
Lecture 14: Course Summary

Gregory Gay and Sam Jobara
TDA/DIT 594 - December 17, 2020

2

TDA/DIT 594 - SE Principles for Complex Systems

3

Individual Assignment - Jan 13
• Take home exam.
• Mix of multiple choice, essay, open-ended

questions.
• Will be made available on Canvas at 9:00 on

January 13th and due at 19:00.
• Based on topics covered in lectures, more

theory-based than group assignments.

Under the Hood
• Systems have millions of

lines of code.
• In hundreds of classes.

• We want to reuse code.
• On different hardware.
• In many different apps.

• We want the systems to live for years.

4

5

Complex???????????
• Variability

• The ability to change and customize software to deliver
variants to new users.

• Requires designing code to be reused and to work with
reused code.

• Changeability and Maintainability
• The ability to add new features and options while

ensuring that existing code still works.

6

Software Product Lines
• Highly configurable families of systems.
• Built around common, modularized features.

• Common set of core assets.

• Allows efficient development, customization.
• Examples:

7

Software Product Lines
• Build variants from reusable shared assets.

• Customers select from configuration options.
• Assets = code components, interfaces, other resources.

• Enables customization, while retaining benefits of
mass production.
• Avoids explosion in “space” as we manage the portfolio

of assets instead of each individual variant.

8

Feature-Oriented Approach
• Features distinguish products from a product line.

• Editor Version A has spell-check. Version B does not.
• E-mail client A supports IMAP and POP3. Client B

supports only POP3.

• Product line artifacts and process structured around
features and feature interactions.
• Discuss control, implementation, verification of features.
• Connects requirements to customizations in code.

9

Domain Engineering and
Feature Modelling

Learning Objectives

⬥ Define feature, feature selection, feature dependency, product, domain.
⬥ Understand what drives scoping decisions
⬥ Translate feature diagrams to propositional formulas
⬥ Modal features and feature dependencies by means of feature models
⬥ Identify some industrial automation tools for Feature Modelling

Main Reference:
Feature-Oriented Software Product Lines: Concepts and Implementation,
Sven Apel • Don Batory •Christian Kästner • Gunter Saake
Springer-Verlag Berlin Heidelberg 2013, ISBN 978-3-642-37521-7

Other publications (see slides for references)

10

SPL Domain

A key success factor of product-line development is to set a
proper focus on a
particular, well-defined and well-scoped domain.

A domain is an area of knowledge that:
is scoped to maximize the satisfaction of the requirements of
its stakeholders,
includes a set of concepts and terminology understood by
practitioners in that area and includes the knowledge of how to
build software systems.

Domain Engineering

Domain engineering is the process of analyzing the domain of a product
line and developing reusable artifacts. Domain engineering does not result
in a specific software product, but prepares artifacts to be used in multiple,
if not all, products of a product line.

Domain engineering is the life-cycle that is further responsible for scoping
the product line and ensuring that the platform has the variability that is
needed to support the desired scope of products. It targets development for
reuse.

Domain engineering results in the common assets that together constitute
the product line’s platform.

Domain Modelling

Domain modelling captures and documents the
commonalities and variabilities of the scoped domain.
Typically, commonalities and differences between desired
products are identified and documented in terms of features
and their mutual dependencies under feature models.

Example: Supply Chain Management

Domain Modelling
Domain Analysis: Scoping

Domain scoping is the process of deciding on a product line’s extent or
range.
The scope describes desired features or specific products that should be
supported.

Features Artifacts
Artifacts Products

http://wwwagse.informatik.uni-kl.de/teaching/ple/ws2011/PLE11_03_Sco
ping.pdf

Domain Analysis: Scoping
Common scoping approaches

Products:
Which products do I want in my product line? What is their market, when
will they be released?
Domains:
Which subdomains will my product line have? Which information do they
carry? What are reasonable domains for the product line (in terms of
knowledge, stability etc)?
Features:
Which features will my product line have? Which product will have what
kind of features? Which are easy, which are risky features?
Assets:
Which assets do I have in my product line? Which components,
documentation etc exists already in a reusable form, which ones do I have
to (re-)implement?

What is a Feature?

⬥ Concept in a domain
⬥ Can be seen as a high-level requirement
⬥ Features represent commonalities and variabilities in a product line
⬥ Unit of communication among stakeholders
⬥ A specific set of features determines a product variant
⬥ feature configuration as input to product derivation
⬥ A feature is a kind of concern

concerns features

What is a Feature?

Feature-Based Configuration involves:

⬥ Checking for satisfiability of FMs
⬥ Enforcing correct configurations
⬥ Counting possible configurations
⬥ Enumerating valid configurations
⬥ Propagating configuration decisions
⬥ Merging distributed configurations
⬥ …

Feature Modelling

Feature Modelling
Feature Diagrams

A feature diagram is a graphical notation to specify a feature model. It is a
tree
whose nodes are labeled with feature names. Different notations convey
various
parent–child relationships between features and their constraints:

Only One-out-of many choice. This choice
corresponds to a generalized XOR operator

Some-out-of-many choice.
This choice corresponds to the
logical OR operator

Feature Modelling
Feature Diagrams

Figure 2.5 shows an example of a feature
diagram that, in its complete form, covers
65 features. Nodes shaded in gray are
folded subtrees.

Fig. 2.5 Sample feature diagram for embedded data
management

Feature Modelling
Formalization in Propositional Logic
Feature diagrams can be directly mapped to propositional formulas, thereby
defining a formal semantics of feature diagrams. A set F of feature names are
interpreted as propositional variables, and p, f and fi are members of F.

A mandatory feature definition between a parent feature p and a child feature f:
mandatory(p,f) ≡ f ⇔ p
Denote solid bullet, if the parent feature is selected, then the child must be selected,
and vice versa

An optional feature states that the parent p may be chosen independently from f,
but the child f can only be chosen if p is selected:
optional(p,f) ≡ f ⇒ p

Denoted by an empty bullet

Feature Modelling
Formalization in Propositional Logic
Mapped to propositional logic, this is a disjunction, in which, at least, one
child feature is selected when the parent is chosen. It is an XOR,
one-out-of-many choice:

An unrestricted choice denoted by a filled arc in feature diagrams. Mapped
to propositional logic, the selection of p is equivalent to a disjunction of the
child features. It is an OR, some-out-of-many choice:

Propositional logic enables us to use automated tools to test interesting
properties, such as checking validity of feature models and feature
selections, and detect dead features

We use the product line of graph libraries to illustrate feature diagrams
formalization. We use the feature diagram to illustrate the mapping to a
propositional formulas:

Any coment over the formula of
Search node?

