
Lecture 7: Design Patterns for 
Variable and Evolving Systems

Gregory Gay
TDA/ DIT 594 - November 24, 2020



2018-08-27 Chalmers University of Technology 2

Today’s Goals
• Using design patterns to implement variability.

• Strategy Pattern
• Factory Pattern
• Decorator Pattern
• Adapter Pattern 
• Facade Pattern
• Template Method Pattern



OO Design Exercise:
Building a Better Duck

Duck

quack()
swim()
fly()
display()
// Other Methods

MallardDuck

display() { .. } 

RedheadDuck

display() { .. } …
3



Adding new ducks

RubberDuck

display() { .. } 

4

Duck

quack()
swim()
fly()
display()
// Other Methods

MallardDuck

display() { .. } 

RedheadDuck

display() { .. } 



Why not override?

RubberDuck

display() { .. } 
@Override fly() {.. }

WoodenDuck

display() { .. } 
@Override quack() { .. }
@Override fly() {.. }

5

Duck

quack()
swim()
fly()
display()
// Other Methods

MallardDuck

display() { .. } 

RedheadDuck

display() { .. } 



Why not interfaces?
Duck

swim()
display()

// Other Methods

MallardDuck

display() { .. } 
fly() { .. }
quack() { .. }

RedheadDuck

display() { .. } 
fly() { .. }
quack { .. }

RubberDuck

display() { .. } 
quack() {... }

WoodenDuck

display() { .. } 

<<interface>>
Flyable

fly() 

<<interface>>
Quackable

quack()  

6



How do we fix this mess?
Apply good OO design principles!
Step 1: Identify the aspects that vary and 
encapsulate them.

Duck      Flying 
class      behaviors

7



Step 2: Implement behaviors as classes
Principle - Program to interface, not implementation.

(BAD)
Programming to an implementation:
MallardDuck d = new MallardDuck();
d.flyWithWings();
Requires knowing duck type and 
methods.

MallardDuck

flyWithWings()
quackLoudly()
swim()
display()

(BETTER… BUT NOT GREAT)
Inherit and override.
Duck d = new MallardDuck();
d.fly();
Requires reimplementing the same 
behaviors multiple times.

Duck

swim()
display()

MallardDuck

fly();
quack();

Duck
swim()
fly()
quack()
display()

(GOOD)
Programming to an interface:
Duck d = new MallardDuck();
d.performFly();
Behavior called in same way for 
all ducks. Only implement 
behavior once.

<<interface>>
FlyBehavior

fly()

FlyWithWings

fly() { .. }

FlyNotAllowed

fly() { .. }

Duck
FlyBehavior flyB
QuackBehavior quackB

quack()
fly()
swim()
display()

fly() {
flyB.fly();

}
8



HAS-A can be better than IS-A
Principle: Favor composition over inheritance.

<<interface>>
FlyBehavior

fly()

FlyWithWings
fly() { .. }

FlyNotAllowed
fly() { .. }

Duck
FlyBehavior flyB
QuackBehavior quackB

quack()
fly()
swim()
display()
setFlyBehavior()
setQuackBehavior()

<<interface>>
QuackBehavior

quack()

NormalQuack
quack() { .. }

Squeek
quack() { .. }

MallardDuck

display() { .. }

RedheadDuck

display() { .. }

RubberDuck

display() { .. }

9



Enter... Design patterns
Don’t just describe classes, describe problems.

Patterns prescribe design
guidelines for common 
problem types.

10



Guidelines, not solutions
“Each pattern describes a problem which occurs over 
and over again in our environment, and then describes 
the core of the solution to that problem in such a way 
that you can use this solution a million times over, 
without ever doing it the same way twice.”

- Christopher Alexander

11



You already applied one pattern
Strategy Pattern 

Defines family of 
algorithms, 
encapsulates them, 
makes them 
interchangeable.

12



Factory Pattern - Motivation

13



Factory Pattern - Motivation
Pizza orderPizza(){

Pizza pizza = new Pizza();

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

14

Create a pizza.

