Lecture 13: Automated Test Case Generation

Gregory Gay
TDA/DIT 594 - December 15, 2020
Automating Test Creation

• Testing is invaluable, but expensive.
 • We test for *many* purposes.
 • Near-infinite number of possible tests we could try.
 • Hard to achieve meaningful volume.
Automation of Test Creation

• Relieve cost by automating test creation.
 • Repetitive tasks that do not need human attention.
 • Generate test input.
 • Need to add assertions.
 • Or just look for crashes.
Today’s Goals

• Introduce Search-Based Test Generation (Fuzzing)
 • Test Creation as a Search Problem
 • Metaheuristic Search
 • Fitness Functions

• Example - Generating Covering Arrays for Combinatorial Interaction Testing
Test Creation as a Search Problem

• Do you have a goal in mind when testing?
 • Make the program crash, achieve code coverage, cover all 2-way interactions, …

• You are searching for a test suite that achieves that goal.
 • Algorithm samples possible test input to find those tests.
Test Creation as a Search Problem

• “I want to find all faults” cannot be measured.

• However, a lot of testing goals can be.
 • Check whether properties satisfied (boolean)
 • Measure code coverage (\%)
 • Count the number of crashes or exceptions thrown (#)

• If goal can be measured, search can be automated.
Search-Based Test Generation

• Make one or more guesses.
 • Generate one or more individual test cases or full suites.

• Check whether goal is met.
 • Score each guess.

• Try until time runs out.
 • Alter the population based on strategy and try again!
The order that solutions are tried is the key to efficiently finding a solution.

A search follows some defined strategy.
 • Called a “heuristic”.

Heuristics are used to choose solutions and to ignore solutions known to be unviable.
 • Smarter than pure random guessing!
Heuristics - Graph Search

● Arrange nodes into a hierarchy.
 ○ Breadth-first search looks at all nodes on the same level.
 ○ Depth-first search drops down hierarchy until backtracking must occur.

● Attempt to estimate shortest path.
 ○ A* search examines distance traveled and estimates optimal next step.
 ○ Requires domain-specific scoring function.
How Long Do We Spend Searching?

• Exhaustive search not viable.

• Search can be bound by a search budget.
 • Number of guesses.
 • Time allotted to the search (number of minutes/seconds).

• Optimization problem:
 • Best solution possible before running out of budget.
Generation as Optimization Problem

• Search heuristic becomes important.
 • If time bound: time to create, execute, and evaluate.
 • If attempt bound: strategy used to choose next solution.
 • Ignoring bad solutions, learning what a solution good.
• In practice, **efficiency in both categories is desired.**
Random Search

- Randomly formulate a solution.
 - Unit testing: choose a class in the system, choose random methods, call with random parameter values.
 - System-level testing: choose an interface, choose random functions from interface, call with random values.

- Keep trying until goal attained or budget expires.
Random Search

• Sometime viable:
 • Extremely fast.
 • Easy to implement, easy to understand.
 • All inputs considered equal, so no designer bias.

• However…
Metaheuristic Search

• Random search is naive.
 • Only possible to cover a small % of full input space.

• Metaheuristic search adds intelligence to random.
 • Feedback and sampling strategies.
 • Still fast, able to learn from bad guesses.
Metaheuristic Search
Mechanics of Optimization
AKA: How can I get a computer to search?

Metaheuristic

Fitness Function(s)
Search-Based Test Generation

The Metaheuristic (Sampling Strategy)
- Genetic Algorithm
- Simulated Annealing
- Hill Climber

The Fitness Functions (Feedback Strategies)
- Distance to Coverage Goals
- Count of Executions Thrown
- Input or Output Diversity

(Goals)
- Cause Crashes
- Cover Code Structure, Generate Covering Array,
The Metaheuristic

• Decides how to select and revise solutions.
 • Changes approach based on past guesses.
 • Fitness functions give feedback.
 • Population mechanisms choose new solutions and determine how solutions evolve.
The Metaheuristic

• Decides how to select and revise solutions.
 • Small adjustments (local search) or sampling from the whole space (global search).
 • One solution at a time or entire populations.
 • Often based on natural phenomena (swarm behavior, evolution).
 • Trade-off between speed, complexity, and understandability.
“Solutions”

• What is a solution?
 • **Test Case:** Evolved in isolation from other test cases.
 • **Test Suite:** A set of test cases, evolved together.

• Depends on how goal attainment measured.
 • Code Coverage
 • Test Case: Target one code section at a time.
 • Test Suite: Target coverage of entire class/system.
Local Search

• Generate and score a potential solution.
• Attempt to improve by looking at its **neighborhood**.
 • Make small, incremental improvements.
• Very fast, efficient if good initial guess.
 • Get “stuck” if bad guess.
 • Often include reset strategies.
Exploring the Neighborhood

● Small changes to solution.
 ○ For each call:
 ■ Switch value of boolean, other values from an enumerated set, bounded range of numeric choices.
 ○ Full test case:
 ■ Insert a new call.
 ■ Delete or replace an existing call.
 ● Can replace by changing the function called or its parameters.
Hill Climbing

- Pick a initial solution at random.
- Examine the local neighborhood.
- Choose the best neighbor and “move” to it.
- Repeat until no better solution can be found.
 - Climbs mountains in fitness function landscape.
 - Restart when no improvement can be found.
Hill Climbing Strategies

- **Steepest Ascent**
 - Examine all neighbors
 - Pick one with highest improvement.

