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Today’s Goals
• Introduce Domain Engineering

• (a process of developing Software Product Lines and 
other complex systems)

• Domain and Application Engineering
• Platform vs Specific Application
• Design FOR and WITH reuse

• Principles of SPLE
• BAPO Model: Business, Architecture, Process, Organization
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Software Product Lines
• Highly configurable families of systems.
• Built around common, modularized features.

• Common set of core assets.

• Allows efficient development, customization. 
• Examples: 
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Domain and Application Engineering
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SPLE Principles
• Variability Management

• Variability must be planned for.

• Business-Centric Development
• Product line must connect to long-term business strategy

• Architecture-Centric Development
• Code takes advantage of similarities between systems

• Two-Life-Cycles
• Domain Engineering, followed by Application Engineering
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Variability Management
• Commonality

• Shared between all products.
• Implemented in the platform.

• Variability
• Unique to subset of products.
• Implemented so it is only in that subset.

• Product-specific 
• Something unique to a single product.
• Platform must support unique adaptations.
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Reasoning about Variability
• Variation Point

• A point where a concrete system can
differ from another.

• Ex: which features are supported by 
this security alarm?

• Feature 
• The options that can be chosen at each variation point.
• Ex: Motion detection, camera
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Constraints on Variability
• Variability Dependencies

• Dependencies for one variation point.
• How many features can we choose from?
• Which are mandatory? Optional?

• Feature Dependencies
• Dependencies between features.
• Choosing one feature requires also choosing another.
• Choosing one feature excludes another.
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Features and Products
• Any end-user-visible characteristic or behavior of a 

system is a feature.
• (often, functionality a user can directly interact with)

• A concrete product is a valid feature selection.
• Fulfills all variability and feature dependencies.
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Application Engineering
• Should requirements for a concrete application 

become part of the product line platform?
• If supported by the platform, add it to the platform.

• (ex: can be added as an asset/tied to a variation point)
• Else: 

• 1) Drop it.
• 2) Add a new variation point/variant to the platform.
• 3) Develop it as a unique part of this application.
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Business-Centric Development
• Up-front planning and

investment required.
• Long-term return on 

investment?
• Does it make sense to implement a requirement as part of 

the platform or in one product?
• 3+ concrete products: make it part of product line.
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Scoping
• Product Portfolio Planning

• Which products are we going to make?
• How do they differ?

• Domain Potential Analysis
• Will we get ROI on platform creation?
• How complex should the platform be?

• Asset Scoping
• Which specific components will be part of the platform?
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Architecture-Centric Development
• Product lines use 

reference architectures.
• Common architecture for 

all products.
• Variants follow the same 

interface standards to 
make them swappable at 
variation point.

• Used to create a specific 
product architecture.
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Domain and Application Engineering
• Domain Engineering

• Development for 
reuse

• Provides basis for 
creating individual 
products.

• Requirements, 
design, code, etc. all 
developed planning 
for variability.
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Domain and Application Engineering
• Application 

Engineering
• Development WITH 

reuse.
• Builds product on top 

of asset infrastructure.
• Up to 90% of new 

product may be built 
from assets.



16

What is a Domain?
• An area of knowledge.

• Scoped to maximize requirement satisfaction.
• Encompases distinct concepts 
• Defines how to build systems in this area. 

• High-Level Domains: databases, social networks, 
deep learning
• Deep learning subdomains: classification, language 

processing, decision support, ...
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Problem and Solution Space
Problem Space

• Stakeholder’s view
• Characterized by 

features

Solution Space
• Developer’s view
• Characterized by 

code structure
• Implementation of 

features.
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Key Task Clusters
Requirements for the 
entire product line 
(scope, features)

Map requirements to feature 
selection, assess new 
requirements

Develop reusable assets.

Map requirements 
to feature 
selection, assess 
new requirements
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Domain Analysis
• Domain Scoping

• Deciding on extent of product line
• Features to support.
• Trade-off between effort and customer range.

• Ex: Embedded Database Domain
• Definite Features: Transactions, Recovery, Encryption, 

Queries, Aggregation, Multi-OS (eCos, TinyOS, Linux),
• Out-of-Scope: Cloud Storage
• Consider: Multi-User Support
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Example: Spreadsheets
• Look at existing 

products: Excel, 
Google Sheets, …

• What are some 
features a user would 
expect?
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Example: Student Data Management (Ladok)

• Product Line: 
Student App, 
Teacher App
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Domain Analysis
• Domain Modeling

• Document the commonalities and
differences between products in
terms of features and dependencies.

• Ex: Embedded Database
• Features: Storage, Transactions, OS, Encryption
• Storage, OS are mandatory.
• Only one OS supported per product.
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Let’s take a break!
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Requirements Analysis
• Map customer requirements to 

domain requirements.
• If requirements do not map to 

existing features:
• Out of scope
• Assemble as much as possible 

from reusable features, customize
• Extend reusable assets with 

new/changed features.
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Domain Implementation
• Implement reusable

assets from domain
requirements.

