z

CHALMERS |

UNIVERSITY OF TECHNOLOGY

ig Ew E by

UNIVERSITY OF GOTHENBURG

Software Engineering Principles for Complex Syste

TDAS94 l

Domain Engineering / l\/L N
Feature Modelling [T

Dr. Sam Jobara
jobara@chalmers.se
Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Dr. Sam Jobara
Chalmers | University of Gothenburg

| have a Ph.D. in Computer Science and Engineering, USF, USA

| have research interests in testing and fault modeling, computer architecture, information secur

ity |
and product line engineering. | am also interested in learning and cognitive theories, « I‘\L e
My teaching covers a multitude of courses in Computer architecture, Information securitg;, ‘D‘ITSE\ZL
Software engineering for Data Intensive Al Applications, DIT834 Startups and Industrjal Softvvare[l
product Management, and DIT192 Agile Development Processes. o O I

My industrial experience spans over 18 years as an IT Consultant in Telecommunication, Information
Sécurity ‘consulting, and Supply Chain Management.

Jobara@chalmers.se

mailto:jobara@chalmers.se

= A .
CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG ‘#

Learning Objectives

+ Define feature, feature selection, feature dependency, product, domain.
+ Understand what drives scoping decisions

+ Translate feature diagrams to propositional formulas

+ Modal features and feature dependencies by means of feature models
+ |dentify some industrial automation tools for Feature Modelling

Main Reference:

Feature-Oriented Software Product Lines: Concepts and Implementation,
Sven Apel * Don Batory Christian Kdstner » Gunter Saake
Springer-Verlag Berlin Heidelberg 2013, ISBN 978-3-642-37521-7

Other publications (see slides for references)

. Domain Engineering '
%ﬁ Feature Modelling l

J~ FM Automation
" ﬁ

&) Principles of FM '

#6) CHALMERS | (&H)) yNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Mass
Customization

of Software
Products

O .SPL

Components 2000’s

.Objects &
® 1980’s frameworks
Modules 1990’s

1970’s _
“producing software to meet

Subroutines individual customer's needs with
1960’s near mass production efficiency “

CHALMERS

UNIVERSITY OF TECHNOLOGY

Decision efect
() Do you require variant 12 i
name; Cuestion 1 expected value: boolean
A

R
visibility @ Do you need variant 27
condition name: Question 2 expected value: boolean

Software Products

Commonality

©@ © ®

i
1 [Which variant do you need?]

name: Question 2 expected value: list{string 1|string2|string3} Production

fl
'
'
|
I
'
1
|
| Feature 1 | | Feature 2 | Feature 3 H
'
'
I
I
'
|
|

)

Feature modelling Decision modelling i

—l Feature 7 | |Feature a | IFaatura 9| '
L)

e T

r “ariant 1 | r Variant 2| r Variant :3|
*

Orthogonal !

variability | oA "“““’

modelling | S aragi

+,_point

Ad-hoc solutions:
tables, textual

" requires

E r\{anant5| r\fxrianl'(| r\fariamal

docs, ...
UML-based CovAMOF ..
i [emener] i |Features laver V/ariability Modeling Framework
E Wariation paint 1 Wariation point 2

)

'
H

'

: :
' <<gptional>> | H
! ~ Feature 2 :
N =<oplional=> E
V Feature 3 !
'

'

H

'

H

H

'

H

H

.

e

Vanant2 Varant3 Variant 4

: Architecture layer 0y point 3 Wariation point 4
1 : ; j Q‘

<<al-least-one=>
' Feature 4

H | | |

E ==default== <<gptional>= <<optonal=> H 6
i Featura 5 Featurs & Featurs 7 ' varant s Varant6 WVariant 7

H b

CHALMERS | w UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Features and Products

Features are the concerns of stakeholders and their primary interest in product-line engineering.
A Feature is “a logical unit of behavior specified by a set of functional and non-functional requirements”

Features are used in product-line engineering to specify and communicate commonalities and differences
of the products between stakeholders, and to guide structure, reuse, and variation across all phases of the
software life cycle.

The product portfolio of a product line is defined by its features and their relations.
A specific product is identified by a subset of features, called a feature selection.

Product Line := a family of products designed to take advantage of their
common aspects and predicted variabilities [Weiss, Lai]

@
uct

wa

AT ST . ‘i o
#6) CHALMERS | (8) UNIVERSITY OF GOTHENBURG ‘?‘. -
SPL Domain

A key success factor of product-line development is to set a proper focus on a
particular, well-defined and well-scoped domain.

A domain is an area of knowledge that:

s scoped to maximize the satisfaction of the requirements of its stakeholders,
includes a set of concepts and terminology understood by practitioners in that
area and includes the knowledge of how to build software systems.

