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The Functional Viewpoint

● The functional view of a system defines the 
architectural elements that deliver the 
functions of the system being described. 

● Documents the system’s functional structure: 
○ Key functional elements and their responsibilities.
○ The interfaces they expose (internal/external).
○ The interactions between them.

● This view demonstrates how the system will 
perform the functions required of it.
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The Functional Viewpoint

● Cornerstone of the 
architectural description.
○ Drives the definition of 

Information, 
Concurrency, 
Development, and 
Deployment Views.

● Should offer structure to 
guide design without 
placing too many 
constraints.  
○ Does not detail physical 

infrastructure.
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Key Attributes

● Concerns: 
○ Functional capabilities, external interfaces, internal 

structure, and functional design philosophy.
● Models: Functional structure model
● Problems and Pitfalls:

○ Poorly defined interfaces, poorly understood 
responsibilities, infrastructure modeled as functional 
elements, overloaded view, diagrams without 
definitions, reconciling stakeholders, wrong level of 
detail, and too many dependencies.

● Stakeholders: All
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Today’s (and Next) Class

● Introduce the Functional Viewpoint.
○ How to specify and document.
○ Introduce the building blocks: elements, interfaces, 

and connectors.
■ The structures, what they can do, and how they 

interact.
○ Visualization using UML Context Diagrams 
○ Pitfalls of functional architectural design.
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Concern: Functional Capabilities

● Define what the system is - and is not - 
required to do.

● Some projects have a agreed set of 
requirements.
○ Functional View can focus on showing how the 

elements provide functionality.
● Some projects will require a clear statement 

of system capabilities.
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Concern: External Interfaces

● Define data, event, and control flow between 
your system and others.

● Data can flow in or out.
○ Causing or caused by internal state change.

● Events can be consumed or emitted.
○ Notifications for your system or issued to others.

● Control can be inbound or outbound.
○ Requests to or made by your system.

● Interface definitions must consider syntax 
and semantics.
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Concern: Internal Structure

● How do you construct your system?
○ How much code do you create yourself?
○ What is provided by external systems?
○ What middleware do you use?
○ What libraries do you import?

● Internal structure defined by: 
○ The elements
○ What they do (how do they map to requirements?)
○ How they interact

● Choice impacts quality properties.
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Functional View Elements

● Functional Elements
○ A well-defined part of the system that has 

responsibilities and a defined interface.
○ Software subsystem, cluster of classes, a package, 

a data store, a complete system.
● Interfaces

○ A well-defined mechanism by which the functions of 
an element can be accessed by other elements. 

○ Defined by inputs, outputs, and semantics of each 
operation.
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Functional View Elements

● Connectors
○ Define the interactions between elements.
○ Can be simple or complex.

■ Simple: A calls B.
■ More complex: message-passing (the message 

could be a type of element).
● External Entities

○ Other systems, software, hardware devices, etc. that 
interact with your system.

○ Also often have responsibilities and a defined 
interface.
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Functional View Elements

● Does not define how code is packaged and 
executed in processes or threads.
○ Deployment and Concurrency Views

● Does not depict underlying infrastructure.
○ I.e., server or networking infrastructure.

■ Deployment View
○ Might show things like message queues that are 

interelement connectors.
■ But you would omit the message broker that 

provides the queues - not relevant to 
functionality. 
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Functional Design Characteristics

● Coherence
○ Does the architecture have a logical structure with 

elements working together to form a whole?
● Cohesion

○ To what extent are the functions provided by an 
element strongly related to each other?

● Consistency
○ Are mechanisms and design decisions applied 

consistently throughout the architecture?
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Functional Design Characteristics

● Coupling
○ How strong are the element interrelationships? 
○ Do changes in one element affect others?

● Extensibility
○ Will the architecture be easy to extend to allow the 

system to perform new functions in the future?
● Functional Flexibility

○ How amenable is the system to supporting functional 
changes?

● Generality
○ Are the mechanisms and decisions in the 

architecture as general as is practicable?
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Functional Design Characteristics

● Interdependency (Volume of Element 
Interactions)
○ What proportion of processing involves interactions 

between elements versus within elements?
● Separation of Concerns

○ To what extent is each internal element responsible 
for a distinct part of the system’s operation? 

○ To what extent is common processing performed in 
only one place?