Feature Modelling
Formalization in Propositional Logic

∧ alternative(Search,{DFS,BFS})

After expanding the feature constraints, we arrive at the
following formula:

Feature Modelling
Formalization in Propositional Logic

∧ (((BFS ∨ DFS) ⇔ Search) ∧ ￢(BFS ∧
DFS))

To illustrate the transformation to propositional logic for 3-children
situations, we use an additional example to ensure all combinations are
counted for:

Feature Modelling
Formalization in Propositional Logic

OS ⇔ (Linux ∨ Win ∨ Mac)∧￢(Linux ∧ Win)∧￢(Linux ∧ Mac)∧￢(Win
∧ Mac)

Feature-Modelling Principles*

Feature models help developers to keep an overall understanding of the system, and
also support scoping, planning, development, variant derivation, configuration,
testing, and maintenance activities that sustain the system’s long-term success.

In this research* a set of 34 principles, covering eight different phases of feature
modeling, these principles provide practical, context specific advice on how to
perform feature modeling, describe what information sources to consider, and
highlight common characteristics of feature models.

These principles should enhance feature-modeling tooling, synthesis, and analyses
techniques.
*http://www.cse.chalmers.se/~bergert/paper/2019-fse-fm_principles.pdf
“Principles of Feature Modeling” Damir Nešić, Jacob Krüger, Ştefan Stănciulescu,
Thorsten Berger

Feature-modeling principles
2. Model Organization

MO1: The depth of the feature-model hierarchy should not exceed eight levels.
While rarely made explicit in experience reports, survey papers and most of our
interviewees report that the feature-model hierarchy is typically between three to six
levels deep

MO2: Features at higher levels in the hierarchy should be more abstract. We
found that the higher a feature is in the feature-model hierarchy, the more it is visible
to the customers or it represents a more abstract domain-specific functionality.

MO3: Split large models Several sources state that large feature models with
thousands of features should be decomposed into smaller ones.

Feature-modeling principles
2. Model Organization

MO4: Avoid complex cross-tree constraints. Cross-tree constraints allow adding
dependencies between subtree of a feature model. However, complex constraints,
typically in the form of arbitrary Boolean formulas, hamper comprehension,
maintenance, and evolution of model.

MO5: Maximize cohesion and minimize coupling with feature groups. A high
cohesion within a group and low coupling to other groups (absence of cross-tree
constraints) indicates that the features belong together, which will also promote
higher reusability.

Feature-modeling principles
3. Modeling

M1: Use workshops to extract domain knowledge. Workshops are used
extensively to initiate feature modeling; they are the most efficient way to start.

M2: Focus first on identifying features that distinguish variants. it is easier for
most stakeholders to describe the features that distinguish variants from each other
rather than focusing on the commonalities

M3: Apply bottom-up modeling to identify differences between artifacts.
Different artifacts can be analyzed to identify the differences between existing
variants. Source code files are typically the first artifacts to be analyzed, and the
analysis can be done automatically by different tools.

Feature-modeling principles
3. Modeling

M4: Apply top-down modeling to identify differences in the domain. For a
top-down analysis, “Top-down is successful with domain experts, more abstract
features.” The features that emerge from the top down analysis typically represent
commonalities or abstract features that help with feature model structuring

M5: Use a combination of bottom-up and top-down modeling. Due to the
different results that can emerge from bottom-up and top-down analyses (M2), it is
highly recommended to combine both strategies.

M6: A feature typically represents a distinctive, functional abstraction. While
some works use feature models to represent non-functional properties (e.g.,
performance requirements or physical properties, such as color, majority emphasize
that features should represent functional abstractions .

31

Model and Code Analysis

32

Propositional Logic
• Mandatory: If parent is selected,

the child must be.
• mandatory(p, f) ≡ f ⇔ p

• Optional: Child may only be
chosen if the parent is.
• optional(p, f) ≡ f ⇒ p

Mandatory
Feature

Optional
Feature

33

Propositional Logic
• Alternative: Choose exactly one

• alternative(p, {f
1
,...,f

n
}) ≡

((f
1
 ∨ … ∨ f

n
) ⇔ p)

∧
(fi,fj)

 ￢(f
i
 ∧ f

j
)

• Or: Choose at least one
• or(p, {f

1
,...,f

n
}) ≡

((f
1
 ∨ … ∨ f

n
) ⇔ p)

34

Propositional Logic
• Cross-tree Constraints are predicates imposing

constraints between features.
• DataDictionary ⇒ String

• (Storing a data dictionary requires support for strings)
• MinimumSpanningTree ⇒ Undirected ∧ Weighted

• (Computing a Minimum Spanning Tree requires support for
undirected and weighted edges)

• Constraints over Boolean variables and subexpressions.
• (i.e., (NumProcesses >= 5))

35

Valid Feature Selection
• Translate model into a

propositional formula φ.
• Assign true to each selected

feature, false to rest.
• Assess whether φ is true.

• If yes, valid selection.

36

Example - Graph Library

37

Example - Graph Library
Selection:
{GraphLibrary, EdgeType, Directed}

φ = T ∧ T ∧ (T) ∧ ￢(F)
∧ (T) ∧ (T)
∧ (T) ∧ ￢(F) ∧ (T)

38

Example - Graph Library
Selection:
{GraphLibrary, EdgeType, Directed, Undirected}

φ = T ∧ T ∧ (T) ∧ ￢(T)
∧ (T) ∧ (T)
∧ (T) ∧ ￢(F) ∧ (T)

39

Consistent Feature Models
• A consistent model has 1+ valid selections.

• Inconsistent models do not have any valid selection.

• Contradictory constraints are common.
• Find feature selection that results in φ = true

• NP-complete problem, but SAT solvers can often find
solutions quickly.

40

Let’s Take a Break

41

Implementation of Variability

42

Variability
• The ability to derive different products from a

common set of assets.
• Implementation: How do we build a custom product

from a feature selection?
• Binding Time
• Technology (Language vs Tool-Based Implementation)
• Representation (Annotation vs Composition)

43

Binding Time
• Compile-time Binding

• Decisions made when we compile.
• #IFDEF preprocessor in C/C++.