AT Py ’ N
ioe) CHALMERS | @8) UNIVERSITY OF GOTHENBURG "‘?
‘ ’l'rasl".’ ' ’

Domain Engineering

Domain engineering is the process of analyzing the domain of a product line and developing
reusable artifacts. Domain engineering does not result in a specific software product, but
prepares artifacts to be used in multiple, if not all, products of a product line.

Domain engineering is the life-cycle that is further responsible for scoping the product line and
ensuring that the platform has the variability that is needed to support the desired scope of
products. It targets development for reuse.

Domain engineering results in the common assets that together constitute the product line’s
platform.

5@_ Feature Modelllng l
@:E FM Automation '

&) Principles of FM '

10

AT Py ’ N
ioe) CHALMERS | @8) UNIVERSITY OF GOTHENBURG "‘?
‘ ’l'rasl".’ ' ’

Domain modelling captures and documents the commonalities and variabilities
of the scoped domain.

Typically, commonalities and differences between desired products are
identified and documented in terms of features and their mutual dependencies
under feature models.

P A .
CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG ‘p

The FeatureUML method aims to define a systematic way of developing software product line.
The focus of this method is the domain analysis phase and part of the application engineering
phase. The modeling techniques used in this method include feature diagrams and UML

m Od e | 3 Domain Engineering

Domain Domain Domain Domain H
Requiremen ts Analysis Design Implementation :

~~Domain™~.
g;agt‘:l::‘ UML Model { Source
“~..Code_.~

Requirement |,/ Product S UML Model _— Code > Testin
Analysis Configuratoin General tion General tion 9

Application Engineering

Product line system development process from FeatureUML.

g 2 N A
) CHALMERS | g8 UNIVERSITY OF GOTHENBURG .‘ia

Domain Modelling
Domain Analysis: Scoping

Domain scoping is the process of deciding on a product line’s extent or range.
The scope describes desired features or specific products that should be supported.

Product
Requirements I '

| Application Engineering |

speqpaad |

Product :

http://wwwagse.informatik.uni-kl.de/teaching/ple/ws2011/PLE11_03_Scoping.pdf

Family/Domain Engineering

3 :} CHALMERS | {8J)) UNIVERSITY OF GOTHENBURG "
IO

Domain Modelling
Domain Analysis: Scoping

Product lines with a small scope are easier to develop and maintain, as they target a well-
defined domain of very similar products with few variations and much reuse.

There is a trade-off between implementation effort and potential use of the product line. The
trade-off requires careful business consideration, including determining prospective revenue,
potential customers, and costs of additional features.

Product Line
Engineer(s)

Identify Identify Identify denti fy
Products Features Subdomains
Priori Assess
res Subdomains Assets

Bujuueid
aseajal

Domain Experts
(Architects, Developers,
Managers, Marketing etc) A concrete scoping process = a combination of these activities

UNIVERSITY OF TECHNOLOGY

CHALMERS | %ﬁ, UNIVERSITY OF GOTHENBURG

Domain Analysis: Scoping
Common concepts/questions of all scoping approaches

Products:

Which products do | want in my product line? What is their market, when will they be released?
Domains:

Which subdomains will my product line have? Which information do they carry? What are
reasonable domains for the product line (in terms of knowledge, stability etc)?

Features:

Which features will my product line have? Which product will have what kind of features?
Which are easy, which are risky features?

Assets:

Which assets do | have in my product line? Which components, documentation etc exists
already in a reusable form, which ones do | have to (re-)implement?

j CHALMERS | (&) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Agenda

%:E FM Automation '

&)\ Principles of FM '

16

36} CHALMERS | @8l)) yNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

What is a Feature?

Concept in a domain

Can be seen as a high-level requirement

Features represent commonalities and variabilities in a product line
Unit of communication among stakeholders

A specific set of features determines a product variant

feature configuration as input to product derivation

A feature is a kind of concern

® ¢ O ¢ 6 0 o

(388} CHALMERS |

J’:@ﬁ. UNIVERSITY OF TECHNOLOGY

: UNIVERSITY OF GOTHENBURG

17O

What is a Feature?

Feature-Based Configuration involves:

good feature @

popular with customers

bad feature @

customer complaints

Checking for satisfiability of FMs
Enforcing correct configurations

Counting possible configurations
Enumerating valid configurations

popular with developers duplicate features

® ¢ ¢ ¢ O o o

Propagating configuration decisions
Merging distributed configurations

* wellimplemented

error-free
thoroughly tested
architecture-conform

distinct functionality

workaround (“hack”)
defect features
test challenges
optional feature

highly volatile

) CHALMERS

, ‘éﬁ’ UNIVERSITY OF TECHNOLOGY

Mobile Phone
Feature ndatory Optional

\ 4 4
Calls GPS Screen _ Media
7 - Alternative o
| mljose 1) /‘\h r
Excludes = | 1+
Feature models '— - Basic Colour High resolution Camera MP3

, - ! !
How to specify an SPL? Requires = oo

“Feature Model: A hierarchically arranged
set of features to represent all possible
products of an SPL”

.f-:\”‘r’ A J".ﬁon’% . ’ N
6) CHALMERS | g8%)) UNIVERSITY OF GOTHENBURG "I'?
”‘ram"—’ 4’ I

Feature Modelling

Feature modeling is a notation for modeling commonality and variability in product families. In
their basic form, feature models contain mandatory/optional features, feature groups, and
implies and excludes relationships.