Prepare that pizza.

Ship the pizza out.



First Try
Pizza orderPizza(String type){

Pizza pizza;

if (type.equals(“cheese”)){

pizza = new CheesePizza();

else if(type.equals(“pepperoni”)){

pizza = new PepperoniPizza();

} 

// Prep methods

}
15



Factory Pattern - Motivation
Pizza orderPizza(String type){

Pizza pizza;

if (type.equals(“cheese”)){

pizza = new CheesePizza();

else if(type.equals(“pepperoni”)){

pizza = new PepperoniPizza();

} else if(type.equals(“kebab”)){

pizza = new KebabPizza();

}

// Prep methods

}

16



Factory Pattern - Motivation
Pizza orderPizza(String type){

Pizza pizza;

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

return pizza;

}

SimplePizzaFactory

17



The Simple Factory
PizzaStore

SimplePizzaFactory factory

orderPizza(String)

SimplePizzaFactory

createPizza(String)

<<interface>>
Pizza

prepare()
bake()
cut()
box()

CheesePizza

prepare()
bake()
cut()
box()

PepperoniPizza

prepare()
bake()
cut()
box()

KebabPizza

prepare()
bake()
cut()
box()

Pizza createPizza(String s){
  if(s.equals(“Pepperoni”))
    return new PepperoniPizza();
  // Other pizza types
}

18



Franchising the Factory
PizzaStore

PizzaFactory factory

orderPizza(String)

<<interface>>
Pizza

prepare()
bake()
cut()
box()

NYPepperoniPizza

prepare()
bake()
cut()
box()

NYCheesePizza

prepare()
bake()
cut()
box()

ChicagoCheesePizza

prepare()
bake()
cut()
box()

ChicagoPepperoniPizza

prepare()
bake()
cut()
box()

<<interface>>
PizzaFactory

createPizza(String)

NewYorkPizzaFactory

createPizza(String)

ChicagoPizzaFactory

createPizza(String)

19



Factory Pattern - Definition
Defines interface for creating an object, lets subclasses 
decide which object to instantiate. Allows reasoning 
about creators and products.

<<interface>>
PizzaFactory

createPizza(String)

NewYorkPizzaFactory

createPizza(String)

ChicagoPizzaFactory

createPizza(String)

<<interface>>
Pizza

prepare()
bake()
cut()
box() NYVeggiePizza

prepare()
bake()
cut()
box()

ChicagoVeggiePizza

prepare()
bake()
cut()
box() 20



Factory Pattern - In Practice
Client

<<interface>>
ProductA

// methods

<<interface>>
Factory

createProductA()
createProductB()

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

<<interface>>
ProductB

// methods

Concrete
ProductA1 Concrete

ProductB1

Concrete
ProductB2

Concrete
ProductA2

21

Each type of product has a 
defined interface.

Each factory manages a 
subset of the products.



Benefits of Factory Pattern
1. Loose coupling.
2. Creation code is centralized.
3. Easy to add new products.
4. Lowered class dependency 

(depend on abstractions, not 
concrete classes).

22



23

Let’s take a break!



The Coffee Shop Ordering System
Beverage

description

getDescription()
cost()

HouseBlend

cost()

DarkRoast

cost()

Decaf

cost()

Espresso

cost()
HouseBlendWithS

oy

cost()

HouseBlendWith
Milk

cost()HouseBlendWith
SoyAndMocha

cost()

HouseBlendWith
MilkAndMocha

cost()

HouseBlendWith
WhippedCream

cost()
24



Ordering System - Take 2
Beverage

description
milk
soy
mocha
whip
getDescription()
cost()

// Getters/Setters 
for the condiments

HouseBlend

cost()

DarkRoast

cost()

Decaf

cost()

Espresso

cost()

Boolean for condiment.

Cost for condiments calculated in 
the parent, then specifics of drink 
added in child.

double cost(){
  double total = super.cost();
  total+=29;
  return total;
}

25



How Code Reuse is Achieved
• Inheritance allows writing code once and reusing in 

the children.
• Good - changes only made once (in theory).
• Bad - maintenance issues and inflexible design.