• Load-time Binding
• Decisions made when program starts.
• Configuration file or command-line flags.

• Run-time Binding
• Decisions made while program runs.
• Method or API call.

44

Binding Time
• Compile-time binding improves performance.

• … but executable cannot be configured further.

• Load-time binding configured at execution.
• Run-time binding can be configured any time.

• … but results in reduced performance, security hazards,
and program complexity.

45

Technology
• Language-based Implementation

• Use programming language mechanisms to implement
features and derive product.

• Pass parameters at run-time.

• Tool-based Implementation
• Use external tools to derive a product.
• Use preprocessor to compile only the requested features.

46

Annotation-Based Representation
• All code in common code base.
• Code related to a feature marked in some form.

• Preprocessor annotations, if-statement that checks input.

• Code belonging to deselected features ignored
(run-time) or removed (compile-time).

• Adds complexity, reduces modularity/readability.

47

Composition-based Representation
• Code belonging to feature in dedicated location.

• Class, file, package, service

• Selected units combined to form final product.
• Requires clear mapping between features and units
• Can combine annotation and composition.

• Annotation-based approaches remove code.
• Composition-based approaches add code.

48

Some Examples
• Preprocessors

• Compile-time, tool-based, annotation-based

• Parameters
• Load or run-time, language-based, annotation-based

• Design Patterns
• Load or run-time, language-based, composition-based

49

Preprocessors
• Optimize code before compilation.

• Often used by compilers to produce
faster executable.

• Can selectively include or exclude
code.

• Most famous - cpp
• “The C Preprocessor”

• Exist for many languages.

50

Implementation with Antenna (Java)
• Annotate code using comments:

• //#if FEATURE_NAME
• If FEATURE_NAME is chosen, include this code.

• //#elif OTHER_FEATURE
• else if OTHER_FEATURE chosen, include this code.

• //#else
• //#endif

• Instead of removing lines, Antenna comments out
lines, inserting //@

51

Examples
 (Hello, Beautiful, World) (Hello, Wonderful, World)

52

Parameter-based Implementation
• Use conditional statements to alter control flow

based on features selected.
• Boolean variable based on feature, set globally or

passed directly to methods:
• From command line or config file (load-time binding)
• From GUI or API (run-time binding)
• Hard-coded in program (compile-time binding)

53

• Choices read from
command line and
stored in Conf.

• Other classes check
variables and invoke
code appropriately.

54

Design Patterns

2018-08-27 Chalmers University of Technology 55

Design Patterns
• Patterns for implementing OO design lessons.

• Class interface and structuring guidelines that structure
how variable elements are implemented.

• Load or run-time, language-based,
composition-based.

• Strategy, Factory, Decorator, Adapter, Facade,
Template Method Patterns

Strategy Pattern

Defines family of
algorithms,
encapsulates them,
makes them
interchangeable.

56

Strategy Pattern
Principle: Favor composition over inheritance.

<<interface>>
FlyBehavior

fly()

FlyWithWings
fly() { .. }

FlyNotAllowed
fly() { .. }

Duck
FlyBehavior flyB
QuackBehavior quackB

quack()
fly()
swim()
display()
setFlyBehavior()
setQuackBehavior()

<<interface>>
QuackBehavior

quack()

NormalQuack
quack() { .. }

Squeek
quack() { .. }

MallardDuck

display() { .. }

RedheadDuck

display() { .. }

RubberDuck

display() { .. }

57

Factory Pattern
Defines interface for creating an object, lets subclasses
decide which object to instantiate. Allows reasoning
about creators and products.

<<interface>>
PizzaFactory

createPizza(String)

NewYorkPizzaFactory

createPizza(String)

ChicagoPizzaFactory

createPizza(String)

<<interface>>
Pizza

prepare()
bake()
cut()
box() NYVeggiePizza

prepare()
bake()
cut()
box()

ChicagoVeggiePizza

prepare()
bake()
cut()
box() 58

Factory Pattern - In Practice
Client

<<interface>>
ProductA

// methods

<<interface>>
Factory

createProductA()
createProductB()

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

<<interface>>
ProductB

// methods

Concrete
ProductA1 Concrete

ProductB1

Concrete
ProductB2

Concrete
ProductA2

59

Each type of product has a
defined interface.

Each factory manages a
subset of the products.

The Decorator Pattern
• Attaches responsibilities to an object dynamically.
• Flexible alternative to subclassing.

• Decorators have same supertype as decorated object.
• One or more decorators can wrap an object.
• Can pass decorated object in place of the original.
• Decorator adds its own behavior before or after calling

wrapped object.

60

The Decorator Pattern
Component

behavior()
// Other methods

ConcreteComponent

behavior()
// Other methods

Decorator

behavior()
// Other methods

ConcreteDecoratorA
Component wrapped
behavior()
newBehavior()
// Other methods

ConcreteDecoratorB
Component wrapped
Object newAttribute
behavior()
// Other methods

Decorators add new
behaviors to Components

Each Decorator offers
same methods the
Component offers.

Each concrete Decorator has
instance variable to store
wrapped component.
Decorators add behavior by
adding operations and
attributes. 61

The Adapter Pattern
• Converts an interface into

interface client expects.
• Adapter’s methods call

corresponding methods from
adaptee.

• If adaptee changes, only the
adapter needs to change.

• No changes needed to classes
that call adapter.

62

Your
Existing
System

 External
SystemAdapter

The Adapter Pattern

Client <<interface>>
Target

request()

Adapter

Adaptee adaptee

request()

Adaptee

specificRequest()

The client sees only the
target interface.

Adapter implements
target interface.

Adapter composed with Adaptee.
Requests get delegated
to Adaptee.

63

The Facade Pattern
HomeTheater

Facade
startMovie()
endMovie()
startSpotify()
endSportify()
startRadio()
endRadio()

Amplifier BluRayPlayer

Tuner Stereo

Projector Screen PopcornMaker

Lights

● Create a new class that
exposes simple methods
(the facade).

● Facade calls on classes
to implement high-level
methods.

● Client calls facade
instead of classes.

● Classes still accessible.

