
Software Engineering Principles for Complex Systems

TDA594

SPLs Agile development

& Industry automation

Sam Jobara
jobara@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se

Learning Objectives

⬥ Introduce Agile Product Line Engineering APLE

⬥ Present APLE industry practices

⬥ Enabling APLE by automation tools

2

Agile Product Line Engineering APLE

A Quick Review

3

Agile Product Line Engineering APLE

The big upfront design associated with (Product Line Architecture)PLA conflicts with

the current need of ‘‘being tolerant with change=Agile’’ *

To make the development of product-lines more flexible and adaptable to changes,

many large companies are leaning to adopt APLE principles.

However, to put APLE into practice it is still necessary to introduce a suitable

framework to assist and guide the agile practice and the evolve fully to APLE.

4* Agile product-line architecting in practice: A case study in smart grids

Jessica Díaz ⇑, Jennifer Pérez, Juan Garbajosa, Technical University of Madrid-Universidad Politécnica de Madrid (UPM), E.U.

Agile Product Line Engineering APLE

Agile Software Development (ASD)* is an approach that is intended to enable rapid

and flexible development, plans, are kept at a minimum, and work is organized in

short iterations developing the software product in increments, which is continuously

tested and delivered in collaboration with all stakeholders.

Agile methods are scaled up to approaches for

large organizations, such as the Scaled Agile

Framework (SAFe) or Scrum of Scrum (SoS).

This is challenging whenever the software

development is distributed all over the world.

5
* ”Agile Product Line Engineering: The AgiFPL Method” Hassan Haidar1, Manuel Kolp1 and Yves Wautelet2, 1LouRIM-CEMIS, Université Catholique

de Louvain, Belgium, 2KULeuven, Faculty of Economics and Business, Belgium

Agile Product Line Engineering APLE

The common concepts in Scrum are:
⬥ Scrum roles: “Product Owner”, “Scrum Master”, “Development Team”, and “Stakeholders”.

⬥ Scrum artefacts: “Product backlog”, “Sprint backlog”, “User Story” (US), “Task”, “Burn

down charts”, “Impediment backlog” and “Definition of done”.

⬥ Scrum meetings: “Sprint planning 1”, “Sprint planning 2”, “Daily Scrum”, “Sprint review”,

“Sprint retrospective”, and “Backlog refinement”.

Scrumban has been used to help teams and organizations accelerate their

transitions to Scrum from other development methodologies.

Scrumban more responsive to change than Scrum,

Scrumban retains all the roles and meetings of Scrum. 6

Agile Product Line Engineering APLE

One of the most important challenges consists of designing and evolving the PLEs

while complying with the agile principles.

In fact, this challenge is also open in software architectures for single products,

in which the reconciliation of software architecture and agile communities is a

controversial issue that has been extensively discussed.

The conflict arise from the resistance of old schools of sequential waterfall design

mentality, and lack of interest from old guards in traditional large industries.

7

Agile Product Line Engineering APLE

The graph* below shows that a waterfall model is much more sensitive against the

requirements quality. The cost curve of waterfall model projects is growing

exponentially – the later the defect is found, the more expensive it will be to fix it.

8
* Impact of Requirements Elicitation Processes on Success of Information System Development Projects Līga Bormane1 , Jūlija Gržibovska2 , Solvita Bērziša3

Agile Product Line Engineering APLE

The AgiFPL FRAMEWORK

9

Agile Product Line Engineering APLE
The AgiFPL FRAMEWORK*

AgiFPL is an agile methodology designed to improve the agility within the PLE and

to meet effectively any newly emerged business expectations. Its main goal is to

move teams from the classical approach to a more evolved APLE framework.

Using a goal-oriented requirement engineering approach (GORE), will provide the

mechanism to easily evolve PL architectures in an agile context and will establish a

suitable reuse strategy.

AgiFPL implement is an iterative process that uses Scrumban. GORE has been used

for requirements engineering, business process reengineering, organizational impact

analysis, and software process modeling.