It is known that such feature models can be translated into propositional formulas, which
enables the analysis and configuration using existing logic-based tools.

#6) CHALMERS | (&H)) yNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Feature Modelling

Feature modeling is to express variability in terms of common and optional features.

Feature modeling takes place in domain
analysis, but its results play a central role

in other phases of product-line development ProductModeI Pm A

such as requirements analysis and product

derivation. In short, a feature model e o -—" ."”"““B

documents a product line’s variability. = Software Product Line p,oducm
+++ | Core Asset Configurator

P o v" o
CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG ‘0

Feature Modelling
Feature Diagrams

A feature diagram is a graphical notation to specify a feature model. It is a tree
whose nodes are labeled with feature names. Different notations convey various
parent—child relationships between features and their constraints:

Some-out-of-many choice. This choice

Only One-out-of many choice. This choice .
corresponds to the logical OR operator

corresponds to a generalized XOR operator

p

AN A A AL |

alternative or mandatory optional fy fs cee =

CHALMERS | (8} UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

- Aggregation
queries

?_ queres |
queries

Feature Modelling
Feature Diagrams [eotemm

Queri
A Helationa

queries
o

t

=]
5]

] remove

L

Figure 2.5 shows an example of a feature [ocess —— T wpite
diagram that, in its complete form, covers : -y
65 features. Nodes shaded in gray are S .
folded subtrees. Ry

FAME-DBMS [
I]

(] Columns

LFI

c

Replacement <75

—

R

c

Buffer Manager

q

Memory Alloc
Dynamic

Limux
Static

0S-Abstraction g
Win32

Fig. 2.5 Sample feature diagram for embedded data management Nutos

AT Py e ’ N
ioe) CHALMERS | @8) UNIVERSITY OF GOTHENBURG "‘?
‘ ’l'rasl".’ . ’

Feature Modelling
Formalization in Propositional Logic

Feature diagrams can be directly mapped to propositional formulas, thereby defining a formal semantics
of feature diagrams. A set F of feature names are interpreted as propositional variables, and p, f and fi are
members of F.

A mandatory feature definition between a parent feature p and a child feature f:
mandatory(p,f)=£f ©p
Denote solid bullet, if the parent feature is selected, then the child must be selected, and vice versa

An optional feature states that the parent p may be chosen independently from f, but the child f can only

be chosen if p is selected:
optional(p,f)=f =p

Denoted by an empty bullet

6y CHALMERS | @8}) UNIVERSITY OF GOTHENBURG

L
N UNIVERSITY OF TECHNOLOGY

Feature Modelling
Formalization in Propositional Logic

Mapped to propositional logic, this is a disjunction, in which, at least, one child feature is
selected when the parent is chosen. It is an XOR, one-out-of-many choice:

alternative(p, {f1, ..., fp}) = (1 V...V 1) & p) A /\ —(f; A £5)
An unrestricted choice denoted by a filled arc in feature diagrams. Mapped to propositional
logic, the selection of p is equivalent to a disjunction of the child features. It is an OR, some-

out-of-many choice: .z c (v, vE) e

Propositional logic enables us to use automated tools to test interesting properties, such as
checking validity of feature models and feature selections, and detect dead features

CHALMERS | (8} UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Feature Modelling
Formalization in Propositional Logic

We use the product line of graph libraries to illustrate feature diagrams formalization. We use
the feature diagram to illustrate the mapping to a propositional formulas:

root (GraphLibrary)

GmPhmerY A mandatory (GraphLibrary, EdgeType)

A optional (GraphLibrary, Search)

A optional (GraphLibrary,Weighted)

A optional (GraphLibrary, Algorithm)

Search | | Weighted

/N

A alternative (EdgeType, {Directed,Undirected})
A or (Search, {BFS,DFS})
A or (Algorithm, {Cycle, ShortestPath, MST, Transpose})

Directed | |Undirected | | BFS | | DFS | | Cycle | | ShorfestPath | | MST || Transpose | *** A alternative (MST, {Prim,Kruskal})
A (MST = Weighted)
A (Cycle = Directed)
MST => Undirected 1 Weighted
Cydle => Directed Prim | | Kruskal

Any coment over the formula of Search node?