• Strategy for combining modules.
• Compile-time: only include requested code
• Run-time: bind to class/service when executed

• Interfaces for “attaching” variable features.
• How to implement variation points.
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Product Derivation
• Build the final concrete product from

reusable assets.
• Add any necessary customization.
• Ideally, can be done automatically.
• Often requires some manual “glue” code.
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Two-Life-Cycle Approach
• Domain Engineering

• Develop reusable assets
• Designed for long-term, 

complex development.

• Application Engineering
• Develop individual 

systems using platform.
• Designed to deal with 

rapid changes.
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Domain Engineering Activities
• Product Management

• Portfolio planning, 
economic analysis

• Creates product roadmap

• Domain Requirements 
Engineering
• Requirements for the 

platform, identification of 
variation points/variants.
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Domain Engineering Activities
• Domain Design

• Create reference architecture.

• Domain Realization
• Design and implement 

reusable assets. 

• Domain Testing
• Test assets in isolation, 

generate test data for 
integration in concrete 
applications.
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Application Engineering Activities
• Application Requirements 

Engineering
• Requirements for the 

specific product, starting 
from existing variabilities.

• Application Design
• Instantiates reference 

architecture, adds specific 
adaptations.
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Application Engineering Activities
• Application Realization

• Reuse and configure 
existing assets, build new 
components.

• Application Testing
• Test new components and 

integration of reused 
assets.
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Additional SPLE Concerns
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BAPO Model

B
Business

O
Organization

A
Architecture

P
Process

Strategy and Planning

Technical Implementation

Roles, Responsibilities, 
and Relationships

Hosting and 
Assignment of 
Responsibility
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Business Concerns
• Requires significant up-front planning. However…

• Reduction to < 50% time to market.
• > 70% smaller code size
• > 20% reduction in maintenance costs
• > 20% cheaper to operate
• Common look and feel = happier customers
• Features propagate to new products quickly
• Many more fixed bugs



35

Architecture Concerns
• Domain architects design the reference architecture

• Enables reuse of code, tests, other artifacts.
• Important to control variability.
• Ensure requirements do not conflict.
• Ensure architecture can be changed over time.

• Application architects specialize the architecture to 
match application requirements. 
• Decide what to promote to the platform.
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Process and Organization Concerns
• Additional coordination needed between domain 

and application engineering efforts.
• Often separate domain and application engineers.

• Domain engineers develop and maintain assets.
• Application engineers quickly combine assets.
• Specialists coordinate between domain and application.
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Transitioning to a Product Line
• Proactive

• Develop full SPL from scratch.

• Extractive
• Start from existing products and refactor into a SPL.

• Reactive
• Build a small SPL and extend it over time.
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Proactive Approach
• Build from scratch.

• Existing products halt 
development, are 
re-implemented.

• High quality products, 
reduced long-term costs.

• Requires SIGNIFICANT 
up-front investment.
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Extractive Approach
• Transition from existing 

products to product line.
• Extract functionality as reusable assets.
• Implement variation points to attach assets.
• Done over time, while products remain in-service.

• Requires much less up-front cost.
• Code quality may suffer.
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Reactive Approach
• Implement initial SPL.

• In increments, identify and 
implement new features.

• Less upfront planning than 
proactive.
• Adding unplanned features 

more difficult.

• More structured than 
extractive.



We Have Learned
• Domain Engineering

• Development for reuse. Creates asset portfolio.
• Provides basis for creating individual products.
• Requirements, design, code, etc. planned for variability.

• Application Engineering
• Development WITH reuse.

• Builds product on top of asset infrastructure.
• Up to 90% of new product may be built from assets.
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Next Time
• Feature Models

• Models that define and constrain variability. 
• Basis for planning a SPL.

• Team Selection Due Tonight!
• 6-7 people, e-mail names to ggay@chalmers.se 
• E-mail me if you want to be assigned to a team.

• Assignment 1 out now! 
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Assignment 1 - Case Study
• Due November 15, 11:59 PM
• Case study examining development of a SPL or 

other reuse-driven system.
• Choose a system:

• Van der Linden, F. J.,Schmid, K., & Rommes, E. (2007). Software 
product lines in action: the best industrial practice in product line 
engineering. Springer Science & Business Media.

• You may also choose any system with sufficient public information 
available. 
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Assignment 1 - Case Study
• Must get approval from your supervisor!
• Document: 

• Context: What kind of organization/market?
• Motivation: Why a SPL or reuse-driven approach?
• Type of System
• Approach: What engineering practices?
• Challenges: Key technical and process challenges.
• Results: What happened?
• Conclusions: What did they learn?
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Robocode Introduction




