

Models for Automotive Embedded Systems Development

Henrik Lönn, Technology Specialist, Embedded Software Development, AB Volvo.

TDA594 / DIT594 Software Engineering Principles for Complex Systems

Volvo Group Business Areas

Our organization

Innovative technology offerings FOR OUR CUSTOMERS AND THE SOCIETY

Concepts and technologies for the future ACCELERATING THE TRANSITION TO A SUSTAINABLE FUTURE

Take Home Messages:

- Appropriate Software Architecture is Instrumental
- Software Architecture Competence is Critical for Swedish Industry
- Modeling is an Enabling Technology for Continuous Integration of Complex Products

Seduced Lead Times Continuous Deployment Continuous Integration

- Quality
- Reuse

Mende · Multipe chal

- Multiple Aspects
- Multiple Domains
- Multiple Teams

- Automation
- Connectivity
- Electrification
- **Control Strategies**
- Architecture (re)volution

Why What How

Get Things Right - Continuously

Example: Testing

Example: Road and Track Testing

- When Simulation is too difficult
- When Simulation is Impossible
- Because it is "Free"

Example: Analysis and Simulation Based "Testing"

- To exercise rare situations
- To exercise dangerous situations
- To accelerate time
- To accelerate coverage
- To be repeatable
- To allow debugging
- To cover large sets of configurations
- To cover fictuous configurations

In General: Multi-Method

Multiple Engineering Activities

- Input must be semantically and syntactically valid
- Input must be consistent across methods

Consistency and Accuracy

- Models are a representation of the real truck
- Data from factory, track, field is required to secure validity
- Models allow engineering rigor and engineering automation

Engineering Information and Activities

V model as reference ...**not to prescribe timing and sequence**...

VOLVO VOLVO GROUP

V model vs. Continuous Integration and Delivery

Volvo Group Trucks Technology Lönn: Models for Automotive Embedded Systems Development

Collaborate Efficiently

- Product complexity call for advanced models and tools
- Modelling is a significant Effort

Vehicle Manufacturer must integrate models

Control over Engineering Information

- Engineering documentation is a core asset
- Increased use of models represents risk
 - Vendor Lock-in
 - Complex Information
 - Complex access to information

Vehicle Manufacturer must have control of their models

Why What How

Vehicle Content

Application Software Architecture - Layering

Volvo Group Trucks Technology Lönn: Models for Automotive Embedded Systems Development

Application Software Architecture - Layering

Route Management

Situation Management

Motion Management

Motion Device Management

Software Platform

Virtual Engineering

- ...to allow
- Instant Deliveries
- Maximize Verification Confidence
- Exercise Dangerous and Rare Events

Virtual Integration and Simulation

- Simulation requires models of all relevant functional aspects
 - (Software)
 - Software platform
 - Electronics
 - Mechatronics
 - Physics
 - Environment

An information model that captures engineering information in a standardized way

Modelling & Simulation Technology

Why What **How**

Modelling Pattern to Support Integration

Model-in-the-loop: **Controller model** interfaces to models of sensors and actuators Software-in-the-loop: **Software** interfaces to models of electronics Hardware-in-the-loop: **ECU** interfaces to models of sensors and actuators Hardware⁺-in-the-loop: **Sensor & actuator** interfaces to models of plant

Model Structure

Feature Models

Functional & Software Architecture

Structure

Function Components SW Components HW Topology

Simulation Content

Behavior/Timing

Function Mockup Units+Execution Definition Source Code+Execution Definition

Property Annotations

Why What How **AUTOSAR**

AUTOSAR - Technical Goals

Increased Flexibility

- Modularity
- Scalability
- Transferability
- Re-usability
- Standardized platform
 - Off-the-shelf purchase & integration of comm, OS, diagnosis, drivers, etc.
 - Off-the-shelf hardware
- Standardized Interfaces
 - Off-the-shelf purchase & integration of common vehicle functions