● Simplicity
○ Are the design solutions used within the system the 

simplest ones that would be suitable?
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Functional Design Characteristics

● Achieving characteristics affects quality.
○ High cohesion, low coupling improve modifiability.
○ Separation of concerns, simplicity improve security.
○ Consistency improves performance, scalability. 

● However, “good” design can also negatively 
impact qualities.
○ Low coupling may degrade performance by 

increasing the number of communication steps.
● Establish architectural principles to prioritize 

favored design characteristics.
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Documenting the 
Functional View
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Functional View Notation

● UML Component Diagram
● Elements

● Data Stores
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Variable Capture <<external>>
Temperature Monitor

<<infrastructure>>
Message Queue

User Data



Functional View Notation

● Interfaces
○ Attached to an 

element (half-circle 
facing away from its 
element)

○ Named and tagged 
with attribute-value 
pairs that 
characterize the 
interface.
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Variable Capture

<<external>>
Temperature Monitor

Alarm Initiator

LimitCondition

VariableReporting
{ concurrentLimit = “10”, 
protocol = “HTTP”, 
type = “XMLRPC” }



Functional View Notation

● Information Flow
○ Elements may 

exchange data 
outside of direct 
connectors.

○ Show flow of 
information (i.e., 
messages)

○ Boxes at ends are 
message ports 
(sending/receiving, 
based on direction)
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Order Processor

<<external>> 
Order Fulfillment

<<pub/sub topic>>
Order Change Message

Order message 
propagated via PUR1 
EAI message 
endpoint to order 
fulfillment



Example - Vacation Reservations
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Example - Web Store
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Example - Web Store
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● What this tells us
○ Up to 1000 

customers, 80 care 
reps, 15 admins may 
access the system at 
once.

○ Interaction between 
Product Catalog and 
Stock Inventory 
takes place using a 
specific protocol. 

○ Unadorned communication 
takes place via a standard 
remote procedure call.



Example - Web Store

● What this model does NOT tell us
○ Element responsibilities are not clear.
○ Details of interfaces are not clear.
○ Details of how components interact are not clear.

● No one diagram will fill in all details.
○ This is an overview, detail all elements, interfaces, 

and connectors using text descriptions.
○ Scenario models can fill in additional details.
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Elements
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Element Definition

● Szyperski Definition:
○ An element has the following characteristic 

properties:
■ A software element is a unit of composition with 

contractually specified interfaces and explicit 
context dependencies only.

■ A software element can be deployed 
independently and is subject to composition by 
third party. 
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Element Definition

● Szyperski definition implies that:
○ For an element to be deployed independently, a 

clear distinction from its environment and other 
elements is required. 

○ An element must have clearly specified interfaces. 
○ The implementation must be encapsulated in the 

element and is not directly reachable from the 
environment.

26



Element Definition

● D’Souza and Wills definition:
○ An element is a reusable part of software, which is 

independently developed, and can be brought 
together with other elements to build larger units. 

○ It may be adapted but may not be modified. 
○ An element can be compiled code without a source. 

● To describe an element completely, the 
element should consist of:
○ A set of interfaces provided to or required from the 

environment.
○ Executable code which can be coupled to the code 

of other elements through these interfaces.
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Identifying Elements

1. Work through functional requirements, 
deriving key system-level responsibilities.

2. Identify the functional elements that will 
perform the responsibilities.

3. Assess against desired design criteria.
4. Iterate and refine until sound.
5. If an element is pre-defined (libraries or 

existing systems), understand their 
responsibilities and how they affect the 
architecture.
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Refining the Element Set

● Generalization
○ Identify common responsibilities across elements, 

introduce new elements encapsulating those.
○ Allows reuse of elements across systems.

● Decomposition
○ Break complex elements into smaller subelements.
○ Often needed in large systems to produce 

manageable subsystem-level elements.
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Refining the Element Set

● Amalgamation
○ Replace small elements with a larger element that 

includes all functions of smaller ones.
○ Group similar standalone elements into one to 

increase cohesion.
● Replication

○ Replicate either an element or a piece of processing.
○ Data validation might be repeated across multiple 

external interfaces.
○ Can bring performance benefits, but makes 

consistency difficult.
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Assigning Responsibility
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● Once elements are created, they must be assigned 
clear responsibilities.
Web Shop ● Present customers with an HTML-based user interface they can 

access with a Web browser.
● Manage all state related to the customer interface session. 
● Interact with other parts of the system to allow customers to view the 

catalog and stock levels, buy goods, and view their customer 
information.