Fig. 2.6 A possible feature diagram of the graph library Aalternative (Search, {DFS,BFS})

#4551 CHALMERS ®%) UNIVERSITY OF GOTHENBURG . ' 1
%é%} UNIVERSITY OF TECHNOLOGY ‘ ‘fﬁ . b

Feature Modelling
Formalization in Propositional Logic

After expanding the feature constraints, we arrive at the following formula:

root (GraphLibrary) GraphLibrary
A mandatory (GraphLibrary, EdgeType) A (EdgeType ¢ GraphLibrary)
A optional (GraphLibrary, Search) A (Search = EdgeType)
A optional (GraphLibrary,Weighted) A (Weighted = EdgeType)
A optional (GraphLibrary, Algorithm) A (Algorithm = EdgeType)
A alternative (EdgeType, {Directed, Undirected}) A (((Directed V Undirected) < EdgeType) A 7(Directed A Undirected))
A or (Search, {BFS,DFS}) A ((BFS V DFS) < Search)
A or (Algorithm, {Cycle, ShortestPath,MST, Transpose}) A ((Cycle V ShortestPath V MST V Transpose) < Algorithm)
A alternative (MST, {Prim, Kruskal}) A (((PrimV Kruskal) < MST) A =(Prim A Kruskal))
A (MST = Weighted) A (MST = Weighted)
A (Cycle = Directed) A (Cycle = Directed)

A(((BFS VDFS) & Search) A —(BFS ADFS))

Feature Modelling
Formalization in Propositional Logic

y‘“% CHALMERS | @&} UNIVERSITY OF GOTHENBURG l“'! 1
%;".}J’ UNIVERSITY OF TECHNOLOGY N ’

To illustrate the transformation to propositional logic for 3-children situations, we use an
additional example to ensure all combinations are counted for:

oS

Linux Mac Win

0S © (Linux VWin VMac)A—(Linux AWin)A—(Linux AMac)A—(Win A Mac)

, CHALMERS | %@, UNIVERSITY OF GOTHENBURG . ehoa
Feature Modelling
Formalization in Propositional Logic

In the literature, there are many variations of feature diagrams including:

1. Some cross-tree constraints can be modeled graphically. Arrows can denote implications or mutual
exclusion, as exemplified in Fig. 2.8a.

2. Some notations distinguish abstract from concrete features. Abstract features are used for structuring
and documentation purposes only and are not bound to implementation artifacts. (such as features
EdgeType and Search in Fig. 2.6). In Fig. 2.8b, abstract features are denoted by gray boxes.

3. Some notations support multiple group types under the same feature. For example, in Fig. 2.8c,
features I, J, and K share the same parent even though they belong to different groups.

4. Some notations permit the mixing of mandatory and optional features with alternative and choice
groups, as also illustrated in Fig. 2.8c.

CHALMERS | @& UNIVERSITY OF GOTHENBURG

s & UNIVERSITY OF TECHNOLOGY

Feature Modelling

Formalization in Propositional Logic
(a)

Legend

D abstract

concrete

DirectX Transactions

mandatory

optional

[]

[]
‘ Get ‘ Put O
- .
Jans

exclusive or

Fig. 2.8 Some variations of feature diagrams: a cross-tree constraints, b transformation toward
abstract inner features, e mixing optionality and group constraints

j CHALMERS | (&) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Agenda

.' Domain Modelling '

EEZ Feature Modelling l
“*—'
& 2

&)\ Principles of FM '

31

S T~ P
s6) CHALMERS | (8} UNIVERSITY OF GOTHENBURG ‘L@

FM Automation
Feature Modeling in Auto industry™

In Automotive industry suppliers analyze the systems requirements and include applicable
domain specific guideline requirements.

Form a master feature list as shown in Figure 1. Domain specific guideline encompasses best
practices and certification related requirements pertaining to the required features.

Feature models show the common and variable

features of a Product Line.

Feature Models could be created using several tools both commercial

and open source. Here we show Feature IDE

tool for this examples.

*Jaisimha, S., Rajan, M., Kanagaraj, P., and Rajendran, S.K., “Managing Product Development through
Feature Modeling,” SAE Technical Paper 2018-01-0089, 2018, doi:10.4271/2018-01-0089

s6) CHALMERS | (8} UNIVERSITY OF GOTHENBURG ‘p

FM Automation
Feature Modeling in Auto industry

The following steps show how to create a master model and use it to derive different product variants:
Step 1: Incorporate all inputs stemming from functional, non-functional, domain guidelines and form a
feature model.

