
Lecture 6a: Model and Code
Analysis

Gregory Gay
TDA594 - November 19, 2020

2

Where We Stand
• Feature Models can be expressed using

propositional logic formulae (φ).
• Based on model and cross-tree constaints.

• Valid feature selections result in (φ = true).
• SAT Solvers can identify valid configurations.

• If none can be found, the model is inconsistent.
• Enables many different model analyses.

2018-08-27 Chalmers University of Technology 3

Today’s Goals
• Feature-to-Code Mappings
• Domain Implementation (Analysis of Code)

4

Feature-to-Code Mappings

5

Feature-To-Code Mappings
• Feature models describe the problem space.
• Models are implemented in source code.
• Similar analyses can examine mapping of feature

models to code.
• Which code assets are never used?
• Which code assets are always used?
• Which features have no influence on product portfolio?

6

Dead Code
• Features that can

never be incorporated.
• Feature B, in the code,

required Feature A to
also be selected.

• Model states that A
and B are mutually
exclusive.

7

Presence Conditions
• Describes the set of

products containing a
code fragment.

• pc(c) = (conditions for
c to be included in a
product)
• pc(line 3) = A
• pc(line 5) = A ∧ B
• pc(line 8) = ¬ A

● pc(lines 3-5) = A ∧ B
● pc(lines 3-8) = A ∧ B ∧ ¬A

○ (cannot be included in any product)

8

Dead Code
• Fragment is dead if

never included in any
product.
• φ represents all valid

products.
• Fragment C is dead

iff (φ ∧ pc(C)) is not
satisfiable.

True

A

A ∧ B

¬A

C pc()

φ = Program ∧ (A ∨ B) ∧ ¬(A ∧
B)
(φ ∧ pc(line 5)) is not satisfiable:
Program ∧ (A ∨ B) ∧ ¬(A ∧ B) ∧ (A ∧
B)

9

Mandatory Code
• Fragment is mandatory

if always included in a
product.
• φ represents all valid

products.
• Fragment C is

mandatory iff
(φ ∧ ¬pc(C))
is not satisfiable.

If code implemented correctly,
the fragment for EdgeType
will be mandatory.

10

Domain Implementation

11

Analysis of Product Line Code
• Focus on analyzing variability in program structures
• Variability-aware Analyses

• Traditional analyses
(i.e., type checking)
extended from one
product to entire line.

• Goal of analyzing whole
line in one pass instead
of all individual products.

12

Example: Type Checking
• Verifying and enforcing

constraints of data types.
• Is String being used as Integer?
• If we call a method, does it return

the right type of data?

• Can be checked during
compilation or at runtime.

• Same analyses can be applied
to other properties.

Part1 = 10
Part2 = “Wobuffet”
Sum = Part1 + Part2

String getName() {
 return “Wobuffet”; }
Part1 = 10
Sum = Part1 + getName()

13

Terminology
• Check properties about program or feature model.

• Type Checking: Does the program have type errors?
• We assume a property must hold over all products.

• Complete variability-aware analyses give same
results as brute-force analysis.

• Sound analyses ensure all violations in domain
artifacts hold in concrete products.

14

Sampling Strategies
• Instead of brute-force, try a subset of products.
• Selection criteria:

• Feature Coverage: All features covered at least once.
• Feature-Code Coverage: All code fragments included at

least once.
• Pairwise Feature Coverage: All pairs of features

covered at least once.
• N-wise Coverage: All N-way (3-way, 4-way,...) combinations.

15

Sampling Strategies
• Strategies:

• Popular Features: Focus on what customers use
• Domain-Specific: Base coverage on factors important to

product domain.

• Balance between # of analyses and error detection.
• Sampling is sound, but not complete.

• Detected errors hold in products, but not all products tested.

16

Family-Based Type Checking
• Compiler uses #ifdef annotation to

decide what code to include in
binary.

• Graph product line, Node class.
• Features: NAME, NONAME, COLOR.
• Selecting neither or both

NAME/NONAME leads to error.

17

Presence Conditions on Structures
• Can identify presence

conditions for classes,
methods, fields, variables.

• pc(getName() [line 6]) = NAME
• pc(getName() [line 9]) = NONAME
• pc(Color.setDisplayColor(color) [line 18])

= COLOR ∧ NAME
• pc(System.out.print(getName()) [line 20])

= TRUE ⇒ (NAME ∨ NONAME)
• Calls getName(), requires at least one

to exist.