Customer 
Information 
System

● Manage all persistent information about customers of the system.
● Provide a query-only interface that can be used to retrieve 

information held on a particular customer that should be visible to 
that customer.

● Provide an information management programmatic interface that can 
be used to create customer information management applications.

● Provide an event-driven message-handling interface to accept 
details of orders placed by customers and the state changes of 
those orders



Interfaces and 
Connectors
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Interface Definition

● An interface of an element can be defined as 
a specification of its access point, offering no 
direct implementation for any of its 
operations.
○ The implementation can be replaced without 

replacing the interface.
○ New interfaces can be added without changing the 

existing implementation.
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Interface Definition

● An interface defines a contract specifying 
how elements interact:
○ Set of participating elements
○ Role of each element, specified through its 

contractual obligations (i.e., data type).
○ Invariants to be maintained by elements.

■ Pre and post-conditions on calls to interface.
○ Specification of the methods that instantiate the 

contract. 
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Element Replacement

● Substituting element Y for element X is said 
to be safe if all systems that work with X will 
also work with Y.

● From a syntactic viewpoint, an element can 
safely be replaced if:
○ The new element implements at least the same 

interfaces as the older elements, or
○ The interface of the new element is a subtype of the 

interface of the old element. 
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Importance of Interfaces

● Architectural thinking depends on interfaces!
○ Partitioning
○ Structuring
○ Testability
○ Reuse
○ Portability
○ Scalability
○ All depend on the interfaces that you design or that 

are made available.
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Designing the Interfaces

● The definition of an interface must include:
○ The operations that the interface offers
○ Inputs, outputs, pre-conditions, and post-conditions 

of each operation.
○ Nature of the interface 

■ (messaging, procedure call, web service, etc.)
■ Computational Interfaces:  Clients invoke 

defined functions.
■ Data-oriented Interfaces: Clients communicate 

through unidirectional data transfer.
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Design by Contract

● Define an interface by establishing promises 
with the user of an element.
○ Pre-conditions: What the client must promise to the 

element in order to expect correct behavior.
■ (Binary Search: the input array must be sorted)

○ Post-conditions: What the element promises will 
happen on return.
■ (Quick Sort: the array will be sorted numerically)

○ Invariants: Conditions that will be met during 
execution of the operation.
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Computational Interfaces

● Elements publish a set of operations that 
can be invoked. Clients call these operations 
to have the element perform them.

● Can be directly defined in a program.
○ Simple, but ties you to use of that language.

● Can be defined through interface definition 
languages (IDLs).

○ .NET IDL, CORBA IDL, Web Services 
Description Language (WSDL)

○ Programming language independent
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Computational Interfaces

Responses are synchronous or asynchronous.
● Synchronous

○ Typical approach.
○ Acts like a function call in a normal program.

● Asynchronous
○ Type 1: Client provides an interface for callback 

when complete
○ Type 2: Client receives a token object (sometimes 

called a future) that will eventually hold output.
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Interface Consistency

● We say a two elements have consistent 
interfaces if:
○ Interface names match.
○ Provided and required function lists match.
○ Function parameter lists match.
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Behavioral Consistency

● Interfaces of interacting elements may 
match, but behaviors may not.
○ Example: subtraction

■ subtract(Integer x, Integer y) returns Integer;
■ Do we know what the subtract operation does?

○ Example: QueueClient and QueueServer elements
■ QueueClient

● pre-condition  q.size >= 1;
● post-condition q’.size = q.size;

■ QueueServer
● pre-condition  q.size > 0;
● post-condition  q’.size = q.size - 1;

■ Pre-conditions are consistent, 
Post-conditions are not. 42



Interfaces and Parameters

● Structure depends on distribution model.
○ Function calls within a program are very cheap.
○ Calls between processes on the same machine are 100x 

- 1000x more expensive.
○ Calls between machines are (at least) 100,000x more 

expensive and are much more likely to fail. 
● Parameter passing via interfaces

○ Base types (bool, int, float, char, etc.):  passed by value
○ Data structures: can be passed by reference if 

synchronized; must be passed by value if asynchronous.
○ References to other elements; get back a reference and 

make calls to it to get data.

