Iy

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

&

Lecture 7: Design Patterns for
Variable and Evolving Syste,[nsi

TDA/ DIT 594 - November 24, 2020 . Al ., /-

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals

« Using design patterns to implement variability.
« Strategy Pattern
* Factory Pattern
« Decorator Pattern
* Adapter Pattern
» Facade Pattern
« Template Method Pattern

%’s’;’%} CHALMERS | (8§} UNIVERSITY OF GOTHENBURG
%?2?‘1 4 UNIVERSITY OF TECHNOLOGY ",,‘m’"_«

OO Design Exercise:
Building a Better Duck

) CHALMERS ®)) UNIVERSITY OF GOTHENBURG

Adding new ducks

UNIVERSITY OF GOTHENBURG

Why not override?

) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

How do we fix this mess?

Apply good OO design principles!
Step 1: Identify the aspects that vary and

encapsulate them.

Duck
class

Flying
behaviors

Step 2: Implement behaviors as classes

Programming to an interface:

==T Duck d = new MallardDuck();

| Behavior called in same way for

‘imes.

<<ijnterface>>
Pri FlyBehavior m tO | (GOOD)
fl :
~ FlyWithWings X | FlyNotAllowed
 d.performFly();
fly(){ ..} fly(){ .. } e
d I DucC)
- Duck 4. f1 all ducks. Only implement
FlyBehavior flyB O | .
QuackBehavior quackB ReCIl. behavior once.
quack() beh: fly() {
fly(); fly() D » flyB.fly();
quac swim() }
display()

i fid R ‘ \ — T.// 2\ .. ¢ Y \,‘/__& . 7/\‘/
56) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG ‘ ¥) Yy - ,
i -4 UNIVERSITY OF TECHNOLOGY & "“",' 7 / / ‘k“\\ // v \ "/,

HAS-A can be better than IS-A

Principle: Favor composition over inheritance.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Enter... Design patterns

Don’t just describe classes, describe problems.

Patterns prescribe design
guidelines for common
problem types.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Guidelines, not solutions

“Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem in such a way
that you can use this solution a million times over,
without ever doing it the same way twice.”

- Christopher Alexander

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

You already applied one pattern
Strategy Pattern

Defines family of
algorithms,
encapsulates them,
makes them
iInterchangeable.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

\a

{81)) UNIVERSITY OF GOTHENBURG

Factory Pattern - Motivation

Pizza orderPizza(){

Pizza pizza = new Pizza();

pizza.prepare();

pizza.bake();

pizza.cut();
pizza.box();

return pizza;

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

First Try

Pizza orderPizza(String type){
Pizza pizza;
if (type.equals(“cheese”)){
pizza = new CheesePizza();
else if(type.equals(“pepperoni”)){
pizza = new PepperoniPizza();

}
// Prep methods

}

CHALMERS |) UNIVERSITY OF GOTHENBURG

Factory Pattern - Motivation

Pizza orderPizza(String type){
Pizza pizza;
if (type.equals(“cheese”)){
pizza = new CheesePizza();
) _ hs (s
} else if(type.equals(“kebab”)){
pizza = new KebabPizza();

}
// Prep methods

’} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Factory Pattern - Motivation

Pizza orderPizza(String type){

Pizza pizza;

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

return pizza;

CHALMERS | UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

The Simple Factory

Pizza createPizza(String s){
if(s.equals(“Pepperoni”))
return new PepperoniPizza();
// Other pizza types

}

4

LN
4 UNIVERSITY OF TECHNOLOGY

CHALMERS | UNIVERSITY OF GOTHENBURG B RN\, Y - P van

e
{352} CHALMERS
‘%@9 00000000000000000000

Factory Pattern - Definition

Defines interface for creating an object, lets subclasses
decide which object to instantiate. Allows reasoning

about creators and products.

(&%) UNIVERSITY OF GOTHENBURG

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Each factory manages a Each type of product has a
subset of the products. defined interface.

,{1’_‘-‘ fmm.,%c
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Benefits of Factory Pattern

Loose coupling.
Creation code is centralized.
Easy to add new products.