Step 2: lterate across this feature model until we have the correct level of feature levels leading to an

atomic tangible feature that can be tested.
Step 3: Include the feature model with Hardware, Software, and Mechanical model options to realize the

feature sets. | . | SW_FM_Manual = singletuner
Step 4: Map the feature constraint relationship to form a master phase_diversity = dualtuner
feature Model. RDS_TMC = - singletuner

SwW_FM_Automatic = - singletuner
RDS_TMC = traffic
Diversity = phase_diversity
phase_diversity = - singletuner

M§ CHALMERS | g8y UNIVERSITY OF GOTHENBURG .‘ia
‘2.‘%’;,,“ UNIVERSITY OF TECHNOLOGY ",,_’”‘.Gs“

FM Automation
Feature Modeling in Auto industry

Master Feature model example exhibit with model constraints defined

Recenves
- —_— q’_,-_
o Schwos Acst Furchons Doman_Gudsine:
MAIDG AMFM W}m Navgahon_Feahse
L 2 T \ ES

[} _— ' .
mgetuner dushuner bipletuner seek SW_FM_Stabonkst l’e radgu dversty baffc I:! Se'e& Staborlt Dwersty RODS_TMC Tealic IP
£ 3 S

SW FM Marual SW FM Auomalic phase dversly swichinganiemna

AT Py ’ N
) CHALMERS | {€J)) UNIVERSITY OF GOTHENBURG -

FM Automation
Feature Modeling in Auto industry

Step 5: Review the product variations for the different vehicle segments and regions needed for the OEM. Using the
Master Feature Model, derive respective product configuration or product profiles. Figures 2¢ and 2d shows the
product variants or profiles derived from the master feature model.

Step 6: Perform model checks to ensure that there is no risk in achieving the feature requirement. Any issues found
during the model check will require a common review with the System Architecture Team

Variant Matrix FZEIE USA Europe
Tune Yes Yes
Seek Yes Yes
Phase Diversity No Yes
RDS TMC Not Needed Not Needed

Station list Not needed Yes

{2 CHALMERS

UNIVERSITY OF GOTHENBURG

qiér UNIVERSITY OF TECHNOLOGY

17O

FM Automation
Feature Modeling in Auto industry

USA Product Configuration derived from

Feature I\/IodeIIing, Master Feature model

m European Product Configuration derived from

Master Feature model

using Feature IDE
tool ‘tO dnve valid, 32 possible configurations

« [m] Hardware
« [®] ANALOG |
PrOd UCt singletuner
d : & dualtuner
Configuration: | e
4 [m] Software_Assets
a [®] AMFM
[w] seek
a [m] SW_FM_Stationlist
[w] SW_FM_Manual

] SW_FM_Automatic
[w] tune
[w] radiotext
a [| diversity
[[] phase_diversity
[] switchingantenna
[traffic

4 [m] Functional

4 [w] AMFM_Feature
[w] Tune
[m] Seek
StationList
[] piversity

a [] Navigation_Feature
[ros_tmc

[] Traffic_iP

@ sae Model |c| default config |€] *usa_variant config 3

’ s ae Model \c| default.config \c] "europe_variant.config 3
wvalid, 16 possible configurations
« [=m] Receiver
a [m] Hardware
2 [m] ANALOG
[singtet
[=] duakuner
[] tripletuner
a [m] Software_Assets
a [m] AMFM
[=] seek
a [®] SW_FM_Stationlist
] sw_Fn_Manual
[+ SW_FM_Automatic
[w] tune
[=] radiotext
a [w] diversity
P] phase_diversity
[] switchingantenna
[] traffic
< [w] Functional
2 [m] AMFM_Feature
[=] Tune
[=] Seek
StationList
[=] Diversity
« [m] Navigation_Feature
[C[E0S_Tme]
Traffic_IP
[] Domain_Guidelines

%) CHALMERS

J’:@ﬁ. UNIVERSITY OF TECHNOLOGY ‘

{®)) UNIVERSITY OF GOTHENBURG

FM Automation
Automation Tools

u"“n pure SyStemS I D E
eature

s6) CHALMERS | (8} UNIVERSITY OF GOTHENBURG ‘p

FM Automation
Pure::variants*

Pure::variants provides a set of integrated tools to support each phase of the software product-line
development process.

The problem domain is represented using hierarchical Feature Models.

The solution domain, i.e. the concrete design and implementation of the software family, is
implemented as Family Models.

The Application Problem Domain, has the Variant Description Model (VDM), containing the
selected feature set, represents a single problem.

The Variant Result Model describes a single concrete solution drawn from the solution family.

* pure::variants User's Guide pure-systems GmbH

j CHALMERS | @8})) yNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

FM Automation
Pure::variants*

Solution Domain

#iTg

Problem Domain

Development with Variant Management

Variable UML/SysML Models ’/ Problem Space \\‘ E .// Solution Space \

| Collection of Features and Relations | <> | Collection of Family Elements/\

’_o‘:] pure::variants

Feature Models

-

\ Feature Model ~ / \‘\ Family Model

ication Solution Domain \ / /
S [@ pure: varlants
/

Application Problem Domain

@ pure::variants

: #iTE | o
Variant Description Model UML/SysML Model Variants f,/ Slngle PrOblem \ : Ing Ie SDIUtIO
| Desired/Required Features *E—b Variant
\\ Variant Model / . Variant Realization

) CHALMERS

UNIVERSITY OF TECHNOLOGY

FM Automation
Pure::variants

UNIVERSITY OF GOTHENBURG

Several support approaches & tools: FMP, XFeature, AHEAD, Gears, pure::variants, ...