43



Remote Procedure Calls

● Can use the resources of multiple servers to 
solve a client’s goal.
○ Synchronous timing: Client blocks during call, so 

familiar computational model (function call)
○ Load Balancing: If interfaces are stateless, then it 

is possible to throttle scale RPCs through 
load-balancing across multiple servers

○ Speed: RPCs are faster than messaging for call and 
response operations. 
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Remote Procedure Calls

● Unreliable Communication & 
Idempotence: RPCs are difficult to make 
100% reliable.  Need to ensure that 
operations are idempotent!  
○ Idempotent - messages/data is retransmitted if there 

is a failure.
● Thread management: Servers can handle 

many concurrent clients.
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Data Transfer Objects

● Remote calls (i.e., through web services) are  
expensive and failure-prone. 
○ Majority of the cost is related to round-trip time 

between client and server.
● DTOs carry data between processes.

○ Aggregate data that would be transferred over 
several calls, and handle it in a single call.

● Offer storage, retrieval, serialization, and 
deserialization of data, but no other 
functionality. 
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Data Transfer Objects

Without DTO

47

With DTO:



Data-Oriented Interfaces

● Elements communicate through 
unidirectional data transfer.
○ Data defines the means of communication.
○ Messages or documents are transferred, initiating a 

process.
● Common for elements that perform 

event-based actions, rather than 
on-command actions.
○ Pipe and filter, real-time architecture, message 

queueing systems.
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Data Interface Considerations

● Message (packet) vs Stream:
○ Are items batched and sent as individual messages 

(packets), or are items processed immediately (sent 
through an open stream to the element)?

● Are messages queued by the element?
○ If a job is in-process, are new requests queued or 

ignored?
● Is data transferred using lossy or guaranteed 

delivery?
○ TCP vs UDP
○ UDP allows faster transfer, but lacks error checking.
○ TCP guarantees correct data, but transfers may fail.
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Data Interface Advantages

● Can transfer packets of data frequently, 
immediately, reliably, and asynchronously 
using customizable formats.

● Variable timing
○ Unlike RPCs, sender and receiver can work at their 

own pace.
● Throttling

○ Because receiver buffers requests, it can control rate 
at which they are consumed so to avoid overload.

● Reliable Communication
○ “Store and forward” communication ensures 

delivery. 50



Data Interface Advantages

● Disconnected Operation: 
○ Can run client applications disconnected with server 

and then synchronize when connection is available
● Mediation 

○ Messaging system acts as a mediator between all 
programs that send and receive messages.  If an 
application becomes disconnected, it must only 
reconnect with messaging system, not other apps.

● Thread management
○ Threads do not block waiting for remote server.
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Data Interface Challenges

● Complex Programming Model
○ Messaging requires developers work with an 

event-driven programming model; applications must 
have callbacks for events from remote applications

● Sequence Issues
○ Message channels guarantee delivery, but not when 

message will be delivered. This can lead to 
messages being delivered out of sequence

● Synchronous scenarios 
○ Many times we want application to behave 

synchronously. Data interfaces tend to be 
asynchronous.
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Data Interface Challenges

● Performance
○ Messaging systems add overhead to 

communications for each message.  
○ Structuring messages correctly is important to 

performance.
● Vendor Lock-in

○ Many messaging systems rely on proprietary 
protocols.  

○ Even specifications such as JMS do not control the 
physical implementation of the solution, so different 
messaging systems may not connect to one another, 
leading to yet another integration problem.
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Connectors

● Elements must communicate in order to 
achieve system goals.

● Connectors link elements and the interfaces 
of elements they depend on.
○ How we implement a data or procedure-based 

interface (RPC, messaging, file transfer, etc) 
● Must consider:

○ Synchronous or asynchronous communication
○ Resiliency of the connector
○ Concurrent users
○ Acceptable latency of connections
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Connectors on One Machine

● Tend to be simple
○ Procedure call
○ Data interfaces:

■ Message queueing through a mutex-protected 
queue object.

■ “Last update” through mutex-protected shared 
memory.

○ What about when we move to multiple machines?
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Moving to Remote Access
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Object Request Brokers

● Middleware that allows program calls to be 
made from one computer to another.
○ Allows objects from one process to be used in 

another process as though they were part of the 
same process.