Presence Conditions on Structures

18

Reachability
• Examine lines reachable

from each line to identify
presence conditions.

• If NAME ∧ NONAME,
error on line 9.

• If ¬NAME ∧
¬NONAME, error on line
20.

19

Reachability Conditions
• When a call is made from source to target, a valid

target must exist.
• φ ⇒ (pc(s) ⇒ ∨t∊T pc(t))

• If negation of this constraint can be satisfied, there
are feature selections that will not compile.
• SAT solver can identify selections where there are no

valid targets for a call from a source.

20

Reachability

21

JSL = Java Standard Library

Beyond Type Checking
• Same approach can be

used for checking many
properties.

• Lift from individual product
to whole line.
• Analyze shared code once.
• Reason about

configurations using logic
and SAT solvers.

22

We Have Learned
• Feature Models can be expressed using

propositional logic formulae (φ).
• Based on model and cross-tree constaints.

• Valid feature selections result in (φ = true).
• SAT Solvers can identify valid configurations.

• If none can be found, the model is inconsistent.
• Enables many different model analyses.

23

24

We Have Learned
• Feature-Model Analysis

• Check properties of model are true.
• Dead and mandatory features
• Effects of partial selections
• Comparisons between two models

• Mapping of models and code
• Dead and mandatory code

• Implementation analysis
• Do called assets exist and return the correct data type?

25

Let’s take a break!

Lecture 6b: Implementation of
Variability

Gregory Gay
TDA594 - November 19, 2020

27

Variability
• The ability to derive different products from a

common set of assets.
• Implementation: How do we build a custom product

from a feature selection?
• Binding Time
• Technology (Language vs Tool-Based Implementation)
• Representation (Annotation vs Composition)

28

Today’s Goals
• Basic implementation concepts
• Tool-based Implementation

• Focus on preprocessor-based implementation

• Introduce language-based implementation
• Parameters
• Next class: Implementing variability via design patterns.

29

Binding Time
• Compile-time Binding

• Decisions made when we compile.
• #IFDEF preprocessor in C/C++.

• Load-time Binding
• Decisions made when program starts.
• Configuration file or command-line flags.

• Run-time Binding
• Decisions made while program runs.
• Method or API call.

30

Binding Time
• Compile-time binding improves performance.

• … but executable cannot be configured further.

• Load-time binding configured at execution.
• Run-time binding can be configured any time.

• … but results in reduced performance, security hazards,
and program complexity.

31

Technology
• Language-based Implementation

• Use programming language mechanisms to implement
features and derive product.

• Pass parameters at run-time.

• Tool-based Implementation
• Use external tools to derive a product.
• Use preprocessor to compile only the requested features.

32

Technology
• Language-Based Implementation

• Feature implementation and management in code.
• Easy to understand.
• Feature management/boundaries easily vanishes.

• Tool-Based Implementation
• Separation between implementation and management.
• Can simplify code.
• Must reason about multiple artifacts.

33

Annotation-Based Representation
• All code in common code base.
• Code related to a feature marked in some form.

• Preprocessor annotations, if-statement that checks input.

• Code belonging to deselected features ignored
(run-time) or removed (compile-time).

• Adds complexity, reduces modularity/readability.

34

Composition-based Representation
• Code belonging to feature in dedicated location.

• Class, file, package, service

• Selected units combined to form final product.
• Requires clear mapping between features and units
• Can combine annotation and composition.

• Annotation-based approaches remove code.
• Composition-based approaches add code.

35

Some Examples
• Preprocessors

• Compile-time, tool-based, annotation-based

• Parameters
• Load or run-time, language-based, annotation-based

• Design Patterns
• Load or run-time, language-based, composition-based

36

Preprocessor-Based Implementation

37

Preprocessors
• Optimize code before compilation.

• Often used by compilers to produce
faster executable.

• Can selectively include or exclude
code.

• Most famous - cpp
• “The C Preprocessor”

• Exist for many languages.

38

Implementation with cpp
• #include enables import from another file.

