
Software Engineering Principles for Complex Systems

TDA594

Modularity-I

SPLs

Sam Jobara
jobara@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:jobara@chalmers.se


Learning Objectives

⬥ Introduce concepts related to SPLs Modularity

⬥ Introduce Frameworks for Modular design

⬥ Introduce APIs for Modular design

⬥ Discuss major drivers for design modularity

Main Reference:

Feature-Oriented Software Product Lines: Concepts and Implementation, 

Ch.3, Ch.4, 

Sven Apel • Don Batory •Christian Kästner • Gunter Saake

Springer-Verlag Berlin Heidelberg 2013, ISBN 978-3-642-37521-7

Other publications (see slides for references) 2



Agenda

3

Modular Concepts

Frameworks

API Reusability

Modularity Drivers



Modular Concepts

Modularity is a software design technique used to decompose the software into 

modules. Each module is responsible for implementing a relevant part of the system, 

separating that module from other parts of the software, improving systems 

traceability, testability, reusability, and deliverability.

Modular programming is a software design technique that emphasizes separating the 

functionality of a program into independent, interchangeable modules, such as 

classes and frameworks that contain everything necessary to execute only one 

aspect of the desired functionality.

4



Modular Concepts

Encapsulation prevents users from breaking the invariants of the class, it 

allows the implementation of a class of objects to be changed for aspects without 

impact to user code. 

The definitions of encapsulation focus on the grouping and packaging of related 

information (cohesion).

In class-based programming, inheritance is done by defining new classes 

as extensions of existing classes: the existing class is the parent class, and the new 

class is the child class.

5



Modular Concepts

Cohesion refers to the degree to which the elements inside a module belong 

together. In one sense, it is a measure of the strength of relationship between the 

methods and class data and some unifying purpose or concept served by that class.

When separating features into distinct artifacts, developers can easily find all code 

related to that feature for maintenance or evolution tasks. 

Related pieces of code are implemented together, which is known as cohesion. 

Cohesive pieces of code are typically easier to reason about than widely scattered 

code fragments.

6



Modular Concepts
Variability support

Variability allows for reusability by creating new products, developers have identified 

many common programming patterns to support variability, 

to prevent cluttering of code with if statements, 

to enhance feature traceability, 

to provide extensibility without the need to change the original source code, 

and to provide compile-time (or load-time) variability.

In previous lectures design patterns were discussed, we here introduce the concept of 

the frameworks.

7



Agenda

8

Modular Concepts

Frameworks

API Reusability

Modularity Drivers



Frameworks

Framework Function

A framework is a set of classes that embodies an abstract design for solutions to a 

family of related problems and supports reuse at a larger granularity than classes. A 

framework is open for extension at explicit hot spots.

A framework provides explicit points for extensions (plug-ins), called hot spots, at 

which developers can extend the framework. 

In the same manner as the template-method, design pattern, and the strategy 

design pattern, a framework is responsible for the main control flow and asks its 

application methods for custom behavior, a principle called inversion of control

9



Frameworks

Framework Function

How Frameworks are different from Libraries?

With frameworks, the execution start in the framework’s code, and is the framework 

who call application methods. This is called Inversion of Control and is one of the key 

concepts for frameworks and a key distinction between frameworks and libraries.

The golden rule of framework design: Writing a plugin/extension should NOT require 

modifying the framework source code

10



Frameworks

IDE as a Framework

Nowadays, frameworks with plug-ins are popular in end-user software, including web 

browsers, media players, and integrated development environments (IDEs). 

For example, the Eclipse IDE is a framework (actually a set of many frameworks) that 

can be tailored with thousands of plug-ins. 

In Eclipse and all other frameworks, the basic application is extensible with specific 

plug-ins.  Plug-ins are developed and compiled independently by third-party developers.

In feature-oriented product-line development, ideally, we develop one plug-in per 

feature and configure the application by assembling and activating plug-ins 

corresponding to the feature selection.
11



Frameworks

White Box Frameworks

It consists of a set of concrete and abstract classes. To customize their behavior, 

developers extend white-box frameworks by overriding and adding methods through 

sub-classing. A white-box framework can be best thought of as a class containing one 

or more template-methods that developers implement or overwrite in a subclass.

The “white-box” in white-box framework comes from the fact that developers need to 

understand the framework’s internals. 