10
* ”Agile Product Line Engineering: The AgiFPL Method” Hassan Haidar1, Manuel Kolp1 and Yves Wautelet2, 1LouRIM-CEMIS, Université Catholique

de Louvain, Belgium, 2KULeuven, Faculty of Economics and Business, Belgium

The AgiFPL FRAMEWORK*
Domain Engineering DE tier

11

The domain solution constitutes of “Domain

requirement engineering” (DRE).

1. Start at “Software Vendor”

2. They develop business strategy

3. Which drive the DRE

4. The “Domain Design” (DD) is derived

5. FM & “Features Backlog” (FB) defined

6. Document F. into “User Stories” (US)

7. Define “Selected Backlog” (SB)

8. Planning-1 (What) is select next

9. “Development Team” structures user

stories”Stories In Progress SIP Backlog”

10. Planning-2 starts (How)

The AgiFPL FRAMEWORK*
Domain Engineering DE tier .

12

10- “Planning 2” meeting, the team

establishes the “Production Flow”
11- Daily Scrum: Done, Planned, Problems

12- Team” hold a “Review” meeting to
review the work accomplished.

13- Pass: “Common Assets Warehouse”.
14- Hold the “Retrospective” meeting
15- Incomplete Features pushed to SIP
16- SIP story can be pulled if it needs

only further testing.

A feature can consist of multiple USs

The AgiFPL FRAMEWORK
Application Engineering AE tier

13

It includes several product lines where

the outputs are client applications

(products).

Starts at the “App Owner”. the“App i

Requirement Engineering” (ARE i) phase

Two types of features coexist:
1. Features exist in “Common Assets Warehouse”.

called “Selection of Features” (SoF).
2. Features that are to be developed called

“Definition of Features” (DoF).

The DoF move to AE Solution domain for

development.

The AgiFPL FRAMEWORK
Application Engineering AE tier

14

The “Sprint” starts with the “Sprint Planning”.

The team start “Sprint Planning” most important

subset of “App backlog” items selected to the

next sprint.

At end of the “Sprint Planning”, the “Sprint

Backlog” is defined and the “Definition of
Done” (DoD) list is established.

In fact, DoD is a checklist of activities

required to declare the implementation of a

story to be completed.

The AgiFPL FRAMEWORK
AgiFPL processes

15

Each process of AgiFPL is based on an iterative and incremental development as shown

Agile Product-Line Architecting
(APLA)

Towards an Agile compliant architecture

16

Agile Product-Line Architecting (APLA)

APLA is the integration of a set of models for describing, documenting, and tracing

Product Line Architectures PLAs*, as well as an algorithm for guiding the change

decision-making process of PLAs.

The APLE development process requires that PL-architectures

⬥ are incrementally and iteratively designed, and

⬥ welcome unplanned changes. The PL-architecture has to evolve in each of the

iterations to incrementally include all the features of the product-line.

17* Agile product-line architecting in practice: A case study in smart grids

Jessica Díaz ⇑, Jennifer Pérez, Juan Garbajosa, Technical University of Madrid-Universidad Politécnica de Madrid (UPM), E.U.

Agile Product-Line Architecting (APLA)

The objectives of APLA:

1. Provide software architecture with flexibility and adaptability when defining software

architectures to facilitate change during the incremental and iterative design of PLAs

as well as their evolution (unanticipated change).

2. Facilitate architectural concerns, such as dependencies, rationale, constraints, or

risks, that may be impacted by change.

3. Provide guidance in the decision-making process during constructing and evolving

PLAs to facilitate change impact analysis in terms of architectural components and

connections that may be impacted by change.

18

Agile Product-Line Architecting (APLA)

To achieve these objective, we need first to define some terms:

Plastic Partial Component PPC address agile architecting by defining architectural

components in an iterative and incremental way.

The variability of a PPC is specified using variability points, which hook fragments of

code to the PPC known as variants, and weavings which specify where and when to

extend the PPCs using the variants.

Weavings are defined outside from PPCs and variants, so that these PPCs and variants

are independent of the weaving or linking context.