Lowered class dependency
(depend on abstractions, not
concrete classes).

=

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

| " N P
{§%) CHALMERS | (&) UNIVERSITY OF GOTHENBURG : | /o | VA,
QUL UNIVERSITY OF TECHNOLOGY R / R

The Coffee Shop Ordering System

UNIVERSITY OF GOTHENBURG

Boolean for condiment.
\\\‘~s>

Cost for condiments calculated in
the parent, then specifics of drink
added in child.

double cost(){
double total = super.cost();
total+=29;
return total;

}

4

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

How Code Reuse is Achieved

 Inheritance allows writing code once and reusing in
the children.
« Good - changes only made once (in theory).

« Bad - maintenance issues and inflexible design.

Inherit all behaviors of the parent. Might have to work around
inherited features in child.

« Code can also be reused through composition.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Composition

« “Attach” an object to another object to add
behaviors and attributes.
 All Ducks have some form of flying behavior.
* Implement behavior as a class, attach at object creation.

« Behavior extension done at runtime.
« Dynamically change abilities of objects as system runs.

« Change a class without changing code of the class.

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

< {
B\
/N
/ //AA.\

The Open-Closed Principle

e Classes should be open for extension, closed
for modification.

« Add new behavior without changing existing code.

* Create class with new data and operators, attach class it
Is intended to extend.

* Allow extension without direct modification.

* Do not try to apply this everywhere.

» Focus on areas likely to change.

%) CHALMERS | (s}

The Decorator Pattern

Mocha is a decorator. Type
mirrors object it decorates.

DarkRoast inherits from
Beverage, has cost() method.

: Mocha / DarkRoast Whip is a decorator.
Whip cost() Type mirrors object it
cost() «—— decorates (and anything
cost() 129 0.99 that object decorates).

DarkRoast wrapped in Mocha and
Whip is a Beverage, and can
perform any Beverage function.

1.79

Through polymorphism, a
Beverage wrapped in
Mocha is still a Beverage.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Decorator Pattern Defined

» Attaches responsibilities to an object dynamically.

* Flexible alternative to subclassing.

Decorators have same supertype as decorated object.
One or more decorators can wrap an object.

Can pass decorated object in place of the original.

Decorator adds its own behavior before or after calling
wrapped object.

) UNIVERSITY OF GOTHENBURG

The Decorator Pattern

Component Each Decorator offers
Decorgtors add new ST same methods the
behaviors to Components /1 Other methods Component offers.
ConcreteComponent Decorator

behavior() behavior()

/[Other methods /[Other methods
Each concrete Decorator has /\
instance variable to store ConcreteDecoratorA ConcreteDecoratorB
wrapped component. Comppnent wrapped Component wrgpped

: behavior() Object newAttribute

Decorators add behavior by newBehavior() behavior()
adding operations and /I Other methods /I Other methods

attributes.

(&%) UNIVERSITY OF GOTHENBURG

Ordering System - Decorator Pattern

double cost(){
double total = beverage.cost();
total+=10;
return total;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Decorator Pattern

« Uses inheritance to achieve type matching, but not
to inherit behavior.

* By composing decorator with a component, we add
new behavior to component.
 Adds flexibility to how we mix and match behaviors.
« (Can reassign decorators at runtime.
« Can add new behavior by writing new decorator.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Decorator Pattern Negatives

« Often results in explosion of small classes.
* Results in hard to understand design.

» Potential type issues.

 |f code does not need specific type, decorators can be
used transparently.

Everything is a Beverage.

« Problems if we need to know type.
« DarkRoast gets a discount.

,-"j\.oﬁ’-e, ARERY
,y’} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Working With Other Systems

* We want to incorporate services or code from
another system.
« Their interface may be compatible with your interface.

{8%)) UNIVERSITY OF GOTHENBURG

Vi
%,;1’5‘%23 4
., Shey,
Your Existing External
System N[System

Adapter implements And talks to the
the interface your external class to
class expects. service requests.

)} CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Adapter Example

N
N
N\
N
N
- |

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG I _dla\

The Adapter Pattern Defined

« Converts an interface into
interface client expects.

» Adapter’s methods call E;(;E; Adapter | EXternal
corresponding methods from S sterrglj apter'system
adaptee. y

 |If adaptee changes, only the
adapter needs to change.

* No changes needed to classes
that call adapter.

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

The Adapter Pattern

: <<interface>> Adapter implements
Client .
Target target interface.
request()

The client sees only the :

target interface. CEIPEN R
Adaptee adaptee <&
specificRequest()
request()
_ Requests get delegated
Adapter composed with Adaptee. to Adaptee.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

CHALMERS | UNIVERSITY OF GOTHENBURG

Watching a Movie

To watch a movie, we need to perform a few tasks:

Turn on the popcorn popper.

Start the popper.

Dim the lights.

Put the screen down.

Turn the projector on.

Set the projector input to blu-ray.

Put the projector on widescreen mode.
Turn the sound amplifier on.

Set the amplifier to DVD input.

Set the amplifier to surround sound.

—_—
COONOORWN =

11. Set the amplifier volume to medium.
12. Turn the blu-ray player on.
13. Start the blu-ray.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Wrapping Classes

* The Adapter Pattern converts the interface of a
class into one the client is expecting.

 The Decorator Pattern doesn’t alter an interface,
but wraps classes in new functionality.

« The Facade Pattern simplifies interactions by hiding

complexity behind a clean, easy-to-understand
interface.

« Wrapping classes into a shared interface.

) UNIVERSITY OF GOTHENBURG

The Facade Pattern

e Create a new class that
exposes simple methods
(the facade).

e Facade calls on classes
to implement high-level
methods.

e C(Client calls facade
instead of classes.

e C(Classes still accessible.

|
< {
B\
/N
/ ” /A\

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Facade Pattern Defined

 Provides a unified interface to a set of classes.

* Facade defines a high-level interface that makes a
subsystem easier to use.
* Provides an additional method of access.

« Multiple facades may provide situational functions.
« Decouples client from any one subsystem.

) CHALMERS ®)) UNIVERSITY OF GOTHENBURG

The Facade Pattern

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Principle of Least Knowledge

« Talk only to your immediate friends.

« Be careful of the number of classes your class
iInteracts with and how it interacts with them.

* Only invoke methods that belong to the object,
objects passed as parameters, objects created or
iInstantiated, and attached objects.

CHALMERS |
UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Coffee and Tea

i anud!
QsarbuzZ Coffee Borist Training M
ese recipe
3 \ please follow % e
BarlS?Lsel. when PTre arind rarbuzz
prec
QtarbuZZ Coffee ReclpE
a8 Boil wat 2 - ter k\
(2) Brevw coffee x‘n “ ing o ~
(3) pour coffee ;nmili e)
: . - l/ like the retipe for
Lea, doesn't it?
StarbuzZ Tea Recipt
. ome water
e i ea 1D poill g water

i) CHALMERS |

UNIVERSITY OF GOTHENBURG

Coffee and Tea (In Code)

Coffee

prepareRecipe() v,
boilWater()
brewCoffeeGrinds()
pourlnCup()
addSugarAndMilk()

\

\

Tea
prepareReC|pe()
boilWater() \
steepTeaBag() AN \
A pourinCup() N
S addLemon() N
N N \\
N N N
. RN void prepareRecipe(){
void prgpareRec1pe(){ boilWater();
boilWater(); . steepTeaBag();
brewCoffeeGTlnds(), pourInCup();
pourInCup(); addLemon()
addSugarAndMilk() }
}

4

4

(&6) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Coffee and Tea (In Code) - Take 2

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Back to the Recipes

Algorithm
. al '
Baristo Trainind Manud 1) Boil some water.
Jouzz Coffes , 2) Use hot water to extract the beverage

> sow theme T2, erages. from a solid form

“iseas) ﬂeasie?ari“g starbuzz -
B ety v P 3) Pour the beverage into a cup.