• Inherit all behaviors of the parent. Might have to work around 
inherited features in child.

• Code can also be reused through composition.

26



Composition
• “Attach” an object to another object to add 

behaviors and attributes.
• All Ducks have some form of flying behavior.
• Implement behavior as a class, attach at object creation. 

• Behavior extension done at runtime.
• Dynamically change abilities of objects as system runs.

• Change a class without changing code of the class.

27



The Open-Closed Principle
• Classes should be open for extension, closed 

for modification.
• Add new behavior without changing existing code.
• Create class with new data and operators, attach class it 

is intended to extend.
• Allow extension without direct modification. 

• Do not try to apply this everywhere.
• Focus on areas likely to change. 

28



Whip

cost()

Mocha

cost()

The Decorator Pattern

DarkRoast

cost()

DarkRoast inherits from 
Beverage, has cost() method.

Mocha is a decorator. Type 
mirrors object it decorates.

Through polymorphism, a 
Beverage wrapped in 
Mocha is still a Beverage.

Whip is a decorator. 
Type mirrors object it 
decorates (and anything  
that object decorates).

DarkRoast wrapped in Mocha and 
Whip is a Beverage, and can 
perform any Beverage function.

0.99
1.29

1.79

29



The Decorator Pattern Defined
• Attaches responsibilities to an object dynamically.
• Flexible alternative to subclassing.

• Decorators have same supertype as decorated object.
• One or more decorators can wrap an object.
• Can pass decorated object in place of the original.
• Decorator adds its own behavior before or after calling 

wrapped object. 

30



The Decorator Pattern
Component

behavior()
// Other methods

ConcreteComponent

behavior()
// Other methods

Decorator

behavior()
// Other methods

ConcreteDecoratorA
Component wrapped
behavior()
newBehavior()
// Other methods

ConcreteDecoratorB
Component wrapped
Object newAttribute
behavior()
// Other methods

Decorators add new 
behaviors to Components

Each Decorator offers 
same methods the 
Component offers.

Each concrete Decorator has 
instance variable to store 
wrapped component.
Decorators add behavior by 
adding operations and 
attributes. 31



Espresso

cost()

Ordering System - Decorator Pattern
Beverage

description

getDescription()
cost()

HouseBlend

cost()

CondimentDecorator

Milk

Beverage beverage

cost()
Decaf

cost()

DarkRoast

cost()

Mocha

Beverage beverage

cost()

Soy

Beverage beverage

cost()

double cost(){
  double total = beverage.cost();
  total+=10;
  return total;
}



The Decorator Pattern
• Uses inheritance to achieve type matching, but not 

to inherit behavior.
• By composing decorator with a component, we add 

new behavior to component.
• Adds flexibility to how we mix and match behaviors.
• Can reassign decorators at runtime.
• Can add new behavior by writing new decorator.

33



Decorator Pattern Negatives
• Often results in explosion of small classes.

• Results in hard to understand design.

• Potential type issues. 
• If code does not need specific type, decorators can be 

used transparently.
• Everything is a Beverage.

• Problems if we need to know type.
• DarkRoast gets a discount.

34



Working With Other Systems
• We want to incorporate services or code from 

another system.
• Their interface may be compatible with your interface. 

Your Existing 
System

  External   
System

35



Adapters

Your Existing 
System

  External 
SystemAdapter

Adapter implements 
the interface your 
class expects.

And talks to the 
external class to 
service requests.

36



Adapter Example
<<interface>> 

Duck

quack()
fly()

MallardDuck

quack()
fly()

<<interface>> 
Turkey

gobble()
fly()

WildTurkey

gobble()
fly()

TurkeyAdapter

Turkey adaptee

quack()
fly()

37



The Adapter Pattern Defined
• Converts an interface into 

interface client expects. 
• Adapter’s methods call 

corresponding methods from 
adaptee. 