On the other, white-box frameworks require detailed understanding of internals and 

do not clearly encapsulate extensions from the framework; thus, they are criticized for 

neglecting modularity.
12



Frameworks

Black-Box Frameworks

Black-box frameworks separate framework code and extensions through interfaces. 

An extension of a black-box framework can be separately compiled and deployed 

and is typically called a plug-in. In feature-oriented product-line development, ideally, 

each feature is implemented by a separate plug-in.

Black-box frameworks follow the strategy and observer patterns. The framework 

exposes explicit hot spots, at which plug-ins can register observers and strategies.

In “black-box” ideally, developers need to understand merely their interfaces, but not 

the internal implementation of the framework, as the name suggested. 

13



Frameworks

Black-Box Frameworks

The decoupling of extensions encourages separate development and independent 

deployment of plug-ins, as known from many application-software frameworks, 

including web-browsers or development environments. 

As long as the plug-in interfaces remain unchanged, framework and plug-ins can 

evolve independently.

14

The cross-platform capability of Black Box



Frameworks

Black-Box Frameworks

White-box frameworks consist 

of concrete and abstract 

classes. To customize their 

behavior, we extend the 

frameworks by overriding and 

adding methods through sub-

classing. However, Black-box 

frameworks separate 

framework code and 

extensions through interfaces.

15



Agenda

16

Modular Concepts

Frameworks

API Reusability

Modularity Drivers



API Reusability

Library

17



API Reusability

API defined

An API refers to the functions/methods in a library that you can call to do things for 

you program - the interface to the library. ... A toolkit is like an SDK - it's a group of 

tools (and often code libraries) that you can use to make it easier to access a device 

or system.

APIs provide abstracting functionality to library in a communication layer and data to a 

reloadable object, thus allowing external tooling to make use of these without 

duplication, entanglement and without them being tied directly to the resource.

APIs offer many benefits for modularity, SOC, decoupling, information hiding, enhance 

testability, traceability, and above all they should be easy, and simple.
18



Modular Reusability

API used

19

Easy to create variations 

from asset artifacts. 

Either from library APIs 

or SPLs artifacts.



Modular Reusability

API and Modularity*

20* http://fwdinnovations.net/whitepaper/APIDesign.pdf

Why is API Design Important to You? 

• If you program, you are an API designer 

Good code is modular–each module has an API 

• Useful modules tend to get reused

Once module has users, can’t change API at will 

Good reusable modules are corporate assets 

• Thinking in terms of APIs improves code quality



Modular Reusability

API and Modularity

21

Implementation Should Not Impact API

• Implementation details
Confuse users

Inhibit freedom to change implementation

• Be aware of what is an implementation detail
Do not over specify the behavior of methods

For example: do not specify hash functions

All tuning parameters are suspect

• Don't let implementation details “leak” into API



Modular Reusability

API and Modularity

22

Minimize Accessibility of Everything

• Make classes and members as private as possible

• Public classes should have no public fields (with the exception of constants)

• This maximizes information hiding

• Allows modules to be used, understood, built, tested, and debugged independently



Modular Reusability

API and Modularity

23

Minimize Class Mutability* 

• Classes should be immutable unless there’s a good reason to do otherwise 

Advantages: simple, thread-safe, reusable 

Disadvantage: separate object for each value 

• Make clear when it's legal to call which method 

Bad: Date, Calendar         Good: TimerTask

* Immutable classes (whose instances cannot be modified) are easier to design, implement and use than mutable classes. 

They are less prone to error and are more secure.



Agenda

24

Modular Concepts

Frameworks

API Reusability

Modularity Drivers



Modularity Drivers

Layered architecture styles 

Focuses on distributing the roles 

and responsibilities around a 

broader technical function. 

For example*, in a typical web application:

presentation layer on the very top, 

followed by business logic layer and 

at the bottom, a data or external 

services layer.

* https://medium.com/on-software-architecture/on-modular-architectures-53ec61f88ff4

25



Focus on how different business 

functions are created, exposed 

and consumed as a set of services. 

SOA at its core implies that you 

Have services that can perform 

some business function.

But SOA codifies how we can 

publish, consume and discover 

these services across various 

technical and functional boundaries.