- **Random Ascent**
 - Examine random neighbors.
 - Choose first to show *any* improvement.
Simulated Annealing

- Choose a neighboring test case.
 - If better, select it. If not, select it at probability:
 \[
 \text{prob}(\text{score}, \text{newScore}, \text{time}, \text{temp}) = e^{((\text{score} - \text{newScore}) * (\text{time} / \text{temp}))}
 \]
 - Governed by temperature function:
 \[
 \text{temp}(\text{time}, \text{maxTime}) = (\text{maxTime} - \text{time}) / \text{maxTime}
 \]
- Initially, large jumps around search space.
 - Stabilizes over time.
Global Search

- Generate multiple solutions.
- Evolve by examining whole search space.
- Typically based on natural processes.
 - Swarm patterns, foraging behavior, evolution.
 - Models of how populations interact and change.
Genetic Algorithms

- Over multiple generations, evolve a population.
 - Good solutions persist and reproduce.
 - Bad solutions are filtered out.
- Diversity is introduced by:
 - Keeping the best solutions.
 - Some random solutions.
 - Creating “offspring” through mutation and crossover.
Genetic Algorithms - Mutation

- Copy a high-scoring solution.
- Impose a small change.
 - (add/delete/modify a function call, change an input value)
 - Follow the rules for determining the neighbors of a test.
 - Choose a neighbor from that set.
Genetic Algorithms - Crossover

- By “breeding” two good tests, we may produce better tests.
- Form two new solutions.
 - Sample from probability distribution to decide which parent to inherit from.
Genetic Algorithms - Crossover

- One Point Crossover
 - Splice at crossover point.

- Uniform Crossover
 - Flip coin at each line, second child gets other option.

- Discrete Recombination
 - Flip coin at each line for both children.
Let’s take a break.
Fitness Functions

- Domain-based scoring functions that determine how good a potential solution is.
 - Should offer feedback:
 - Percentage of goal attained.
 - *Better - information on how to improve solution.*
 - Can optimize more than one at once.
 - Independently optimize functions
 - Combine into single score.
Example - Code Coverage

• **Goal:** Attain Branch Coverage over the code.
 • Tests reach branching point (i.e., if-statement) and execute all possible outcomes.

• **Fitness function (Attempt 1):**
 • Measure coverage and try to maximize % covered.
 • **Good:** Measurable indicator of progress.
 • **Bad:** No information on how to improve coverage.
Example - Code Coverage

- **Attempt 2: Distance-Based Function**
 - **fitness = branch distance + approach level**
 - **Approach level**
 - Number of branching points we need to execute to get to the target branching point.
 - **Branch distance**
 - If other outcome is taken, how “close” was the target outcome?
 - How much do we need to change program values to get the outcome we wanted?
Example - Code Coverage

```c
if(x < 10){ // Branch 1
    // Do something.
} else if (x == 10){ // Branch 2
    // Do something else.
}
```

Goal: Branch 2, True Outcome

Approach Level
- If Branch 1 is true, approach level = 1
- If Branch 1 is false, approach level = 0

Branch Distance
- If x==10 evaluates to false, branch distance = (abs(x-10)+k).
- Closer x is to 10, closer the branch distance.
Other Common Fitness Functions

- Number of methods called by test suite
- Number of crashes or exceptions thrown
- Diversity of input or output
- Detection of planted faults
- Amount of energy consumed
- Amount of data downloaded/uploaded
- … (anything that reflects what a good test is)
What are your testing goals?
(and would they make good fitness functions?)
What Do I Do With These Inputs?

• If looking for crashes, just run generated input.
• If you need to judge correctness, add assertions.
 • General properties, not specific output.
 • No: assertEqual(output, 2)
 • Yes: assertTrue(output % 2 == 0)
Generating Covering Arrays for Combinatorial Interaction Testing
Instead of testing all combinations, test all 2-way interactions.

Covering Array: A set of test specifications that covers all pairs of values.
 • From 144 specifications to 9

Generating **smallest** covering array NP-hard.

Metaheuristic search can easily generate near-smallest covering array.