64

The Facade Pattern
• Provides a unified interface to a set of classes.
• Facade defines a high-level interface that makes a

subsystem easier to use.
• Provides an additional method of access.
• Multiple facades may provide situational functions.
• Decouples client from any one subsystem.

65

66

Modularity

Learning Objectives

⬥ Introduce concepts related to SPLs Modularity
⬥ Introduce Frameworks Modular design
⬥ Introduce APIs Modular design
⬥ Discuss major drivers of design modularity

Main Reference:
Feature-Oriented Software Product Lines: Concepts and Implementation,

Ch.3, Ch.4,
Sven Apel • Don Batory •Christian Kästner • Gunter Saake

Springer-Verlag Berlin Heidelberg 2013, ISBN 978-3-642-37521-7

Other publications (see slides for references) 67

Modular Concepts

Modularity is a software design technique used to decompose
the software into modules. Separating a module from other parts of
the software, improving systems traceability, testability, reusability,
and deliverability.

Modular programming is a software design technique that emphasizes
separating the functionality of a program into independent,
interchangeable modules, such as classes and frameworks that
contain everything necessary to execute only one aspect of the
desired functionality.

68

Frameworks
Framework Function
A framework is a set of classes that embodies an abstract design for
solutions to a family of related problems and supports reuse at a larger
granularity than classes. A framework is open for extension at explicit hot
spots.

A framework provides explicit points for extensions (plug-ins), called hot
spots, at which developers can extend the framework.

In the same manner as the template-method, design pattern, and the
strategy design pattern, a framework is responsible for the main
control flow and asks its application methods for custom behavior, a
principle called inversion of control 69

Frameworks
Framework Function

How Frameworks are different from Libraries?

With frameworks, the execution start in the framework’s code, and is the
framework who call application methods. This is called Inversion of
Control and is one of the key concepts for frameworks and a key
distinction between frameworks and libraries.

The golden rule of framework design: Writing a plugin/extension should
NOT require modifying the framework source code

70

Frameworks
White Box Frameworks
It consists of a set of concrete and abstract classes. To customize their
behavior, developers extend white-box frameworks by overriding and
adding methods through sub-classing. A white-box framework can
be best thought of as a class containing one or more
template-methods that developers implement or overwrite in a
subclass.

The “white-box” in white-box framework comes from the fact that
developers need to understand the framework’s internals.

On the other, white-box frameworks require detailed understanding of
internals and do not clearly encapsulate extensions from the
framework; thus, they are criticized for neglecting modularity.

71

Frameworks
Black-Box Frameworks
Black-box frameworks separate framework code and extensions
through interfaces. An extension of a black-box framework can be
separately compiled and deployed and is typically called a plug-in. In
feature-oriented product-line development, ideally, each feature is
implemented by a separate plug-in.

Black-box frameworks follow the strategy and observer patterns. The
framework exposes explicit hot spots, at which plug-ins can register
observers and strategies.

In “black-box” ideally, developers need to understand merely their
interfaces, but not the internal implementation of the framework, as
the name suggested.

72

Frameworks
Black-Box Frameworks
The decoupling of extensions encourages separate development and
independent deployment of plug-ins, as known from many
application-software frameworks, including web-browsers or development
environments.
As long as the plug-in interfaces remain unchanged, framework and
plug-ins can evolve independently.

73

The cross-platform capability of Black Box

Frameworks
Black-Box Frameworks

White-box frameworks
consist of concrete and
abstract classes. To
customize their behavior,
we extend the frameworks
by overriding and adding
methods through
sub-classing. However,
Black-box frameworks
separate framework code
and extensions through
interfaces.

74

Modularity Drivers
Separation of Concerns SoC

A common approach to attain traceability is to separate features both in
design and code, such that the relationship between features and
corresponding design and implementation artifacts are explicit.

SoC means factoring out crosscutting concerns into separate modular
units.
For example, an extra modular unit may be dedicated to
encapsulating the functionality providing data persistence. This
functionality can then be used, e.g., through subroutine calls from many
different modules.

75

Modularity Drivers
Separation of Concerns SoC

When separating features into distinct artifacts, developers can easily
find all code related to that feature for maintenance or evolution tasks.
Related pieces of code are implemented together, which is known as
cohesion. Cohesive pieces of code are typically easier to reason about than
widely scattered code fragments.

⬥ Service-oriented design can separate concerns into classes and
services.

⬥ Procedural programming languages such as C and Pascal can separate
concerns into procedures or functions.

76

Modularity Drivers
Separation of Concerns SoC

77

Dependencies by injection:

The dependency between the Client
and Service classes*, it happens
when the Client becomes tightly
coupled with the Service.
However, using an injector class to
dynamically load and return the
implementation classes. the client
only has a dependency to the
Service interface and the Injector
class.
*
https://developer.salesforce.com/blogs/2019/07/breaking-runt
ime-dependencies-with-dependency-injection.html

Modularity Drivers
Cross-cutting Concern

In the 1990s, an insight emerged that a certain class of concerns, called
crosscutting concerns, is inherently difficult to separate using traditional
mechanisms based on block or hierarchical structure.

Designs based on cross-cutting concerns offer many software engineering
benefits, such as separation of concerns, simplified design evolution,
and ease of maintenance.

cross-cutting concerns, like logging or security, are difficult to map in a
single class and hence they are scattered throughout the code. 78

Modularity Drivers
Cross-cutting Concern

Aspects enable the modularization of concerns that cut across multiple
types and objects.
Aspect-Oriented Programming (AOP) introduces the notion of Aspects
and shows how we can take crosscutting concerns out of modules and
place them in a centralized place.
An Aspect is modular units that cross-cut the structure of other units.
Aspects are elements such as security policies and synchronization,
optimization, communication or integrity rules that crosscut
traditional module boundaries

79

Modularity Drivers
Cross-cutting Concern
(AOP) the notion of aspect is defined*, e.g., as “a mechanism beyond
subroutines and inheritance for localizing the expression of a
crosscutting concern.”

80
* UML 2002 - The Unified Modeling Language. Model Engineering, Concepts
By Jean-Marc Jezequel, Heinrich Hussman, Stephen Cook

Modularity Drivers
Code tangling & scattering
This results in two problems:

Code tangling: — Each class and method contains tracing, transactions,
and exception handling — even business logic. In a tangled code, it is
often hard to see what is actually going on in a method.

Code scattering — Aspects such as transactions are scattered
throughout the code and not implemented in a single specific part of
the system.