AUTOSAR - Consortium

AUTOSAR ECU SW Architecture

AUTOSAR - Elements

Modelling

- Capture SW Components SW Component Template
- Capture ECU resources: ECU Resource Description
- Capture allocation and communication: System Description
- Methodology
 - Autogenerate ECU configuration
 - Autogenerate platform SW configuration
 - Autogenerate glue code (RTE)
- Application Interfaces
 - Standard interface definitions for well-established functions
- Architecture
 - Standard platform SW
 - Standard interfaces

VOLVO GROUP

AUTOSAR Software: Software Components

- Hardware independent (CPU and peripherals of ECU)
- Location independent (Communication technology, platform services)
- Specified by
 - Interface
 - Resource Requirements
 - Implementation constraints

AUTOSAR Software: Sensors and Actuators

- SensorActuatorSoftwareComponent adapts device interface to application functions
- Software architecture to separate ECU and device specific parts
- Support for re- allocation of sensors and actuators

--+ HW/phys. Signal -- Require Port1 O- Provide Port1 -+ API 0

AUTOSAR Basic Software

Software platform for application SW components

Standardized Components

- System services (diagnostic protocols; NVRAM, flash and memory management)
- Communication (CAN/LIN/FlexRay... framework, I/O management, Network management)
- Operating System (OSEK based)
- Microcontroller Abstraction

ECU Specific Components

- ECU Abstraction
- Complex Device Driver

AUTOSAR Methodology

Covers process steps for

-ECU platform software generation and configuration

-Application software intregration

Why What How **EAST-ADL**

EAST-ADL Representation

Functional Structure

Design Level

Functional Structure onto HW Architecture

Timing/Triggering

Transfer Function – "Black-box" behavior

Transfer Function – "Black-box" behavior

Behavior of environment (Plant)

Typically in plant model:

Non-causal: "Power Ports" – {Torque,Speed}, {Pressure, Flow}, etc.
Continuous Time: No triggers

Why What How Variability & Product Lines

Variability - Background

- On average, less than 2 vehicles of the same configuration is built: Huge configuration space
- All engineering information is governed by configuration and variant
 - Requirements
 - Components
 - Tests
 - Annotations
 - ...
- Co-variation SW and mechanics/plant
 - SW configuration must be consistent with mechatronics and mechanics of truck
- Customer variability vs technical variability
 - Some variability is invisible to the user: Internal technical solutions
- Detaled variability vs. Exposed variability
 - Some details are only relevant for the component developer

Variability Mechanism 1: Include/exclude

Variability Mechanism 2: Parameterize

Compositional Variability

Compositional Variability

Volvo Group Trucks Technology Lönn: Models for Automotive Embedded Systems Development

Why What How **Workflow**

Engineering Workflow

- Represent
 - Models and Code
- Resolve
 - Configure and Resolve variability
- Generate

— ...

- Automatic preparation for each tool
- Simulate/Analyze/Verify
 - Software centric simulations
 - Physics centric simulations
 - Arithmetic analysis
 - Formal verification

Configuration

Configuration

Software: AUTOSAR SWC Selection AUTOSAR SWC Parameterization			
Configuration ports Initialization values	Non-So Logical Component Selec Function Mockup Unit Pa Configuration Ports Initialization values	oftware ection arameterization Enviro	nment:
		Traffic Scenario: OpenScenario Selection & Parameterization Roads: OpenRoad Selection and Parameterization	

Generation

Volvo Group Trucks Technology Lönn: Models for Automotive Embedded Systems Development

Simulation

Engineering Automation

Local PC or Cloud

Conclusion

- AUTOSAR software platform is automotive de-facto standard
- EAST-ADL supports automotive embedded systems modelling "starting" with needs and requirements and "ending" with an AUTOSAR SW architecture
- An agreed modelling language makes it possible
 - to understand engineering information from other departments/disciplines/companies
 - to exchange engineering models between different organizations and tools
 - to progress jointly on tools and methodology for modelling, analysis and synthesis

Summary