● Transform in-process data structures into a 
byte sequence, and transmit it over a 
network to another process (serialization).
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Object Request Brokers

● Client creates a 
stub object and
call a method.

● Client-side ORB
serializes data
and transfers to 
server-side ORB.

● Server-side ORB 
executes operation 
and returns result.
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● Same semantics 
whether or not 
client and server 
are on same 
computer.



Message-Oriented Middleware

● One-way message is queued and later 
processed (asynchronous)
○ Decouples sender and receiver
○ Message queues ensure that messages are not lost

● Message relate to transaction to be 
executed
○ Example: SMTP (e-mail) 59



More Subtle Than It Looks...

● Possible to implement message-oriented 
middleware through remote procedure calls, 
and vice-versa.

● Possible to implement asynchronous 
communication over RPCs.
○ Pass in a “callback interface”
○ Once task is completed, result is returned to the 

client through callback. 
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Interfaces and Distribution

For distributed interfaces, should 
synchronous or asynchronous interaction 
be preferred?
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● Often asynchronous:
○ Higher availability, higher throughput, 

higher performance
○ Implement through messaging, RPCs 

with “callbacks”



Interfaces and Distribution

When communicating with a remote 
component or service, the chance of failure 
goes up dramatically. Why? How can we 
address it?

62

● Idempotence (resend messages)
● Statelessness (ensure we do not corrupt 

state when something goes wrong)
● Component and service isolation

○ Can service continue if something happens?
○ Cache data, preload data, defer processing



Functional View Pitfalls
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Refining the Functional View

● Check the functional traceability.
○ Ensure all functional requirements are met by the 

proposed functional structure.
○ Table relating requirements to elements.

● Walk through common scenarios.
○ Use the functional view to illustrate how the system 

behaves in a scenario.
○ Explain how the elements would interact to 

implement that scenario. 
○ Will point out weaknesses (i.e., too much interaction) 

or missing elements. 
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Refining the Functional View

● Analyze the interactions.
○ Analyze the chosen structure based on the number 

of interelement interactions taken during processing.
○ Reducing interactions results in better structure, 

efficiency, reliability. 
○ Revised system must still be appropriately 

partitioned, without undesirable redundancy. 
● Analyze for flexibility.

○ Walk through “what-if” changes to see if the 
proposed structure can change with minimal impact.

○ Often conflicts with interaction analysis. Must trade 
efficiency for flexibility where it makes sense.
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Pitfall: Poorly Defined Interfaces

● Without good interface definition, 
development teams will make 
implementation mistakes. 
○ Leads to build errors, obviously incorrect behavior, 

subtle unreliability.
● To reduce risk:

○ Define interfaces and connectors clearly and early.
○ Review frequently to ensure clear understanding.
○ Do not consider element definition complete until 

interfaces have been designed.
○ Make sure interface definitions include operations, 

their semantics, and examples.
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Pitfall: Poorly Understood Responsibilities

● If you don’t define all responsibilities of the 
elements, confusion can remain over exactly 
what each element is meant to do.
○ Can lead to missing or duplicated functionality.

● To reduce risk:
○ Ensure responsibilities are formally defined early.
○ Do not allow development to drift into element 

design without responsibilities being formally defined
○ Make sure all implementers understand where their 

boundaries are (and why they are there).
○ Make sure all requirements have been mapped to 

elements that implement them.
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Pitfall: Infrastructure Modeled as Functional 
Elements

● Include infrastructure elements only if 
important to understanding functional view.
○ Include a messaging gateway that performs some 

functional processing, but not the application server 
you are using.

● To reduce risk:
○ Avoid modeling infrastructure elements as you 

develop your initial model. Focus on functional 
elements that solve part of the problem.

○ Question any elements that do not have names 
related to the problem domain.

○ Address infrastructure concerns in deployment view.
68



Pitfall: Overloaded View

● Often tempting to add deployment or 
concurrency information to this view.
○ Do not allow functional view to become overloaded. 

Will be harder to understand and follow.
● To reduce risk:

○ Remove everything except for items related to the 
functional elements, interfaces, and connectors.

○ Create other views to describe the other aspects of 
your architecture.