81

Modularity Drivers
Code tangling & scattering

82

Modularity Drivers
Code tangling & scattering

83

Using AOP allows you to solve
these problems.

It takes all the transaction code
and puts it into a transaction
aspect.

Then, it takes all the tracing
code and puts that into a
tracing aspect.

Finally, exception handling is
put into an aspect.

Modularity Drivers
Information hiding
Information hiding is the separation of a module into internal and
external part.
The internal part remains hidden from other modules, whereas the
external part, the module’s interface, specifies the contract of how the
module interacts with the rest of the system.
When separating features, we also hide the internals
of their implementation and make all communication
between them explicitly on interfaces.

84

Modularity Drivers
Traceability concern
Traceability improves the understanding of system variability, as well as
support its maintenance and evolution.

With large systems the necessity to trace variability from the problem
space to the solution space is evident. Modular SPL supports
traceability and reduce its complexity, especially with a large
features(f) domains (complexity 2f).
It allows a 1-to-1 mapping of variability of Feature model between the
problem space and the solution space.

85

Modularity Drivers
Traceability concern

86

Table shows the traceability relation between the features and
the components

FD of Component Model: Linux Virtual Machine
Based System
The main advantages of traceability are*:

• to relate software artefacts and corresponding design decisions,
• to give feedback to architects and designers about the current state of the development,
 allowing them to reconsider alternative design decisions, and to track and understand errors.
*
https://hal.inria.fr/hal-01342351/docume
nt

87

Modularity (Part 2)

Learning Objectives

⬥ Robotics Modular Architecture

⬦ Modular autonomous Robots
⬥ Feature-oriented programming

⬦ Mapping Modules with Features

Main Reference:
Feature-Oriented Software Product Lines: Concepts and Implementation,
Sven Apel • Don Batory •Christian Kästner • Gunter Saake

Other publications (see slides for references)

88

Modularity-1
Introduce concepts related to SPLs
Modularity
Introduce Frameworks Modular design
Introduce APIs Modular design
Discuss major drivers of design
modularity

Robotics Domain

Robot as an autonomous agent
An autonomous agent is a system situated
within an environment that senses that
environment and acts on it, over time, in
pursuit of its own agenda and so as to affect
what it senses in the future.

Applications:
Agriculture
Logistics
Search & rescue 89

Onboard
sensors:
Camera
Sensors (location)
Infrared

A Layered Approach to Designing Robot Software

90http://www.ni.com/white-paper/13929/
en/

Kinematics describes
the motion of the bodies
and deals with finding
out velocities or
accelerations for various
objects.

An actuator is a component of a machine that is
responsible for moving and controlling a mechanism or
system, like motor.

-Robotics Modular Architecture

91

Most Simple Form: Sense, Compute,
Control

Robotics Modular Architecture

92

Primitives of Robotics: Sense, Plan, Act

The sense-plan-act (SPA)
approach keeps
intelligence of the system
living in the planning or
the programmer, not the
execution mechanism.

Robotics Modular Architecture

93

Disadvantages of Hierarchical Model
• Planning–Computation requirements is very

slow
• The “global world” representation has to

contain all information needed for planning
• Sensing and acting are always disconnected
• The “global world” representation has to be

updated
• The world model used by the planner has to

be frequently updated to achieve a sufficient
accuracy for the particular task

Robotics Modular Architecture
Subsumption architecture

94

Upper layers have precedence
over lower layers and
subsumes (absorb) the output
of lower layers.
Mobile Robot can use layers of a
control system for each level of
competence and simply add a new
layer to an existing set to move to the
next higher level of overall
competence.
Additional layers can be added
later, to add complexity (more
features)

The subsumption architecture does not allow for
any shared memory or other communication
between the layers, making it impossible for
the layers to cooperate in order to achieve a
common goal

Robotics Modular Architecture
Subsumption architecture

95

The lowest level layer of control makes sure that the
robot does not come into contact with other objects. It
thus achieves level 0 competence. If something
approaches the robot it will move away

The most important problem we
found with the Subsumption
architecture is that is it not
sufficiently modular.

Because upper layers interfere
with the internal functions of
lower-level behaviors they cannot
be designed independently and
become increasingly complex.

Robotics Modular Architecture
Deliberative planner decomposed into features

96

Subsumption layers decomposed into features

Robotics Modular Architecture
Decompose system into three layers*

97

Why three layers? Different kinds of decisions
• need to plan future
• need to remember past
• need sensors input

so, three layers:
• Deliberative Planner: plans
• Sequencer: saves past
• Reactive control: stateless sensor/actuators

* https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.9376&rep=rep1&type=pdf

Robotics Modular Architecture

98

World state component

The world state component is a shared
memory for the layers.
At the beginning of each turn the world
state data are sent to Layer 1. The layer is
able to
alter the world state by sending an
abstract wish with the desired change to
the world state component. The world
state component then fulfills the
abstract wish by updating the world
state according to the wish. The world
state data
are then sent to Layer 2, and so on.

A closer look at a subsumption
layer showing the flow between

modules inside layer-i.
Layer-1 does not receive any wish

flow.

Robotics Modular Architecture

99

The hybrid architecture, shown in the
Figure* is based on three components:
• world state component, subsumption layers

component and an arbitrator component.
• The architecture has two types of flow: data flow

and wish flow.
• The data flow carries sensor input to the

layers, data from the world state component
to the layers and actions from the arbitrator
to the actuators.

• The wish-flow is a special kind of flow between
each layer in the architecture, from the top layer
to the arbitrator and from the layers to the world
state component.

• The layers create a wish list for the arbitrator to
convert into actions. This wish list is carried by
the wish flow.

* DAT3 REPORT Applying Machine Learning to Robocode
Morten Gade Michael Knudsen Rasmus Aslak Kjær Thomas
Christensen

100

Robotics Modular Architecture
Decentralized, Collaborative, and Autonomous Robots*

Instance of SERA architecture of 4 collaborating Robots, Central station, and
3-Layered architectures

Decoupled collaborating Robots
*http://www.cse.chalmers.se/~bergert/paper/2018-icsa-ser
a.pdf

101

Robotics Modular Architecture
Decentralized, Collaborative, and Autonomous Robots

Central Station
Interprets high-level mission specifications, provides an interface to specify
high-level missions
of the application in the component. The global mission to be achieved by the
whole team in
a collaborative manner—checks the feasibility of the mission.