Configuration #1

[search engine PL
@ {f) text search
~-O &) advanced searc
=M targets [1,*]
¢ =@-o ¢ image
=-A\ format [1,]
o N jpg
Lea a gif
L@ %) bmp
= o &) video
=M format [1,1]
-0 8] Mpey
il "‘ avi
L O 18] WY
-0 1] News
o g pf
o ¢) ms office
(=¥ ¥ Ianguages 11,71
-0 B English
- o %1 French
- o] Spanish
- o 4% Mandarim
- 0 ﬂ Portuguese

Feature Model
(15810 possible configurations)

GH search engine PL
@ &) text search

=0 7 advanced searcl
= A targets [1,°]

i=-o 7 image
= M format [1,°]
e T g
iea 7 gif
g @ bmp
E-a 7 video

=M format [1,1]
Lo 7 mpeg
o 7 avi

.J »hlanguagesn ‘1

o 7 English

o 7 French
r-a 7 Spanish
fem 7 Mandarim
w-o 7 Porfuguese

Configuration #2

E’k search engine PL
L@ ¢ text search
b0 ¢ advanced searc
= targets [1,"]
i =0) image
- =M format [1,]
—a jpg
- {A) gif
, ‘o ¢ bmp
o Ep video
= M format [1,1]
.- ampeg
-0 & wimv
‘0 ﬁ news
o) pdf
! o &) ms office
= A languages [1,"]
i~ a 4) English
o &) French
i o 4 Spanish
- o §) Mandarim
‘— o &' Portuguese

AR ST v ‘i N
#6) CHALMERS | () UNIVERSITY OF GOTHENBURG ‘?‘,‘@
"-,89‘." . "

FM Automation
Pure::variants: Feature Model

The problem space can be described with Feature Models, or with a Domain Specific Language (DSL).
Feature models are, hierarchical models that capture the commonality and variability of a Product Line.

In this representation both color and box connector are used independently to indicate the type of group. In
the figure, Each Feature Model has a root feature. Beneath this are three mandatory features —
"Measurements", "Data Source” and "Output Format". Mandatory features are not variable in the true sense.

e

Measurements Output Format

N N T T

Wind Speed - Temperature - Pressure External Sensors - Demo - Internet File - Web Server - Text Language Freeze Point - Storm Alert

| [N

Format English German

L

HTML XML

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(@) UNIVERSITY OF GOTHENBURG

FM Automation
Pu re VarlantS' U Si n g Featu re M Od els _ Initial layout of the Variant Management Perspective

a Wariant Management - Weather Station Exam ple/Variants/Berlin.vdm - Eclipse SDK

When you select the Variant Projects view in the upper left ™ li“ M:‘ T e
1 H : * |6 dplan B e i
S|de Of the EC“pse WI ndOW_ %, Variant Froje Si‘:.\'.j S\'m Ikulina;'n e = O Relations | Result 32 s :S‘
- C’;Wathastati:;inple i) : v Eg‘ "E"E';::;’;‘:"” i ~ (F) Westher Staticn et ~

» & input v v | E Languzger © & Langusges
& o e

Create an initial standard project using the context menu of S Cobt LR —

this view and choose New->Variant Project. s B b Moo
» WSxdm ~ i HTML Weather Station

v i} WestherStationHTML
+ sredir ="'

Once the standard project has been created, three editor : e

SowE N &rve| — O >l imeges

. . . N » il
windows will be opened automatically: i » § st

Label o d mekte indse

. (F) German 1 Pioperties 25 Ll Bookmarks| . Problems| |51 Console “@E-- -6
one for the Feature model, one for the Family Model and one | #7 5o e coma A

v 1 F Sensors

|
[¥ (P Terperature Senser Genera Unique ID | ilpiLoRjAhs2lS0P4
for the VD M « | (FiWesther Station
.

Description | Unique Mame | German
[+ & (FrWind Speed Sensor
Rationale Visible Mame | German
Class/Type | pefeature B | prtestur=

Mandatory Optiona Altemative or
Vanation Type .
Default Selected Range: 1

12: 65 69 (3)

UNIVERSITY OF TECHNOLOGY

CHALMERS | w UNIVERSITY OF GOTHENBURG

FM Automation
Pure::variants: Using Feature Models

The figure here shows an example of Feature Model for a car. A simple Feature Model of a car

The Outline view (lower left corner) shows configurable views = & s sl T e e e -

of the selected Feature Model. aHmG B v — f"lm
B e 17 S s

The Properties view in the lower middle of the Eclipse window - I ea

shows properties of the currently selected feature.