○ Develop the other views in parallel and 
cross-reference between views to illustrate other 
aspects of the architecture.
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Example: Overloaded View
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Pitfall: Wrong Level of Detail

● If too detailed, or define too many layers of 
elements, you are constraining design.
○ Can lead to mistakes on your behalf.

● Too little detail risks misinterpretation.
● To reduce risk:

○ Avoid defining more than 2-3 levels of elements, with 
8-10 elements at the top level.

○ Avoid too many details about the internal structure of 
functional elements in main view. 
■ If system is very large, model it as a group of 

systems.
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Pitfall: “God Elements”

● A single huge “God Element” sits at the 
center of a design, with many small 
elements attached.
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Pitfall: “God Elements”

● “God Elements” contain too much functionality 
and have too many dependencies.
○ Often, “God Element” is the entire program and the 

small elements are just data storage. 
○ Often result of too much consolidation after interaction 

analysis.
○ Results in difficult maintenance.
○ “God Element” dominates quality properties.

● To avoid, aim for even ditribution of 
responsibilities. If >50% of functionality is in 
<25% of elements, may have “God Elements”
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Pitfall: Too Many Dependencies

● Avoid having too many small elements that 
depend on each other.
○ Will make the system harder to change, will worsen 

performance.
● To reduce risk:

○ Compress related elements together.
○ In general, an element should be aware of the 

existence of only a couple of other elements in order 
to perform its functions. 
■ If any elements need to services from more than 

50% of the other elements, revising the structure.
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Checklist (Food for Thought)

● Do you have fewer than 15-20 top-level 
elements?

● Do all elements have a name, 
responsibilities, and clear interfaces?

● Do all element interactions take place via 
well-defined interfaces and connectors?

● Do your elements exhibit an appropriate 
level of cohesion?

● Do your elements exhibit an appropriate 
level of coupling?
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Checklist (Food for Thought)

● Have you identified the important usage 
scenarios and used these to validate the 
functional structure?

● Have you checked the coverage of 
requirements by your architecture?

● Have you defined and documented 
architectural design principles, and does 
your architecture comply with these 
principles?
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Checklist (Food for Thought)

● Have you considered how the architecture is 
likely to cope with future change?

● Does the presentation of the view take into 
account the concerns and capabilities of all 
interested stakeholder groups? 

● Will the view act as an effective 
communication vehicle for all groups?
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Activity: Airport Parking
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Use Cases
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General Principles

● Encapsulate components that are likely to 
change
○ Hardware
○ Policies (pricing, lot capacity, etc.)

● Define services that individually and 
collectively have value
○ High Coherence
○ Low Coupling
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Food for Thought
What do you need to track?
● On entry?
● On exit?

○ Where do you store 
completed transactions? In 
the system? Sent through 
interface to accounting 
system?

● For pricing?
● When performing manual 

overrides
○ Who can perform them?
○ How do you log them?
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What do you need to control?
● Physical gates for entry / exit
● Entry kiosks

○ Credit card reader
○ Parking card dispenser

● Exit kiosks
○ Automated: credit card / 

parking card reader
■ Optional: cash input

○ Attendant kiosks
■ Point of sale device: in 

or out of system?
■ Allow manual override 

of charges?



Food for Thought

How do you want to report?
● Revenue?

○ Partitioned by pricing type?
○ Current?  Over time?

● Card stock levels per entry kiosk?
● Mechanical failures?
● Ramp usage? Utilization over time?
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The Activity

From the requirements, use cases, and other 
provided information:
● Derive elements. For each, briefly note the 

responsibilities and purpose of that element.
● Draw a UML Context Diagram depicting the 

system.
● You do not need to design interfaces, but 

think about how you would implement 
important ones.
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Suggested Solution
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Key Points

● The functional view of a system defines the 
architectural elements that deliver the 
functions of the system being described. 

● Documents the system’s functional structure: 
○ Key functional elements and their responsibilities.
○ The interfaces they expose (internal/external).
○ The interactions between them.

● This view demonstrates how the system will 
perform the functions required of it.
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Next Time

● Architectural Style: REST
○ Source: Roy Fielding. “Architectural Styles and

the Design of Network-based Software 
Architectures”

● Homework: 
○ Assignment 1 - due 10/02
○ Project Part 2 - due 10/11
○ Assignment 2 - due 10/25
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