26

Modularity Drivers

Service-oriented architecture (SOA) 



Modularity Drivers

Separation of Concerns SoC

A common approach to attain traceability is to separate features both in design and 

code, such that the relationship between features and corresponding design and 

implementation artifacts are explicit.

SoC means factoring out crosscutting concerns into separate modular units. 

For example, an extra modular unit may be dedicated to encapsulating the 

functionality providing data persistence. This functionality can then be used, e.g., 

through subroutine calls from many different modules. 

27



Modularity Drivers

Separation of Concerns SoC

When separating features into distinct artifacts, developers can easily find all code 

related to that feature for maintenance or evolution tasks. Related pieces of code are 

implemented together, which is known as cohesion. Cohesive pieces of code are 

typically easier to reason about than widely scattered code fragments.

⬥ Service-oriented design can separate concerns into classes and services.

⬥ Procedural programming languages such as C and Pascal can separate concerns 

into procedures or functions.

28



Modularity Drivers 

Separation of Concerns SoC

Dependencies by injection:

A technique in which an object receives other objects that it depends on, which are 

called dependencies. 

The receiving object is called a client and the passed (that is, "injected") object is 

called a service. 

The "injection" refers to the passing of a dependency (a service) into the object (a 

client) that would use it.

Dependency injection help separation of concerns of construction and use of objects. 

This can increase readability and code reuse. 29

https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Service_(systems_architecture)
https://en.wikipedia.org/wiki/Separation_of_concerns


Modularity Drivers

Separation of Concerns SoC

30

Dependencies by injection:

The dependency between the Client

and Service classes*, it happens when the 

Client becomes tightly coupled with the 

Service.

However, using  an injector class to 

dynamically load and return the 

implementation classes. the client only has 

a dependency to the Service interface and 

the Injector class.

* https://developer.salesforce.com/blogs/2019/07/breaking-runtime-

dependencies-with-dependency-injection.html



Modularity Drivers 

Cross-cutting Concern

In the 1990s, an insight emerged that a certain class of concerns, called crosscutting 

concerns, is inherently difficult to separate using traditional mechanisms based on block 

or hierarchical structure. 

Designs based on cross-cutting concerns offer many software engineering benefits, 

such as separation of concerns, simplified design evolution, and ease of maintenance.

cross-cutting concerns, like logging or security, are difficult to map in a single class and 

hence they are scattered throughout the code.

31



Modularity Drivers

Cross-cutting Concern

Aspects enable the modularization of concerns that cut across multiple types and 

objects.

Aspect-Oriented Programming (AOP) introduces the notion of Aspects and shows 

how we can take crosscutting concerns out of modules and place them in a 

centralized place. 

An Aspect is modular units that cross-cut the structure of other units. Aspects are 

elements such as security policies and synchronization, optimization, communication 

or integrity rules that crosscut traditional module boundaries

32



Modularity Drivers 

Cross-cutting Concern

(AOP) the notion of aspect is defined*, e.g., as “a mechanism beyond subroutines 

and inheritance for localizing the expression of a crosscutting concern.” 

33* UML 2002 - The Unified Modeling Language. Model Engineering, Concepts

By Jean-Marc Jezequel, Heinrich Hussman, Stephen Cook



Modularity Drivers

Code tangling & scattering
Aspect-oriented programming tries to solve problems with cross-cutting concerns. 

The key unit of modularity in OOP is the class; whereas in AOP, the unit of 

modularity is the aspect.

If you have a system (like for SPL product) that contains several packages and 

classes, such as tracing, transactions, and exception handling, we have to implement 

them in every class and every method. 

34



Modularity Drivers

Code tangling & scattering
This results in two problems:

Code tangling: — Each class and method contains tracing, transactions, and 

exception handling — even business logic. In a tangled code, it is often hard to see 

what is actually going on in a method.

Code scattering — Aspects such as transactions are scattered throughout the code 

and not implemented in a single specific part of the system.

35



Modularity Drivers

Code tangling & scattering

36



Modularity Drivers

Code tangling & scattering

37

Using AOP allows you to solve 

these problems. 

It takes all the transaction code and 

puts it into a transaction aspect. 

Then, it takes all the tracing code 

and puts that into a tracing aspect. 

Finally, exception handling is put 

into an aspect.



Modularity Drivers 

Information hiding

Information hiding is the separation of a module into internal and external part. 

