
Lecture 2: Domain and 
Application Engineering

Gregory Gay
TDA/DIT 594 - November 5, 2020



2018-08-27 Chalmers University of Technology 2

Today’s Goals
• Introduce Domain Engineering

• (a process of developing Software Product Lines and 
other complex systems)

• Domain and Application Engineering
• Platform vs Specific Application
• Design FOR and WITH reuse

• Principles of SPLE
• BAPO Model: Business, Architecture, Process, Organization



3

Software Product Lines
• Highly configurable families of systems.
• Built around common, modularized features.

• Common set of core assets.

• Allows efficient development, customization. 
• Examples: 



4

Domain and Application Engineering



5

SPLE Principles
• Variability Management

• Variability must be planned for.

• Business-Centric Development
• Product line must connect to long-term business strategy

• Architecture-Centric Development
• Code takes advantage of similarities between systems

• Two-Life-Cycles
• Domain Engineering, followed by Application Engineering



6

Variability Management
• Commonality

• Shared between all products.
• Implemented in the platform.

• Variability
• Unique to subset of products.
• Implemented so it is only in that subset.

• Product-specific 
• Something unique to a single product.
• Platform must support unique adaptations.



7

Reasoning about Variability
• Variation Point

• A point where a concrete system can
differ from another.

• Ex: which features are supported by 
this security alarm?

• Feature 
• The options that can be chosen at each variation point.
• Ex: Motion detection, camera



8

Constraints on Variability
• Variability Dependencies

• Dependencies for one variation point.
• How many features can we choose from?
• Which are mandatory? Optional?

• Feature Dependencies
• Dependencies between features.
• Choosing one feature requires also choosing another.
• Choosing one feature excludes another.



9

Features and Products
• Any end-user-visible characteristic or behavior of a 

system is a feature.
• (often, functionality a user can directly interact with)

• A concrete product is a valid feature selection.
• Fulfills all variability and feature dependencies.



10

Application Engineering
• Should requirements for a concrete application 

become part of the product line platform?
• If supported by the platform, add it to the platform.

• (ex: can be added as an asset/tied to a variation point)
• Else: 

• 1) Drop it.
• 2) Add a new variation point/variant to the platform.
• 3) Develop it as a unique part of this application.



11

Business-Centric Development
• Up-front planning and

investment required.
• Long-term return on 

investment?
• Does it make sense to implement a requirement as part of 

the platform or in one product?
• 3+ concrete products: make it part of product line.



12

Scoping
• Product Portfolio Planning

• Which products are we going to make?
• How do they differ?

• Domain Potential Analysis
• Will we get ROI on platform creation?
• How complex should the platform be?

• Asset Scoping
• Which specific components will be part of the platform?



13

Architecture-Centric Development
• Product lines use 

reference architectures.
• Common architecture for 

all products.
• Variants follow the same 

interface standards to 
make them swappable at 
variation point.

• Used to create a specific 
product architecture.



14

Domain and Application Engineering
• Domain Engineering

• Development for 
reuse

• Provides basis for 
creating individual 
products.

• Requirements, 
design, code, etc. all 
developed planning 
for variability.



15

Domain and Application Engineering
• Application 

Engineering
• Development WITH 

reuse.
• Builds product on top 

of asset infrastructure.
• Up to 90% of new 

product may be built 
from assets.



16

What is a Domain?
• An area of knowledge.

• Scoped to maximize requirement satisfaction.
• Encompases distinct concepts 
• Defines how to build systems in this area. 

• High-Level Domains: databases, social networks, 
deep learning
• Deep learning subdomains: classification, language 

processing, decision support, ...



17

Problem and Solution Space
Problem Space

• Stakeholder’s view
• Characterized by 

features

Solution Space
• Developer’s view
• Characterized by 

code structure
• Implementation of 

features.



18

Key Task Clusters
Requirements for the 
entire product line 
(scope, features)

Map requirements to feature 
selection, assess new 
requirements

Develop reusable assets.

Map requirements 
to feature 
selection, assess 
new requirements



19

Domain Analysis
• Domain Scoping

• Deciding on extent of product line
• Features to support.
• Trade-off between effort and customer range.

• Ex: Embedded Database Domain
• Definite Features: Transactions, Recovery, Encryption, 

Queries, Aggregation, Multi-OS (eCos, TinyOS, Linux),
• Out-of-Scope: Cloud Storage
• Consider: Multi-User Support



20

Example: Spreadsheets
• Look at existing 

products: Excel, 
Google Sheets, …

• What are some 
features a user would 
expect?



21

Example: Student Data Management (Ladok)

• Product Line: 
Student App, 
Teacher App



22

Domain Analysis
• Domain Modeling

• Document the commonalities and
differences between products in
terms of features and dependencies.

• Ex: Embedded Database
• Features: Storage, Transactions, OS, Encryption
• Storage, OS are mandatory.
• Only one OS supported per product.



23

Let’s take a break!