<table>
<thead>
<tr>
<th>Allow Content to Load</th>
<th>Notify About Pop-Ups</th>
<th>Allow Cookies</th>
<th>Warn About Add-Ons</th>
<th>Warn About Attack Sites</th>
<th>Warn About Forgeries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow</td>
<td>Yes</td>
<td>Allow</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Restrict</td>
<td>No</td>
<td>Restrict</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Block</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allow Content</th>
<th>Allow Cookies</th>
<th>Pop-Ups</th>
<th>Add-Ons</th>
<th>Attacks</th>
<th>Forgeries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow</td>
<td>Allow</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Allow</td>
<td>Restrict</td>
<td>No</td>
<td>No</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Allow</td>
<td>Block</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Restrict</td>
<td>Allow</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Restrict</td>
<td>Restrict</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Restrict</td>
<td>Block</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Block</td>
<td>Allow</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Block</td>
<td>Restrict</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Block</td>
<td>Block</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

40
Generating Covering Arrays

1. Generating Random Solutions
2. Calculating Solution Fitness
3. Evolving Solutions
 a. Mutation (Genetic Algorithm) / Neighboring Solution (Local Search)
 b. Crossover (Genetic Algorithm)
Generating Random Solution

1. Calculate list of pairs to cover.
2. Until list is empty:
 b. Remove covered pairs from list.
 c. Add specification to covering array.
3. Return covering array.
Fitness Function

• Size of the covering array.
 • coveringArray.length();
 • Want to minimize the score (smaller arrays are better)

• Can be measured, fast calculation.

• Tells us which solutions are better.

• Does not offer detailed feedback, but still works.
Mutation

• Change a value in a test specification.
 • Set a limit on number of changes made at one time.
 • Maybe we can make it smaller with a few changes?

• If all pairs covered in fewer tests, discard remainder.

• If no longer a covering array:
 • Throw out solution OR
 • Revert change and try again OR
 • Revert change and mutate different solution.
Crossover

• Take two covering arrays, create two “child” arrays.

• For each specification, flip a coin:
 • Heads:
 - Parent A
 - Parent B
 - Check child A
 - Check child B
 • Tails:
 - Parent A
 - Parent B
 - Check child A
 - Check child B

• Check each child:
 • If not a covering array, discard.
 • If still a covering array, remove redundant specifications.
Search Process

• Generate population at random.
• Score each by size.
• Create new population.
 • Retain best arrays (10%)
 • Create mutations (30%)
 • Create children (30%)
 • Generate random (30%)
• Repeat until budget expires.
Not Just Test Generation...

Can be applied to any problem with:

• Large search space.
• Fitness function and solution generation with low computational complexity.
• Approximate continuity in fitness function scoring.
• No known optimal solution.
Automated Program Repair

• Produce patches for common bug types.
• Many bugs can be fixed with just a few changes to the source code - inserting new code, and deleting or moving existing code.
 • Add null values check.
 • Change conditional expression.
 • Move a line within a try-catch block.
Generate and Validate

- **Genetic programming** - solutions represent sequences of edits to the source code.

- **Generate and validate approach**:
 - Fitness function: how many tests pass?
 - Patches that pass more tests create new population:
 - Mutation: Change one edit into another.
 - Crossover: Merge edits from two parent patches.
GenProg Results

• Repaired 55/105 bugs at average $8 per bug.
 • Projects with over 5 million lines of code
 • Supported by 10000 test cases.

• Patch infinite loops, segmentation faults, buffer overflows, denial of service vulnerabilities, “wrong output” faults, and more.
Risks of Automation

• Structural coverage is important.
 • Unless we execute a statement, we’re unlikely to detect a fault in that statement.

• More important: how we execute the code.
 • Humans incorporate context from a project.
 • “Context” is difficult for automation to derive.
 • One-size-fits-all approaches.
Limitations of Automation

• Automation produces different tests than humans.
 • “shortest-path” approach to attaining coverage.
 • Apply input different from what humans would try.
 • Execute sequences of calls that a human might not try.
• Automation can be very effective, but more work is needed to improve it.
I Want to Try This Out!

• Fuzzing often based on metaheuristic search.
 • AFL (American Fuzzy Lop), Google OSS-Fuzz use genetic algorithms, fitness = code coverage.
 • http://lcamtuf.coredump.cx/afl/
 • https://google.github.io/oss-fuzz
 • system-level tests
 • The Fuzzing Book has tutorials and code for many specialized approaches:
 • https://www.fuzzingbook.org/
I Want to Try This Out!

- EvoSuite generates JUnit tests for Java

- Sapienz (Facebook) tests Android/iOS apps
 - Will be open-source by end of 2020
 - Older version available
 - https://github.com/Rhapsod/sapienz/

- Have a specialized goal?
 - NSGA-II: customizable open-source genetic algorithm: https://www.iitk.ac.in/kangal/codes.shtml
Summary

The Metaheuristic (Algorithm)
- Genetic Algorithm
- Simulated Annealing
- Hill Climber

The Fitness Functions (Feedback Strategies)
- Distance to Coverage Goals
- Count of Executions Thrown
- Input or Output Diversity

(Goals)
- Cause Crashes
- Cover Code Structure,
- Maximize Battery Use,

\[\text{INPUT } x \quad \text{FUNCTION } f(\cdot) \quad \text{OUTPUT } f(x) \]
Next Time

- Review and Course Summary
 - Individual assignment details on Canvas

- Assignment 4 - Due Sunday
- Assignment 5 posted.
 - Questions?