• If adaptee changes, only the 
adapter needs to change.

• No changes needed to classes 
that call adapter.

38

Your 
Existing 
System

 External 
SystemAdapter



The Adapter Pattern

Client <<interface>> 
Target

request()

Adapter

Adaptee adaptee

request()

Adaptee

specificRequest()

The client sees only the 
target interface.

Adapter implements 
target interface.

Adapter composed with Adaptee.
Requests get delegated 
to Adaptee.

39



40

Let’s take a break!



Watching a Movie
To watch a movie, we need to perform a few tasks:
1. Turn on the popcorn popper.
2. Start the popper.
3. Dim the lights.
4. Put the screen down.
5. Turn the projector on.
6. Set the projector input to blu-ray.
7. Put the projector on widescreen mode.
8. Turn the sound amplifier on.
9. Set the amplifier to DVD input.

10. Set the amplifier to surround sound.
11. Set the amplifier volume to medium.
12. Turn the blu-ray player on.
13. Start the blu-ray.

41



Wrapping Classes
• The Adapter Pattern converts the interface of a 

class into one the client is expecting.
• The Decorator Pattern doesn’t alter an interface, 

but wraps classes in new functionality.
• The Facade Pattern simplifies interactions by hiding 

complexity behind a clean, easy-to-understand 
interface. 
• Wrapping classes into a shared interface.

42



The Facade Pattern
HomeTheater

Facade
startMovie()
endMovie()
startSpotify()
endSportify()
startRadio()
endRadio()

Amplifier BluRayPlayer

Tuner Stereo

Projector Screen PopcornMaker

Lights

● Create a new class that 
exposes simple methods 
(the facade).

● Facade calls on classes 
to implement high-level 
methods.

● Client calls facade 
instead of classes.

● Classes still accessible.

43



The Facade Pattern Defined
• Provides a unified interface to a set of classes. 
• Facade defines a high-level interface that makes a 

subsystem easier to use.
• Provides an additional method of access.
• Multiple facades may provide situational functions.
• Decouples client from any one subsystem. 

44



The Facade Pattern

Client Facade

// Methods

Subsystem Classes

45



The Principle of Least Knowledge
• Talk only to your immediate friends.
• Be careful of the number of classes your class 

interacts with and how it interacts with them.
• Only invoke methods that belong to the object, 

objects passed as parameters, objects created or 
instantiated, and attached objects.

46



Coffee and Tea

47



Coffee and Tea (In Code)

48

Coffee

prepareRecipe()
boilWater()
brewCoffeeGrinds()
pourInCup()
addSugarAndMilk()

void prepareRecipe(){
boilWater();
brewCoffeeGrinds();
pourInCup();
addSugarAndMilk()

}

Tea

prepareRecipe()
boilWater()
steepTeaBag()
pourInCup()
addLemon()

void prepareRecipe(){
boilWater();
steepTeaBag();
pourInCup();
addLemon()

}



Coffee and Tea (In Code) - Take 2

49

Coffee

prepareRecipe()
brewCoffeeGrinds()
addSugarAndMilk()

Tea

prepareRecipe()
steepTeaBag()
addLemon()

CaffeineBeverage

prepareRecipe()
boilWater()
pourInCup()



Back to the Recipes

50

Algorithm
1) Boil some water.
2) Use hot water to extract the beverage 

from a solid form.
3) Pour the beverage into a cup.
4) Add appropriate condiments to the 

beverage.

● Steps 1 and 3 already 
abstracted into base class.

● Steps 2 and 4 not 
abstracted, but are the same 
concept applied to different 
beverages.



Abstracting prepareRecipe()
• Coffee: brewCoffeeGrinds(), addSugarAndMilk()
• Tea: steepTeaBag(), addLemon(). 

• Steeping and brewing aren’t all that different (brew()).
• Adding sugar is like adding lemon (addCondiments()).