• #include <string.h>

• #define used to substitute value for reference.
• Reserve one per feature.
• #define FEATURE_NAME TRUE

• (if the feature is selected, don’t use #define if not selected)

• #ifdef/#endif used to conditionally include code.
• #ifdef FEATURE_NAME

39

Implementation with cpp
● #ifdef
● #if defined(MACRO)

○ Check if a macro is
defined. If true, code is
included.

○ Define macro for included
features.

● #if (...) can check a
user-defined condition.

40

Implementation with cpp
• #ifndef

• “if not defined”
• #else
• Note nesting of

directives.
• Line 17 ends line 5

directive.

41

Let’s take a break!

42

Implementation with Antenna (Java)
• Similar to cpp

• Annotations written as comments.
• Comments out code that is not selected and uncomments

code that is selected.

• Available from http://antenna.sourceforge.net/
• Part of FeatureIDE or can used from command line.

http://antenna.sourceforge.net/

43

Implementation with Antenna (Java)
• Annotate code using comments:

• //#if FEATURE_NAME
• If FEATURE_NAME is chosen, include this code.

• //#elif OTHER_FEATURE
• else if OTHER_FEATURE chosen, include this code.

• //#else
• //#endif

• Instead of removing lines, Antenna comments out
lines, inserting //@

44

Examples
 (Hello, Beautiful, World) (Hello, Wonderful, World)

45

Proper Use of Preprocessors
• Should wrap around an entire function, declaration, or expression.

• Bad annotations wrap
partial expressions.

46

Benefits of Preprocessors
• Easy to learn (annotate and remove code).
• Can be applied to code and other artifacts.
• Allow changes at any level of granularity.
• Easy to map features and code.
• Can be added to a non-product line to transform it

into one over time.

47

Drawbacks of Preprocessors
• Feature code scattered across codebase and

mixed with other features.
• Encourage developers to patch and add to code

instead of refactoring.
• Can make it hard to understand control flow in code
• Can introduce errors, especially when used on

partial statements.

48

Parameter-Based Implementation

49

Language-Based Variability
• Programming languages offer means to implement

variability in different ways.
• if-statement offers a choice between two options.

• Common approaches:
• Parameters
• Design Patterns
• Frameworks
• Components and Services

50

Parameter-based Implementation
• Use conditional statements to alter control flow

based on features selected.
• Boolean variable based on feature, set globally or

passed directly to methods:
• From command line or config file (load-time binding)
• From GUI or API (run-time binding)
• Hard-coded in program (compile-time binding)

51

• Choices read from
command line and
stored in Conf.

• Other classes check
variables and invoke
code appropriately.

52

Discussion
• Variation is evaluated at run-time.
• All functionality is included,

even if never used.
• More memory required.
• If-statements add computational

overhead.
• Security risks introduced, i.e., buffer

overflow attacks.

53

Discussion
• Can alter feature selection at

run-time.
• However, code may depend

on initialization steps.
• May be easier to restart.

• Can pass to methods
instead of setting globally.
• Allows different configurations

throughout program.

54

Discussion
• Conditional statements are a form of annotation.

• Mark boundaries between features.

• Global variables reduce independence of modules.
• However, passing many arguments reduces

understandability/requires repetition.
• Pass a “configuration object” containing settings.

• Feature code mixed and scattered across project.
• Hard to understand and change.

55

Benefits and Drawbacks
• Benefits

• Easy to understand and use.
• Flexible
• Allows different configurations in same program.

• Drawbacks
• All code in executable.
• Feature code and configuration knowledge scattered

across program.
• Difficult to link feature model and implementation.

We Have Learned
• How do we build a custom product from a feature

selection?
• Binding Time

• Compile, load, run-time
• Technology

• Language vs Tool-Based Implementation
• Representation

• Annotation vs Composition

56

57

We Have Learned
• Preprocessors

• Mark code to include in compiled executable.
• Omit code that we do not select entirely.
• Compile-Time, Tool-Based, Annotation-Based

• Parameters
• Set Boolean variables via command-line, config file, GUI,

API, etc. globally or pass to methods.
• Use if-statements to execute correct code.
• Load or Run-Time, Language-Based, Annotation-Based

Next Time
• Variability implementation using design patterns.

• Load or run-time binding, language-based,
composition-based.

• Assignment 2 - any questions?
• Due November 29
• Feature modelling and analysis for mobile robots

58

