels of elements, with
8-10 elements at the top level.

○ Avoid too many details about the internal structure of
functional elements in main view.
■ If system is very large, model it as a group of

systems.

71

Pitfall: “God Elements”

● A single huge “God Element” sits at the
center of a design, with many small
elements attached.

72

Pitfall: “God Elements”

● “God Elements” contain too much functionality
and have too many dependencies.
○ Often, “God Element” is the entire program and the

small elements are just data storage.
○ Often result of too much consolidation after interaction

analysis.
○ Results in difficult maintenance.
○ “God Element” dominates quality properties.

● To avoid, aim for even ditribution of
responsibilities. If >50% of functionality is in
<25% of elements, may have “God Elements”

73

Pitfall: Too Many Dependencies

● Avoid having too many small elements that
depend on each other.
○ Will make the system harder to change, will worsen

performance.
● To reduce risk:

○ Compress related elements together.
○ In general, an element should be aware of the

existence of only a couple of other elements in order
to perform its functions.
■ If any elements need to services from more than

50% of the other elements, revising the structure.

74

Checklist (Food for Thought)

● Do you have fewer than 15-20 top-level
elements?

● Do all elements have a name,
responsibilities, and clear interfaces?

● Do all element interactions take place via
well-defined interfaces and connectors?

● Do your elements exhibit an appropriate
level of cohesion?

● Do your elements exhibit an appropriate
level of coupling?

75

Checklist (Food for Thought)

● Have you identified the important usage
scenarios and used these to validate the
functional structure?

● Have you checked the coverage of
requirements by your architecture?

● Have you defined and documented
architectural design principles, and does
your architecture comply with these
principles?

76

Checklist (Food for Thought)

● Have you considered how the architecture is
likely to cope with future change?

● Does the presentation of the view take into
account the concerns and capabilities of all
interested stakeholder groups?

● Will the view act as an effective
communication vehicle for all groups?

77

Activity: Airport Parking

78

Use Cases

79

General Principles

● Encapsulate components that are likely to
change
○ Hardware
○ Policies (pricing, lot capacity, etc.)

● Define services that individually and
collectively have value
○ High Coherence
○ Low Coupling

80

Food for Thought
What do you need to track?
● On entry?
● On exit?

○ Where do you store
completed transactions? In
the system? Sent through
interface to accounting
system?

● For pricing?
● When performing manual

overrides
○ Who can perform them?
○ How do you log them?

81

What do you need to control?
● Physical gates for entry / exit
● Entry kiosks

○ Credit card reader
○ Parking card dispenser

● Exit kiosks
○ Automated: credit card /

parking card reader
■ Optional: cash input

○ Attendant kiosks
■ Point of sale device: in

or out of system?
■ Allow manual override

of charges?

Food for Thought

How do you want to report?
● Revenue?

○ Partitioned by pricing type?
○ Current? Over time?

● Card stock levels per entry kiosk?
● Mechanical failures?
● Ramp usage? Utilization over time?

82

The Activity

From the requirements, use cases, and other
provided information:
● Derive elements. For each, briefly note the

responsibilities and purpose of that element.
● Draw a UML Context Diagram depicting the

system.
● You do not need to design interfaces, but

think about how you would implement
important ones.

83

Suggested Solution

84

Key Points

● The functional view of a system defines the
architectural elements that deliver the
functions of the system being described.

● Documents the system’s functional structure:
○ Key functional elements and their responsibilities.
○ The interfaces they expose (internal/external).
○ The interactions between them.

● This view demonstrates how the system will
perform the functions required of it.

85

Next Time

● Architectural Style: REST
○ Source: Roy Fielding. “Architectural Styles and

the Design of Network-based Software
Architectures”

● Homework:
○ Assignment 1 - due 10/02
○ Project Part 2 - due 10/11
○ Assignment 2 - due 10/25

86