As a result, PPCs reduce dependences and coupling between components and their

variants, while enable easy and cheap (un-)weaving of variants.

19

Agile Product-Line Architecting (APLA)

The graphical representation of a PPC that defines a variability point and n variants.

20

Variability points behave as extension

points and variants behave as

extensions.

Namely, the PPC variability mechanism

behaves as an extension mechanism to

flexibly compose pieces of software, as

if we were building a puzzle.

Since they are unaware of the linking

context they can be easily changed,

without coupling concerns.
(a) Definition of variability: PPC extension mechanism.
(b) Documentation of design decisions

Agile Product-Line Architecting (APLA)

APLA objective 1: Describing flexible & adaptive architectures

PPC variability mechanism supports incremental development of architectural components through

the incomplete specification of components and their extension by hooking new variants.

PPCs get closer and closer to meeting customers’ needs by specifying the variants only when

they are strictly required by a working product.

As a result, working architectures can be incrementally and iteratively designed and evolved in each

iteration by weaving/unweaving extensions, and/or by modifying the architecture configuration

through optional components and connectors.

This continuous architecting may help reduce big upfront architecture design and keep the system

in-sync with changing conditions.
21

Agile Product-Line Architecting (APLA)

APLA objective 2: Documenting flexible & adaptive architectures
Storing the knowledge created during the architectural design would support the

rationalization of architectural decisions taken during solution design.

The main types of architectural knowledge are the design decisions driving the

architecture solution, their dependencies, and rationale.

The concept of Product-Line Architectural Knowledge (PLAK) provides both the

documentation of design decisions with variations and the capability to trace the history

of these variations.

22

Agile Product-Line Architecting (APLA)

23

The PLAK Metamodel and its modeling

primitives have been reused to capture

the knowledge of adding feature

increments or changing features in

each agile iteration.

Agile Product-Line Architecting (APLA)
The APLA process

The APLA process has been deployed in Scrum , where APLA advocates the role of

the architect in the agile team.

In this way, architects are part of the agile team are tracking architectural concerns,

such as constraints, risks, or viability, and balancing them with the business priorities

during the decision-making process.

The customization of Scrum with APLA divides its sprints into two main phases: Domain

Engineering and Application Engineering* (see next figure).

24
* Agile product-line architecting in practice: A case study in smart grids

Jessica Díaz ⇑, Jennifer Pérez, Juan Garbajosa, Technical University of Madrid-Universidad Politécnica de Madrid (UPM), E.U.

Agile Product-Line Architecting (APLA)
The APLA process

25

The Sprint APLA

activity is supported by

the Flexible-PLA and PLAK

modeling mechanisms

as well as the change

impact analysis technique

which guide architects in

the agile product-line

architecting process

Agile Product-Line Architecting (APLA)
The APLA process

In summary, the APLA process consists of three main steps:

STEP 1. Architects analyze the Working PLA of the previous sprint by using the

change impact analysis algorithm. They can re-prioritize the features based on their

impact.

STEP 2. The features assigned to the sprint are incorporated into the Working PLA.

Architects use Flexible-PLA modeling primitives to iteratively and incrementally

construct and evolve the working PLA through the sprints.

STEP 3. Architects use PLAK modeling primitives to document and trace the design

decisions, dependencies, constraints, trade-offs, risks, etc. through the sprints.
26

Agile Development and
Product Line Engineering

at Lockheed Martin*

27

*”The Best of Both Worlds: Agile Development Meets Product Line Engineering

at Lockheed Martin” Susan P. Gregg, Rick Scharadin

Lockheed Martin, 26th Annual INCOSE International Symposium (IS2016)

Edinburgh, July 18-21, 2016

Agile Development and Product Line Engineering at LM

We discuss here the experience of Lockheed Martin as it introduced large-scale agile

development practices on one of its largest product line engineering.

The Factory uses shared assets, requirements,

design specifications, design models, source code,

build files, test plans and test cases, installation

guides, project budgets, schedules, and work plans,

product calibration and configuration files, data

models, parts lists, and more. Assets in PLE are

engineered to be shared across the product line.