• void prepareRecipe() {
boilWater();
brew();
pourInCup();
addCondiments();

}

51



Our Redesigned Code

52

Coffee

brew()
addCondiments()

Tea

brew()
addCondiments()

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourInCup()



What Have We Done?
• Two recipes are the same, although some steps 

require different implementations.
• Generalized recipe into a base class.

• CaffeineBeverage controls the steps of the recipe. It 
performs common steps itself.

• (encapsulating what does not change...)
• It relies on subclasses to implement unique steps.

• (... from what does change)

53



The Template Method Pattern
• prepareRecipe() is our template method.

• Serves as a template for an algorithm.

• Each step is represented by a method.
• Some methods handled by the base class, others 

by the subclasses.
• The supplied methods are declared abstract.

54



What Does the Template Method Get Us?
Original Implementation

• Coffee and Tea control algorithm.
• Code duplicated in Coffee and Tea.
• Changes to algorithm require 

changes to the subclasses.
• Classes are organized in a 

structure that requires more work 
to add a new beverage.

• Knowledge of algorithm and how to 
implement it distributed over 
multiple classes.

55

Template Method:
● CaffeineBeverage controls and 

protects the algorithm, implements 
common code.

● Algorithm lives in one place and 
changes only made there.

● Template Method allows new 
beverages to be added. They 
implement specialized methods.

● CaffeineBeverage class contains all 
knowledge about algorithm, relies 
on subclasses to provide 
implementations.



The Template Method Pattern
• Defines skeleton of an algorithm in a method, 

deferring some steps to subclasses.
• Lets subclasses redefine steps of an algorithm 

without changing the algorithm’s structure.
• A template defines an algorithm as a set of steps. 

• Abstract steps are implemented by subclasses. 
• Ensures algorithm’s structure stays unchanged.

56



Template Method Pattern

57



Looking Inside the Code

58



Adding Hooks
• Parent defines 

concrete default 
implementations 
(hooks).

• Subclasses can 
override, but do not 
have to.

• Gives subclasses 
ability to “hook into” 
the algorithm.

59

Coffee

brew()
addCondiments()
wantsCondiments()
getUserInput()

Tea

brew()
addCondiments()

CaffeineBeverage

prepareRecipe()
brew()
addCondiments()
boilWater()
pourInCup()
wantsCondiments()

void prepareRecipe(){
  boilWater();
  brew()
  pourInCup();
  if(wantsCondiments()){ 
    addCondiments();
  }
}
boolean wantsCondiments(){
  return true;
}

boolean wantsCondiments(){
  String answer = getUserInput();
  if answer.equals(“yes”)
    return true;
  else
  return false;
}



The Hollywood Principle
• Don’t call us, we’ll call you.
• Prevents “dependency rot”.

• High-level components depend on low-level components, 
low-level depend on high level.

• Allows low-level components to hook into a system, 
but high-level components decide when and how 
they are needed.

60



Principles of Design
1. Identify aspects that vary and encapsulate them 

away from what doesn’t. 
2. Program to interface rather than implementation.
3. Favor composition over inheritance.
4. Open for extension, but closed for modification.
5. Talk only to your immediate friends.
6. Don’t call us, we’ll call you.

61



Why not use a design pattern?

• Potentially over-engineered solution.
• Increased system complexity.
• Design inefficiency.

How can we avoid these pitfalls?

What are the drawbacks to using patterns?

62



We Have Learned
• Design patterns allow implementation and 

management of variability in code.
• Strategy Pattern encapsulates interchangeable behaviors 

and uses delegation to decide which to use.
• Factory Pattern encapsulates object creation so system 

doesn’t need to know what type of object was created.
• Decorator Pattern wraps an object in another to provide 

new behavior without code changes.

63



We Have Learned
• Design patterns allow implementation and 

management of variability in code.
• Adapter Pattern wraps object in a new interface.
• Facade Pattern wraps a set of classes in simplified 

interfaces.
• Template Method Pattern encapsulates pieces of 

algorithms so that subclasses can hook into a 
computation.

64



Next Time
• Modularity

• Assignment 2 due Sunday. Any questions?

65