The Table tab of the Feature Model Editor (shown in the lower - => <%0 e oo

left part) provides a table view of the model. It lists all features -1 ™

in a table 1k

The Constraints tab contains a table with all constraints defined “ .

in the model supporting full editing capabilities for the :

constraints.

;\° AN PIIIRN > ’ e
ioe) CHALMERS | @8) UNIVERSITY OF GOTHENBURG v?

FM Automation
FeaturelDE Introduction

Feature Models could be created using several tools both commercial and
open source. In addition to Pure::variants, these known tools are:

+ FeaturelDE

+ (Capela

+ GEARS

| will provide some highlights on Feature-ID in this lecture.

iase) CHALMERS | @8})) UNIVERSITY OF GOTHENBURG "‘?.
E ’l_,ag‘."’ . 4’

FM Automation
FeaturelDE Introduction

FeaturelDE provides support for:

« Domain analysis using feature models specifying valid combinations of features

* Requirements analysis with configuration support in concert with the feature model

« Domain implementation for diverse implementation languages and tools

» Product derivation for several generation tools without IDE support or support for features
» Feature traceability to trace features in feature model, configurations, and code

» Quality assurance for building reliable software product lines

5%) CHALMERS | (@) yNIVERSITY OF GOTHENBURG w
‘ ’l‘ras\'r’ 4’

FM Automation
FeaturelDE Introduction

FeaturelDE supports all phases of feature-oriented software development for the development
of SPLs: domain analysis, domain design, domain implementation, requirements analysis,
software generation, and quality assurance.

Different SPL implementation techniques are integrated such as feature-oriented programming
(FOP), aspect-oriented programming (AOP), preprocessors, and plug-ins.

2} CHALMERS |

f‘égw UNIVERSITY OF TECHNOLOGY

FM Automation
Feature-ID Introduction

@ EShop Model &3 &) defaultconfig &I &) Children.config £3 < Clausesconfig 3
P~ EEF-wA =efF]e EEFEevA
v (@] eShop ~ v (@] eShop v [@) eShop
& J-a - F- ®
v [[] Homepage v [4 Homepage > [Homepage
- () Staticcontent [staticcontent > [Registration
v [[] Dynamiccontent > [dynamiccontent v [@) Catalog
v [Contenttype g > [Registration v (@] Productinformaton
-‘.‘- [] Wekcomemessage > (W) Cataing v (@) Producttype
[Specabtiers > [Wisnist [[] Bletronicgoods
v [Veristoasource > (@) Buypatns [Physaigoods
B [] Tmedependent > [[] Customerservice [services
= [] Personaizes C;]D C e
v Registration > ~ Physicalgoods v
—(v [] Regstrationenforcement ~ Physicalgoods v Physicalgoodsfulfiliment
(] Regatertobrowse ~ Physicalgoods v Weight
e [Regstertoduy Open Clauses:
q—'i:‘_ [None ~Producttype v Eletronicgoods v Physicalgoods v Services)
v [[] Regatratonintormation Lsee
[[] Logncredentas] wegnt
v [] Shepngaddress [Avatabiey
[Mutpleshppngadares [[] Customfietss_1
Ty v [[] BEngaddress > [Categories
[] Mutpleblingaddresse [[] Mutpiecataiogs
v [[] Credtcardntormaton > [[] Searcting
[[] Cardnolsername [] Browsing
‘? e > >
Feature Diagram | *; Configuration | *; Configuration | **; Configuration | 3

An overview of FeaturelDE’s configuration support:

(@ feature model edi-

tor, 2@ configuration editor ((2) showing all features, (3) showing direct children,

(@ finalizing configuration).

j CHALMERS | (&) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Agenda

" Domain Modelling '
ES= Feature Modelling '

' F\M Automation '

&\

N —

48

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Principles of
Feature Modeling* [

Damir Nesic, Jacob Kriiger, Stefan Stanciulescu, and Thorsten Berger. 2019. Principles of Feature Modeling. In Proceedings of the 27th ACM Joint European Software Engineering

Conferénce and SUmposium‘on the Foundations of Software Engineering (ESEC/FSE *19), August 26-30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338974

CHALMERS | w UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Feature-Modelling Principles*®

Feature models help developers to keep an overall understanding of the system, and also support scoping,
planning, development, variant derivation, configuration, testing, and maintenance activities that sustain the

system’s long-term success.

In this research™ a set of 34 principles, covering eight different phases of feature modeling, these principles
provide practical, context specific advice on how to perform feature modeling, describe what information
sources to consider, and highlight common characteristics of feature models.

These principles should enhance feature-modeling tooling, synthesis, and analyses techniques.