24

Requirements Analysis
• Map customer requirements to 

domain requirements.
• If requirements do not map to 

existing features:
• Out of scope
• Assemble as much as possible 

from reusable features, customize
• Extend reusable assets with 

new/changed features.



25

Domain Implementation
• Implement reusable

assets from domain
requirements.

• Strategy for combining modules.
• Compile-time: only include requested code
• Run-time: bind to class/service when executed

• Interfaces for “attaching” variable features.
• How to implement variation points.



26

Product Derivation
• Build the final concrete product from

reusable assets.
• Add any necessary customization.
• Ideally, can be done automatically.
• Often requires some manual “glue” code.



27

Two-Life-Cycle Approach
• Domain Engineering

• Develop reusable assets
• Designed for long-term, 

complex development.

• Application Engineering
• Develop individual 

systems using platform.
• Designed to deal with 

rapid changes.



28

Domain Engineering Activities
• Product Management

• Portfolio planning, 
economic analysis

• Creates product roadmap

• Domain Requirements 
Engineering
• Requirements for the 

platform, identification of 
variation points/variants.



29

Domain Engineering Activities
• Domain Design

• Create reference architecture.

• Domain Realization
• Design and implement 

reusable assets. 

• Domain Testing
• Test assets in isolation, 

generate test data for 
integration in concrete 
applications.



30

Application Engineering Activities
• Application Requirements 

Engineering
• Requirements for the 

specific product, starting 
from existing variabilities.

• Application Design
• Instantiates reference 

architecture, adds specific 
adaptations.



31

Application Engineering Activities
• Application Realization

• Reuse and configure 
existing assets, build new 
components.

• Application Testing
• Test new components and 

integration of reused 
assets.



32

Additional SPLE Concerns



33

BAPO Model

B
Business

O
Organization

A
Architecture

P
Process

Strategy and Planning

Technical Implementation

Roles, Responsibilities, 
and Relationships

Hosting and 
Assignment of 
Responsibility



34

Business Concerns
• Requires significant up-front planning. However…

• Reduction to < 50% time to market.
• > 70% smaller code size
• > 20% reduction in maintenance costs
• > 20% cheaper to operate
• Common look and feel = happier customers
• Features propagate to new products quickly
• Many more fixed bugs



35

Architecture Concerns
• Domain architects design the reference architecture

• Enables reuse of code, tests, other artifacts.
• Important to control variability.
• Ensure requirements do not conflict.
• Ensure architecture can be changed over time.

• Application architects specialize the architecture to 
match application requirements. 
• Decide what to promote to the platform.



36

Process and Organization Concerns
• Additional coordination needed between domain 

and application engineering efforts.
• Often separate domain and application engineers.

• Domain engineers develop and maintain assets.
• Application engineers quickly combine assets.
• Specialists coordinate between domain and application.



37

Transitioning to a Product Line
• Proactive

• Develop full SPL from scratch.

• Extractive
• Start from existing products and refactor into a SPL.

• Reactive
• Build a small SPL and extend it over time.



38

Proactive Approach
• Build from scratch.

• Existing products halt 
development, are 
re-implemented.

• High quality products, 
reduced long-term costs.

• Requires SIGNIFICANT 
up-front investment.



39

Extractive Approach
• Transition from existing 

products to product line.
• Extract functionality as reusable assets.
• Implement variation points to attach assets.
• Done over time, while products remain in-service.

• Requires much less up-front cost.
• Code quality may suffer.



40

Reactive Approach
• Implement initial SPL.

• In increments, identify and 
implement new features.

• Less upfront planning than 
proactive.
• Adding unplanned features 

more difficult.

• More structured than 
extractive.



We Have Learned
• Domain Engineering

• Development for reuse. Creates asset portfolio.
• Provides basis for creating individual products.
• Requirements, design, code, etc. planned for variability.

• Application Engineering
• Development WITH reuse.

• Builds product on top of asset infrastructure.
• Up to 90% of new product may be built from assets.

41



Next Time
• Feature Models

• Models that define and constrain variability. 
• Basis for planning a SPL.

• Team Selection Due Tonight!
• 6-7 people, e-mail names to ggay@chalmers.se 
• E-mail me if you want to be assigned to a team.

• Assignment 1 out now! 

42

mailto:ggay@chalmers.se


43

Assignment 1 - Case Study
• Due November 15, 11:59 PM
• Case study examining development of a SPL or 

other reuse-driven system.
• Choose a system:

• Van der Linden, F. J.,Schmid, K., & Rommes, E. (2007). Software 
product lines in action: the best industrial practice in product line 
engineering. Springer Science & Business Media.

• You may also choose any system with sufficient public information 
available. 



44

Assignment 1 - Case Study
• Must get approval from your supervisor!
• Document: 

• Context: What kind of organization/market?
• Motivation: Why a SPL or reuse-driven approach?
• Type of System
• Approach: What engineering practices?
• Challenges: Key technical and process challenges.
• Results: What happened?
• Conclusions: What did they learn?



45

Robocode Introduction