28PLE as a factory

Agile Development and Product Line Engineering at LM

Lockheed Martin calls a member of its product line a configuration. A configuration

is an instance of the system to be deployed for a specific platform or site.

The product line approach, then, exists to produce configurations for customers.

This product line comprises roughly 100 such configurations.

Each configuration that is deployed to its final operational user community comprises nine

major software components, working together to achieve the functionality of the full system.

These software components are, in the context of their projects are called products.

29

Agile Development and Product Line Engineering at LM

For requirements, the product line employs a common specification repository (a

DOORS* database) that contains all requirements for all configurations, with varying

requirements captured in feature-based variation points.

This model allows for multiple configurations to share requirements while having the

flexibility for each configuration to have unique requirements as well.

During the test and verification phase, the product line utilizes a consolidated testing

approach to maximize efficiency of common requirements and capabilities. This

results in tailored regression testing based on changed functional area. Common test

efforts are leveraged.

30
* IBM® Engineering Requirements Management DOORS® (DOORS) is requirements management tool to capture, trace, analyze, and manage changes.

Agile Development and Product Line Engineering at LM

In late 2014, corporate management decided that Agile was the way to strengthen

Lockheed Martin’s competitive position on its large legacy product line program.

At LM the agile challenge is serious:
⬥ The products –are large by any standard, comprising some 10 million lines of code and

costing tens to hundreds of millions of dollars.

⬥ The teams, spread across the products, are sizable. The largest component, for example,

involves over 200 engineers. Some 800 engineers are involved in the product line.

⬥ The build cycles, under the product line’s are four months long.

31
* IBM® Engineering Requirements Management DOORS® (DOORS) is requirements management tool to capture, trace, analyze, and manage changes.

Agile Development and Product Line Engineering at LM

How to bridge the gap between large-scale PLE and small-scale short-iteration Agile?

Here there are three answers, each detailed in a sub-section below.

1- Small Teams
Small teams resulted from decomposing the products’ large teams into Scrum teams of size

seven to ten. The teams, considered together, do the same work as they did before, but the

work has also been divided into smaller chunks that match the team size and short iteration

(sprint) schedule.

The teams are self-organized by product, mostly around areas of domain expertise or

functionality, or around specific elements in the architecture.

32
* IBM® Engineering Requirements Management DOORS® (DOORS) is requirements management tool to capture, trace, analyze, and manage changes.

Agile Development and Product Line Engineering at LM

33

Agile Development and Product Line Engineering at LM

34

However, instead of nine large product teams, the decomposition resulted in 100

or so small ones. To ensuring everyone is working towards common large-scale

goals, without devoting all their time to management overhead tasks, becomes a

concern of the first order

To address this problem, Lockheed Martin has trained its leaders on the Scaled

Agile Framework (SAFe), a “knowledge base for implementing agile practices at

enterprise scale.”

It defines the “individual roles, teams, activities, and artifacts necessary to scale

agile from the team, to teams of teams, to the enterprise level.”

Agile Development and Product Line Engineering at LM

35

2- Small iterations
While inter-team coordination is resolved by SAFe, work inside each team follows

classic Scrum, meaning that planned work is organized into two-week sprints. A

certain number of sprints add up to a release.

How many sprints? Lockheed Martin has adopted a four-month release cycle thus,

eight sprints constitute a release.

The work accomplished in each sprint is, again from Scrum, defined in terms of

user stories. Users stories are used to accomplish features. A feature is a sort of

large-scale user story that completes within a release.

Agile Development and Product Line Engineering at LM

36

Following Scrum methodology, each sprint includes daily scrum meetings and

culminates in a sprint demo/review and a sprint retrospective.

Agile Development and Product Line Engineering at LM

37

General Motors PLE’s
automated support *

38

*Mega-Scale Product Line Engineering at General Motors

2012 Software Product Line Conference

Best Paper Award in Industrial Track

PLEs Industry case

General Motors PLE’s automated support

39

GM deals with mega-scale product lines and

keeping track of the variation in each system

and the feature interactions among systems

leads to too many possible systems variations.