Coffee Recipt 4) Add appropriate condiments to the

sarbusz Cofes N e o beverage.

ter - ter
1) Boil 592 ¥ 'poiling ¥2 coffee looks a lot
2) Brew co in cup like the rcci\?c \Cor
(r coffee 11k ’ 2
(3) 9:; sugar and ™ tea, doesn't it
A
@ e Steps 1 and 3 already

abstracted into base class.

r uz‘L’T‘aR‘d S
M,. | e Steps 2 and 4 not

3y el EO00 ol Tiing WS

(8] O oaa 10 =% abstracted, but are the same

(hy, Baa 18 concept applied to different
1o ve beverages.

/
< {
I ~% Y
/N
7

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Abstracting prepareRecipe()

« Coffee: brewCoffeeGrinds(), addSugarAndMilk()

 Tea: steepTeaBag(), addLemon().
« Steeping and brewing aren’t all that different (brew()).
« Adding sugar is like adding lemon (addCondiments()).

e void prepareRecipe() {
boilWater();
brew();
pourInCup();
addCondiments();

)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Our Redesigned Code

Caﬂeinchvcrage is abstraet, 3u5£

ke i the RS Now, the same Y*C\’a"‘RCL\\’C() method will be e

%o make both Tea and Co“:c? vre\varcch::\()s s‘:s
datlaved final because we don't want °de »fa cam
final void prepareRecipe() { &—— +obeable Lo override +his method a: . stbuw()
boilWater(); rg(,’uyc! We've 5:ncra|iud steps 7(—)3'"
brew(je the bcvcrasc and addCondimcv\{S .
pourInCup() ;
addCondiments () ;

public abstract class CaffeineBeverage {

}

;_/—\ Betause Coffee and Tea handle these methods
in different ways, they've going o have to
be detlared as abstract. Let the subtlasses
worry about that s{u‘“

abstract void brew();
abstract void addCondiments();

void boilWater () {
System.out.println(“Boiling water”);

} Pt Remember, we moved these into
the CaffeineBeveraae elass (back
void pourInCup() { in owr tlass diagram).

System.out.println(“Pouring into cup”);
}

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

What Have We Done?

« Two recipes are the same, although some steps
require different implementations.

* Generalized recipe into a base class.

« (CaffeineBeverage controls the steps of the recipe. It
performs common steps itself.

« (encapsulating what does not change...)

It relies on subclasses to implement unique steps.
* (... from what does change)

|
{
%%
/N
7

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Template Method Pattern

 prepareRecipe() is our template method.
« Serves as a template for an algorithm.

« Each step is represented by a method.

« Some methods handled by the base class, others
by the subclasses.
* The supplied methods are declared abstract.

i) CHALMERS | (6 UNIVERSITY OF GOTHENBURG

Original Implementation

Coffee and Tea control algorithm.
Code duplicated in Coffee and Tea.

Changes to algorithm require
changes to the subclasses.

Classes are organized in a
structure that requires more work
to add a new beverage.

Knowledge of algorithm and how to
implement it distributed over
multiple classes.

What Does the Template Method Get Us?

Al \ &
~A_ \ -
ERVAN

Template Method:

CaffeineBeverage controls and
protects the algorithm, implements
common code.

Algorithm lives in one place and
changes only made there.
Template Method allows new
beverages to be added. They
implement specialized methods.
CaffeineBeverage class contains all
knowledge about algorithm, relies
on subclasses to provide
implementations.

|
{
%%
/N
7

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Template Method Pattern

* Defines skeleton of an algorithm in a method,
deferring some steps to subclasses.

* Lets subclasses redefine steps of an algorithm
without changing the algorithm’s structure.

* Atemplate defines an algorithm as a set of steps.
« Abstract steps are implemented by subclasses.
* Ensures algorithm’s structure stays unchanged.

j CHALMERS | UNIVERSITY OF GOTHENBURG

Template Method Pattern

The template method makes use of the
primitiveOperations to implement an

algorithm. [t is decoupled from the actual
implementation of these operations.