*http://www.cse.chalmers.se/~bergert/paper/2019-fse-fm_principles.pdf
“Principles of Feature Modeling” Damir NeSi¢, Jacob Kriiger, Stefan Stdnciulescu, Thorsten Berger

5%) CHALMERS | (@) yNIVERSITY OF GOTHENBURG w
‘ ’l‘ras\'r’ 4’

Feature-modeling principles
1. Planning and Preparation

PP1: Identify relevant stakeholders : these stakeholders can include diverse roles (e.g., architects,
application engineers, project managers, requirements engineers).

PP2: In immature or heterogeneous domains, unify the domain terminology:
To facilitate the modeling process and model comprehension, it is beneficial to unify the terminology used
by stakeholders and provide descriptive terms

PP3: Define the purpose of the feature model: this can be divided into two categories. First, >FM can
support design and management of a product line, second, feature models can support the actual product-

line development.

¢y CHALMERS | @8) UNIVERSITY OF GOTHENBURG ‘#{.
Qe . ’

Feature-modeling principles
1. Planning and Preparation

PP4: Define criteria for feature to sub-feature decomposition. it can represent relations such as part-of, and
functionality decomposition. Defining how a feature should be divided into sub-features facilitates achieving
a consistent model that provides a single perspective on the product line

PP5: Plan feature modeling as an iterative process. FM should iteratively alternate between domain scoping
and modeling.

PP6: Keep the number of modelers low. Industrial practice shows that the number of stakeholders
performing the modeling should be low, in some cases a single person. only architects and project
managers are involved in the modeling process.

AT Py ’ N
ioe) CHALMERS | @8) UNIVERSITY OF GOTHENBURG "‘?
".,am." . ’

Feature-modeling principles
2. Model Organization

MO1: The depth of the feature-model hierarchy should not exceed eight levels. While rarely made explicit
in experience reports, survey papers and most of our interviewees report that the feature-model hierarchy
is typically between three to six levels deep

MO2: Features at higher levels in the hierarchy should be more abstract. We found that the higher a feature
is in the feature-model hierarchy, the more it is visible to the customers or it represents a more abstract
domain-specific functionality.

MO3: Split large models Several sources state that large feature models with thousands of features should
be decomposed into smaller ones.

AP
ey CHALMERS | ¢ %)) UNIVERSITY OF GOTHENBURG ‘0

Feature-modeling principles
2. Model Organization

MO4: Avoid complex cross-tree constraints. Cross-tree constraints allow adding dependencies between
subtree of a feature model. However, complex constraints, typically in the form of arbitrary Boolean
formulas, hamper comprehension, maintenance, and evolution of model.

MQ5: Maximize cohesion and minimize coupling with feature groups. A high cohesion within a group and
low coupling to other groups (absence of cross-tree constraints) indicates that the features belong together,
which will also promote higher reusability.

5%) CHALMERS | (@) yNIVERSITY OF GOTHENBURG w
‘ ’l‘ras\'r’ 4’

Feature-modeling principles
3. Modeling

M1: Use workshops to extract domain knowledge. Workshops are used extensively to initiate feature
modeling; they are the most efficient way to start.

M2: Focus first on identifying features that distinguish variants. it is easier for most stakeholders to
describe the features that distinguish variants from each other rather than focusing on the commonalities

M3: Apply bottom-up modeling to identify differences between artifacts. Different artifacts can be analyzed
to identify the differences between existing variants. Source code files are typically the first artifacts to be
analyzed, and the analysis can be done automatically by different tools.

¢y CHALMERS | @8) UNIVERSITY OF GOTHENBURG ‘ef.
Qe " ’

Feature-modeling principles
3. Modeling

M4: Apply top-down modeling to identify differences in the domain. For a top-down analysis, “Top-down is
successful with domain experts, more abstract features.” The features that emerge from the top down
analysis typically represent commonalities or abstract features that help with feature model structuring

M5: Use a combination of bottom-up and top-down modeling. Due to the different results that can emerge
from bottom-up and top-down analyses (M2), it is highly recommended to combine both strategies.

M6: A feature typically represents a distinctive, functional abstraction. While some works use feature
models to represent non-functional properties (e.g., performance requirements or physical properties, such
as color, majority emphasize that features should represent functional abstractions .

5%) CHALMERS | (@) yNIVERSITY OF GOTHENBURG w
‘ ’l‘ras\'r’ 4’

Feature-modeling principles
4. Dependencies

D1: If the models are configured by (company) experts, avoid feature-dependency modeling. In real-world
feature modeling, identifying dependencies is expensive and if explicitly modeled, the maintenance of the
feature model becomes complex , if explicitly modeled, around 50% of features would be involved in
dependencies.

D2: If the main users of a feature model are end-users, perform feature-dependency modeling.
Considering end-users instead of domain experts. If feature model configuration is done by end-users, or
with large Principles of Feature Modeling, then feature-dependency modeling should be performed.

&)
[a e
-
=)
Z
5]
e
T
o
@)
=
o
e
=
w2
o
28]
>
Z
-

NIVERSITY OF TECHNOLOGY

A CHALMERS

58