Mission Management Layer
Local mission specifications, incorporate real-time constraints, provided to each
robot by means of timed temporal logic formulae. which is compliant with their
dynamic behavior.

Component Control Layer
Provides the control actions required for the implementation of discrete paths
that are generated by a high-level planner. It receives calls from the Plan executor
and notifies the Adaptation manager about changes that are detected in the robot
mission, or environment.

Feature-Orientation

Solve the problems:
⬥ Feature Traceability
⬥ Feature Separation
⬥ Collaboration & Roles
⬥ Feature Modularity

102

Feature-oriented programming is an approach for
building software product lines that relies directly on
the notion of features.

The idea is to decompose a system’s design and code into
the features it provides. This way, the structure of a system
aligns with its features, ideally, one module or component
per feature.

To this end, new language constructs are needed to express
which parts of a program contribute to which features and to
encapsulate the feature’s code in composable, modular
units.

Feature-Orientation
Feature Traceability

Feature traceability is the ability to trace a feature from the problem
space (feature model) to the solution space, and vice versa (its manifestation
in design and code artifacts).

The whole idea of feature-orientation and feature-based product derivation
depends on establishing and managing the mapping between the
problem and the solution space, in our case, between features and
their implementation artifacts.

103

Feature-Orientation
Feature Traceability

104

In SPL development,
feature-oriented traceability
is expected to map features
to SPL designs and
implementation elements,
including commonalities and
variations, to enable
feature-oriented product
derivation and evolution.

Feature-Orientation
Feature implementability

105

Every product represented in the
feature model can be
implemented using the existing
assets considering the
implementability relation, which
associates each feature in the
scope with a set of core assets
that are required for
implementing the feature(s).

Optimize implementability aiming for high map coverage of features over artifacts.

Feature-Orientation
Modularity of Feature-Oriented Programming

106

• When decomposing a program into features, the individual parts are
typically called feature modules.

• The idea is to place everything related to a feature into a separate
structure (file or folder), which is then called feature module.

• Most concepts and tools in feature-oriented software development
follow this notion of modularity, focusing on locality and cohesion.

• In very large SPLs and features variations, 2f , then modularity of
features becomes so critical, especially in agile development
environment.

Feature-Orientation
Separation of Classes

107

Features often realized by multiple classes, Classes often realized
more than one feature, Keep class structure, but separate classes by
features.

Feature-Orientation
Class & Feature refinements*

108

Feature refinement — module that encapsulates the implementation of a
feature.
A feature refinement encapsulates not an entire method or class, but rather
fragments of methods and classes.

Figure 1 depicts three classes, c1—c3. Refinement r1 cross-cuts these classes,
i.e., it encapsulates fragments of c1—c3. The same holds for refinements r2 and
r3. Composing refinements r1—r3 yields a set of fully-formed classes c1—c3.
Feature refinements are often called layers
In general, feature refinements are
modular, though unconventional,
building blocks of programs.

*Generating Product-Lines of Product-Families Don Batory,
Roberto E.,
Jean-Philippe Martin Department of Computer Sciences UTA.

109

Let’s Take a Break

110

Agile Practices and Industry Automation

Learning Objectives

⬥ Motivation
⬥ Introduce Agile Product Line Engineering APLE
⬥ Present APLE industry practices
⬥ Enabling APLE by automation tools

11
1

Agile Product Line Engineering APLE

The big upfront design associated with (Product Line Architecture)PLA
conflicts with the current need of ‘‘being tolerant with change=Agile’’ *

To make the development of product-lines more flexible and adaptable to
changes, many large companies are leaning to adopt APLE principles.

However, to put APLE into practice it is still necessary to introduce a
suitable framework to assist and guide the agile practice and the evolve
fully to APLE.

11
2

* Agile product-line architecting in practice: A case study in smart grids
Jessica Díaz ⇑, Jennifer Pérez, Juan Garbajosa, Technical University of Madrid-Universidad Politécnica de Madrid (UPM), E.U.

Agile Product Line Engineering APLE

The common concepts in Scrum are:
⬥ Scrum roles: “Product Owner”, “Scrum Master”, “Development Team”, and

“Stakeholders”.
⬥ Scrum artefacts: “Product backlog”, “Sprint backlog”, “User Story” (US),

“Task”, “Burn down charts”, “Impediment backlog” and “Definition of done”.
⬥ Scrum meetings: “Sprint planning 1”, “Sprint planning 2”, “Daily Scrum”,

“Sprint review”, “Sprint retrospective”, and “Backlog refinement”.

Scrumban has been used to help teams and organizations accelerate their
transitions to Scrum from other development methodologies.

Scrumban more responsive to change than Scrum,
Scrumban retains all the roles and meetings of Scrum.

11
3

Agile Product Line Engineering APLE

The graph* below shows that a waterfall model is much more sensitive
against the requirements quality. The cost curve of waterfall model
projects is growing exponentially – the later the defect is found, the more
expensive it will be to fix it.

11
4* Impact of Requirements Elicitation Processes on Success of Information System Development Projects Līga Bormane1 , Jūlija Gržibovska2 , Solvita Bērziša3

Agile Product Line Engineering APLE
The AgiFPL FRAMEWORK*
AgiFPL is an agile methodology designed to improve the agility within the
PLE and to meet effectively any newly emerged business expectations. Its
main goal is to move teams from the classical approach to a more
evolved APLE framework.

Using a goal-oriented requirement engineering approach (GORE), will
provide the mechanism to easily evolve PL architectures in an agile
context and will establish a suitable reuse strategy.

AgiFPL implement is an iterative process that uses Scrumban. GORE
has been used for requirements engineering, business process
reengineering, organizational impact analysis, and software process
modeling.

11
5

* ”Agile Product Line Engineering: The AgiFPL Method” Hassan Haidar1, Manuel Kolp1 and Yves Wautelet2,
1LouRIM-CEMIS, Université Catholique de Louvain, Belgium, 2KULeuven, Faculty of Economics and Business, Belgium

The AgiFPL FRAMEWORK*
Domain Engineering DE tier

116

The domain solution constitutes of
“Domain requirement engineering”
(DRE).