GM needed a tool to manage variation points

in their engineering artifacts and help configure

vehicle-specific engineering products. For this,

they chose Gears from BigLever Software.

PLEs Industry case

General Motors PLE’s automated support

40

A “superset” supply chain of reusable

digital assets is used, with variation

points (illustrated by the small gear

symbols) defined in terms of features

in the product line’s Feature Catalog.

The features chosen for each product

are specified in the Bill-of-Features for

that product.

The Gears product configurator creates a

product instance by exercising variation

points according to the features

selected.

PLEfactory, based on Gears

PLEs Industry case

General Motors PLE’s automated support

41

The bill-of materials for a vehicle’s electronics is generated from its bill-of features.

To capture features, here is the set of feature modeling constructs (provided by Gears) that

GM is using for its product line work:

Feature declarations are parameters that express the diversity in the product line for a system

or subsystem.

Feature profiles are used to select and assign values to the feature declaration parameters for

the purpose of instantiating a product.

Assets are the abstraction for systems and software artifacts in a production line.

Variation points encapsulate the variations in the assets used to build products.

PLEs Industry case

General Motors PLE’s automated support

42

Assets are built and maintained on the

left; each is endowed with one or more

variation points (indicated by the gear

symbol).

Feature profiles determine how the

assets are instantiated (by exercising

their variation points) to produce

product-ready artifacts.

PLEs Industry case

General Motors PLE’s automated support
Assets Traceability

43

The list of artifacts at GM include requirements, system architectures and designs,

source code implementation, calibration parameters, test cases, and documentation.

Common representation of variation points is key to achieving traceability from

requirements to deployment.

Traceability is of great concern for GM. Every requirement needs to be traceable to

one or more design elements that satisfy that requirements, and each design element

should be traceable back to one or more requirements that it satisfies.

PLEs Industry case

General Motors PLE’s automated support

GEARS interface,

44

GEARS platform supports plug-ins, for example,

DOORS requirements modules, Microsoft Word

documents and Excel spreadsheets, and UML, and

many more.

Gears supports various artifacts maintained under the

proprietary of various tools. In that figure, a bridge is

a piece of software that “knows” the other-tool

representation and presents a “product-line-aware”

user interface for that tool that allows product line

engineers to insert variation points in the artifacts

maintained by that tool.

PLEs Industry case

General Motors PLE’s automated support
GEARS Roles at GM

45

The Figure sketches the major PLE roles and

their broad responsibilities vis-à-vis maintaining

the PLE models and artifacts.

PRODUCT LINE INTEGRATION ENGINEER
This engineer collaborates with Vehicle Product

Teams in the selection of a ‘bill-of-features’ for a

vehicle being planned.

The product line integration engineer also

collaborates with the feature owners in the

identification of the top-level subsystem

production line ‘products’ that will be offered up

to vehicles.

PLEs Industry case

General Motors PLE’s automated support
In conclusion

46

• A focus on features for variation and product selection; the “bill-of-features” replaces the

“bill-of materials” as the key engineering artifact for product derivation.

• An emphasis on high-quality automation at the center of a production line, to quickly turn

a bill-of-features into a set of instantiated lifecycle assets

• A CM and PLE approach geared to multi-baseline multiproduct management in a way to

reduce the order of complexity from O(n2) to O(n).

• Taking multi-organizational management in stride, by providing feature model concepts

such as mix-ins and imported (hierarchical) production lines, to reflect the structure of

engineering activities and domain knowledge present in an ultra-large organization.

In Conclusion of
SPLs Agile development
& Industry automation

47

We have presented the following

Resolve PLA requirement conflict by deploying short CD per Agile requirement

Use AgiFPL framework to implement an iterative process that uses Agile Scrumban process

Used PPC variability mechanism to support APLA (incremental development of PLA)

How large organization can use scaled-up Agility for CD Agile transformation

How LM was able to transform to APLE with large number of small teams and short iteration

How GM is using PLE GEAR automation to manage their assets superset variation points