The AbstractClass /\/

tontains the £cm?la{c

AbstractClass
method. i primitiveOperation1();
[emp|ate ethod() crcerrecccccereBeceiccnnennnns o ’ 3
5 primitiveOperation2();
..and abstratt versions primitiveOperation1()
of the oyera{:ions used /"’JD é primitiveOperation2()
in the template method. —

ConcreteClass

ﬂ primitiveOperation1() m

be many primitiveOperation2() The ContreteClass im?'C"‘Ch{S
e Classes © t L the abstract operations,
o Ying) THE i sc&,\nc whith are called when the
welener O™ 8y
(\U

: LemplateMethod() needs them.
OYC“J(“O“S .
/4

3 CHALMERS

UNIVERSITY OF TECHNOLOGY

@) UNIVERSITY OF GOTHENBURG

Looking Inside the Code

Hevre we have our abstract elass; it

is detlaved abstract and meant Ja?

be subelassed by ¢lasses that vw‘rovxdc

]mvlmcnuhws Ll Heve's the template method. [t's
detlared Final to prevent subelasses
Liom veworking the sequente
steps in the algorithm.

abstract class AbstractClass {
final void templateMethod() { The template method
prJ:.m.'?.t:'!.veOPerat:?.onl {hs / defines the sequente of
primitiveOperation2 () ; 5\' Schs, €ath vepresented
t ti ;
; concreteOperation () by awebhod
abstract void primitiveOperationl () ;5

abstract void primitiveOperation2() ;
In this Cﬁamplc, +wo D‘p

void concreteOperation() { the primitive)
// implementation here must be amplc:z:;‘::n?s
} } 7 Contrete subelasses. !

We also have a tontrete opevation defined
in the abstraet ¢lass. More about these

kinds of methods in a bit...

NIVERSITY OF GOTHENBURG

Ad d i n g H o o k s CaffeineBeverage Tea

CHALMERS |

v PrepareRecipe() :Eizvg())ndiments()
) L7 brew()
« Parent defines | gseCondiments) —_—
’ oilWater
concrete default /' pourinCup()
Imp| ementations ,/ wantsCondiments() gzlzvgc))ndiments()
: - wantsCondiments()
hooks) i e e
. 0; ge setppﬂﬂ)
« Subclasses can brew() 7
) pourInCup(); z
override, but do not if (wantsCondiments()){ | poolean wantsCondiments(){
have to.) addCondiments(); String answer = getUserInput();

« Gives subclasses
ability to “hook into”
the algorithm.

}

boolean wantsCondiments(){
return true;

}

if answer.equals(“yes”)
return true;

else

return false;

}

4

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Hollywood Principle

e Don’t call us, we’ll call you.

* Prevents “dependency rot”.

« High-level components depend on low-level components,
low-level depend on high level.

* Allows low-level components to hook into a system,
but high-level components decide when and how
they are needed.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Principles of Design

1. ldentify aspects that vary and encapsulate them
away from what doesn't.

Program to interface rather than implementation.
Favor composition over inheritance.

Open for extension, but closed for modification.
Talk only to your immediate friends.

Don’t call us, we'll call you.

o bk

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Why not use a design pattern?

What are the drawbacks to using patterns?

* Potentially over-engineered solution.
* Increased system complexity.
* Design inefficiency.

How can we avoid these pitfalls?

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

We Have Learned

* Design patterns allow implementation and
management of variability in code.

« Strategy Pattern encapsulates interchangeable behaviors
and uses delegation to decide which to use.

« Factory Pattern encapsulates object creation so system
doesn’t need to know what type of object was created.

« Decorator Pattern wraps an object in another to provide
new behavior without code changes.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Design patterns allow implementation and
management of variability in code.
« Adapter Pattern wraps object in a new interface.

* Facade Pattern wraps a set of classes in simplified
interfaces.

« Template Method Pattern encapsulates pieces of
algorithms so that subclasses can hook into a
computation.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time
* Modularity

« Assignment 2 due Sunday. Any questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