1. Start at “Software Vendor”
2. They develop business strategy
3. Which drive the DRE
4. The “Domain Design” (DD) is

derived
5. FM & “Features Backlog” (FB)

defined
6. Document F. into “User Stories”

(US)
7. Define “Selected Backlog” (SB)
8. Planning-1 (What) is select next
9. “Development Team” structures

user stories”Stories In Progress
SIP Backlog”

10. Planning-2 starts (How)

The AgiFPL FRAMEWORK*
Domain Engineering DE tier .

117

10- “Planning 2” meeting, the team
 establishes the “Production
Flow”
11- Daily Scrum: Done, Planned,
Problems
12- Team” hold a “Review” meeting
to
 review the work accomplished.
13- Pass: “Common Assets
Warehouse”.
14- Hold the “Retrospective”
meeting
15- Incomplete Features pushed to
SIP
16- SIP story can be pulled if it
needs
 only further testing.

A feature can consist of multiple
USs

The AgiFPL FRAMEWORK
Application Engineering AE tier

118

It includes several product lines
where the outputs are client
applications (products).

Starts at the “App Owner”. the“App i
Requirement Engineering” (ARE i)
phase

Two types of features coexist:
1. Features exist in “Common Assets
Warehouse”. called “Selection of Features”
(SoF).
2. Features that are to be developed called
“Definition of Features” (DoF).

The DoF move to AE Solution domain
for development.

The AgiFPL FRAMEWORK
Application Engineering AE tier

119

The “Sprint” starts with the “Sprint Planning”.
The team start “Sprint Planning” most important
subset of “App backlog” items selected to the
next sprint.

At end of the “Sprint Planning”, the
“Sprint Backlog” is defined and the
“Definition of Done” (DoD) list is
established.

In fact, DoD is a checklist of activities
required to declare the implementation
of a story to be completed.

Agile Product-Line Architecting (APLA)

APLA is the integration of a set of models for describing, documenting,
and tracing Product Line Architectures PLAs*, as well as an algorithm
for guiding the change decision-making process of PLAs.

The APLE development process requires that PL-architectures
⬥ are incrementally and iteratively designed, and
⬥ welcome unplanned changes. The PL-architecture has to evolve in

each of the iterations to incrementally include all the features of the
product-line.

12
0

* Agile product-line architecting in practice: A case study in smart grids
Jessica Díaz ⇑, Jennifer Pérez, Juan Garbajosa, Technical University of Madrid-Universidad Politécnica de Madrid (UPM), E.U.

Agile Product-Line Architecting (APLA)

The objectives of APLA:
1. Provide software architecture with flexibility and adaptability when

defining software architectures to facilitate change during the
incremental and iterative design of PLAs as well as their evolution
(unanticipated change).

2. Facilitate architectural concerns, such as dependencies, rationale,
constraints, or risks, that may be impacted by change.

3. Provide guidance in the decision-making process during constructing
and evolving PLAs to facilitate change impact analysis in terms of
architectural components and connections that may be impacted
by change. 12

1

Agile Product-Line Architecting (APLA)

To achieve these objective, we need first to define some terms:

Plastic Partial Component PPC address agile architecting by defining
architectural components in an iterative and incremental way.
The variability of a PPC is specified using variability points, which hook
fragments of code to the PPC known as variants, and weavings which
specify where and when to extend the PPCs using the variants.
Weavings are defined outside from PPCs and variants, so that these PPCs
and variants are independent of the weaving or linking context.
As a result, PPCs reduce dependences and coupling between components
and their variants, while enable easy and cheap (un-)weaving of variants.

12
2

Agile Product-Line Architecting (APLA)

The graphical representation of a PPC that defines a variability point and n
variants.

12
3

Variability points behave as
extension points and variants
behave as extensions.

Namely, the PPC variability
mechanism behaves as an
extension mechanism to
flexibly compose pieces of
software, as if we were building a
puzzle.

Since they are unaware of the
linking context they can be easily
changed, without coupling
concerns.

(a) Definition of variability: PPC extension
mechanism.

(b) Documentation of design decisions

Agile Product-Line Architecting (APLA)

12
4

The PLAK Metamodel and its
modeling primitives have been
reused to capture the knowledge
of adding feature increments or
changing features in each agile
iteration.

Agile Development and Product Line Engineering at LM

In late 2014, corporate management decided that Agile was the way to
strengthen Lockheed Martin’s competitive position on its large legacy
product line program.

At LM the agile challenge is serious:
⬥ The products –are large by any standard, comprising some 10 million

lines of code and costing tens to hundreds of millions of dollars.
⬥ The teams, spread across the products, are sizable. The largest component, for

example, involves over 200 engineers. Some 800 engineers are involved in
the product line.

⬥ The build cycles, under the product line’s are four months long.
12
5* IBM® Engineering Requirements Management DOORS® (DOORS) is requirements management tool to capture, trace, analyze, and

manage changes.

PLEs Industry case
General Motors PLE’s automated support

12
6

GM deals with mega-scale product lines
and
keeping track of the variation in each
system
and the feature interactions among systems
leads to too many possible systems
variations.

GM needed a tool to manage variation
points
in their engineering artifacts and help
configure
vehicle-specific engineering products.
For this,
they chose Gears from BigLever
Software.

PLEs Industry case
General Motors PLE’s automated support

12
7

A “superset” supply chain of
reusable digital assets is used, with
variation points (illustrated by the
small gear symbols) defined in
terms of features
in the product line’s Feature
Catalog.
The features chosen for each
product are specified in the
Bill-of-Features for that product.
The Gears product configurator
creates a product instance by
exercising variation points
according to the features
selected.

PLEfactory, based on
Gears

PLEs Industry case
General Motors PLE’s automated support

12
8

The bill-of materials for a vehicle’s electronics is generated from its bill-of
features.

To capture features, here is the set of feature modeling constructs (provided by
Gears) that GM is using for its product line work:
Feature declarations are parameters that express the diversity in the product line
for a system or subsystem.
Feature profiles are used to select and assign values to the feature declaration
parameters for the purpose of instantiating a product.
Assets are the abstraction for systems and software artifacts in a production line.
Variation points encapsulate the variations in the assets used to build products.

PLEs Industry case
General Motors PLE’s automated support

12
9

Assets are built and maintained on
the
left; each is endowed with one or
more
variation points (indicated by the
gear
symbol).

Feature profiles determine how
the
assets are instantiated (by
exercising
their variation points) to produce
product-ready artifacts.

PLEs Industry case
General Motors PLE’s automated support
GEARS interface,

13
0

GEARS platform supports plug-ins, for
example,
DOORS requirements modules, Microsoft
Word documents and Excel spreadsheets, and
UML, and many more.
Gears supports various artifacts maintained
under the proprietary of various tools. In that
figure, a bridge is a piece of software that
“knows” the other-tool representation and
presents a “product-line-aware” user
interface for that tool that allows product
line engineers to insert variation points in
the artifacts maintained by that tool.

PLEs Industry case
General Motors PLE’s automated support
GEARS Roles at GM

13
1

The Figure sketches the major PLE roles
and their broad responsibilities vis-à-vis
maintaining the PLE models and artifacts.

PRODUCT LINE INTEGRATION
ENGINEER
This engineer collaborates with Vehicle
Product Teams in the selection of a
‘bill-of-features’ for a vehicle being
planned.
The product line integration engineer also
collaborates with the feature owners in
the identification of the top-level
subsystem production line ‘products’ that
will be offered up to vehicles.

132

Feature-Based Testing

Testing Stages
• We interact with systems

through interfaces.
• Systems built from subsystems.

• With their own interfaces.

• Subsystems built from units.
• Classes work with other classes

through methods (interfaces).

133

API GUI CLI

API

API

Testing Stages
• Unit Testing

• Do the methods of a class work?
• System Testing

• Subsystem Integration Testing
• Do the collected units work?

• System Integration Testing
• Do the collected subsystems work?

• UI Testing
• Does interaction through UIs work?

134

API GUI CLI

API

API

Creating System-Level Tests
Identify Independently
Testable Functionality

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify functionality that can be tested in (relative) isolation.

Identify the choices you control when testing.

Identify values for each choice that lead to
different function outcomes.

Identify abstract test cases based
on choice combinations.

Identify concrete
input/expected output pairs.

135

136

Test Specifications
• May end up with thousands of

test specifications.
• Which do you turn into

concrete test cases?
• Filter impossible or redundant

combinations of values.
• Try to capture all (2-way, 3-way,

N-way) feature interactions.

Category-Partition Method
Generates test specifications from requirements.
• Choices, representative values, and constraints.

• Choices: What you can control when testing.
• Representative Values: Logical options for each choice.
• Constraints: Limit certain combinations of values.

• Generate a list of test specifications to cover.
• Apply more constraints to further limit set.

137

Constraints Between Values
• IF-CONSTRAINT

• This value only needs to be used under certain conditions
(if X is true, use value Y)

• ERROR
• Value causes error regardless of values of other choices.

• SINGLE
• Only a single test with this value is needed.
• Corner cases that should give “good” outcome.

138

Example - Substring
substr(string str, int index)
Choice: Str length Choice: index
length = 0 value < 0
length = 1 value = 0
length >= 2 value = 1
Choice: Str contents value > 1
contains letters and numbers
contains special characters
empty

property zeroLen, TRUE if length = 0

if !zeroLen

ERROR

if !zeroLen

139

if zeroLen

SINGLE

140

Limiting Num. of Test Specifications
• Full set = 432 specifications
• No natural IF, SINGLE,

ERROR constraints for
these features.

• What is important to cover?

Bandwidth Mode Language Fonts

Desktop Site English Standard

Mobile Site French Open-Source

Text Only German Minimal

Swedish

Advertising Screen Size

No Advertising Phone

Targeted
Advertising

Tablet

General Advertising Full Size

Minimal Advertising

141

Combinatorial Interaction Testing
• Cover all k-way interactions (k < N).

• Typically 2-way (pairwise) or 3-way.

• Set of all combinations grows exponentially.
• Set of pairwise combinations grows logarithmically.

• (last slide) 432 combinations.
• Possible to cover all pairs in 16 tests.

142

Example - Website Display
Bandwidth Mode Language Fonts

Desktop Site English Standard

Mobile Site French Open-Source

Text Only German Minimal

Swedish

Advertising Screen Size

No Advertising Phone

Targeted Advertising Tablet

General Advertising Full Size

Minimal Advertising

Language Advertising

English No Advertising

English Targeted Advertising

English General Advertising

English Minimal Advertising

French No Advertising

French Targeted Advertising

French General Advertising

French Minimal Advertising

German No Advertising

German Targeted Advertising

German General Advertising

German Minimal Advertising

Swedish No Advertising

Swedish Targeted Advertising

Swedish General Advertising

Swedish Minimal Advertising

Bandwidth Mode

Desktop Site

Mobile Site

Text Only

-

-

Desktop Site

Mobile Site

Text Only

Text Only

-

Desktop Site

Mobile Site

Mobile Site

Text Only

-

Desktop Site

Fonts

Standard

Open-Source

Minimal

Minimal

-

Minimal

Standard

Open-Source

Minimal

-

Open-Source

Standard

Open-Source

Standard

-

Minimal

Mobile Site

Screen Size

Phone

Tablet

Full Size

Phone

-

Full Size

Tablet

Phone

Tablet

-

Phone

Full Size

Full Size

Phone

-

Tablet

143

Automated Test Generation

144

Automating Test Creation
• Testing is invaluable, but

expensive.
• We test for *many* purposes.
• Near-infinite number of

possible tests we could try.
• Hard to achieve meaningful

volume.
• Relieve cost by

automating test input
generation.

145

Test Creation as a Search Problem
• Do you have a goal in mind when testing?

• Make the program crash, achieve code coverage, cover
all 2-way interactions, …

• You are searching for a test suite that achieves
that goal.
• Algorithm samples possible test input to find those tests.

146

Test Creation as a Search Problem
• “I want to find all faults” cannot be measured.
• However, a lot of testing goals can be.

• Check whether properties satisfied (boolean)
• Measure code coverage (%)
• Count the number of crashes or exceptions thrown (#)

• If goal can be measured, search can be automated.

147

Search-Based Test Generation
• Make one or more guesses.

• Generate one or more individual
test cases or full suites.

• Check whether goal is met.
• Score each guess.

• Try until time runs out.
• Alter the population based on

search strategy and try again!

148

Search-Based Test Generation

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure,

Generate Covering Array,
(...)

149

Wrap-Up
• Thank you for making this a great course!
• Any remaining questions?