The internal part remains hidden from other modules, whereas the external part, the 

module’s interface, specifies the contract of how the module interacts with the rest of 

the system. 

Information hiding enables modular reasoning, and abstraction, which means that 

developers can reason about modules without knowing their internals.

When separating features, we also hide the internals of their implementation and make 

all communication between them explicitly on interfaces.

38



Modularity Drivers 

Information hiding

The key idea is to decompose a system into modules and to divide each module into 

an internal and an external part. 

The internal part is also known as the module’s 

secret that is hidden (or encapsulated) from 

other modules and typically represents the 

bulk of module’s code, whereas the external 

part describes a contract to the rest of the 

system and is known as an interface. 

39



Modularity Drivers

Reusability Concern

4 Ways to Make Your Code More Reusable:

1- Modularization makes code easy to understand and 

more maintainable. 

It allows easy reuse of methods or functions in a program 

and reduces the need to write repetitively.

All reason sited before support modular-reusable twinship

40



Modularity Drivers

Reusability Concern

Ways to Make Your Code More Reusable:

Cohesion is the degree of how two or more systems 

work together.

The lines of code in a method or function need to work 

together to create a sense of purpose. Methods and 

properties of a class must work together to define a 

class and its purpose. 

41



Modularity Drivers 

Reusability Concern

Ways to Make Your Code More Reusable:

Loose coupling makes your code more portable by 

allowing it to perform a function without external 

support. However, software with zero coupling will not 

function, and those with high coupling will be difficult to 

maintain. 

42



Modularity Drivers 

Reusability Concern

Ways to Make Your Code More Reusable:

Testing methods/Function. To achieve simpler, cleaner, 

faster implementation, think about the separate sets of 

preconditions for each function or method being tested.

Write a unit test for your classes. Let each test case 

method test a single function only. 

43



Modularity Drivers

Testability Concern

Statistically speaking, testing occupies 20 percent of the overall development time 

for a single-component application, 20 to 30 percent for a two-component 

application and 30 to 35 percent for an application with GUI*.

The main idea is to re-use the set of generated test artifacts between products of an 

SPL by considering their commonalities and variabilities.

Using many Model-Based Testing (MBT) techniques proposed for SPLs lead to more 

efficient testing of SPLs and hence having the possibility of performing more 

rigorous tests.

44* https://jaxenter.com/time-estimation-for-software-testing-128078.html



Modularity Drivers

Testability Concern

Model-Based Testing MBT* is a black-box

testing technique where common 

testing tasks such as test generation 

and test result evaluation are automated 

based on a model of the system under 

test (SUT).

Verify code or validate code, black or white box

for functional or attributes.

45

MBT for reusable test artifact as a SUT 

* https://www.cs.kau.se/cs/education/courses/davddiss/Uppsatser_2010/E2010-01.pdf



Modularity Drivers

Testability Concern

Test Coverage concept

The more Features are tested

The cost and time increase, but

The more coverage and the better

Is the fault grading quality.

For a domain with many features set can be a very complex challenge when 

considering the variability and commonality combinations.
46



Modularity Drivers

Traceability concern

Traceability improves the understanding of system variability, as well as support its 

maintenance and evolution.

With large systems the necessity to trace variability from the problem space to the 

solution space is evident. Modular SPL supports traceability and reduce its 

complexity, especially with a large features(f) domains (complexity 2f).

It allows a 1-to-1 mapping of variability of Feature model between the problem 

space and the solution space.

For large SPLs tracing helps better facilitating its maintenance and evolution

47



Modularity Drivers

Traceability concern

48

Table shows the traceability relation between the features and the components

FD of Component Model: Linux Virtual Machine Based System 

The main advantages of traceability are*: 
• to relate software artefacts and corresponding design decisions, 

• to give feedback to architects and designers about the current state of the development, 

allowing them to reconsider alternative design decisions, and to track and understand errors.

* https://hal.inria.fr/hal-01342351/document



Modularity Drivers

Traceability concern

One of the distinguishing features of Pure::Variants tool is the family model, which 

relates the features of the FM to the actual software components of the SPL. 

The family model is a hierarchical tree-like model, where components consist of 

parts that can have many pieces of sources. 

The components implement one or more features from the feature model, and the 

sources are actual source codes. elements.

49



Modularity Drivers

CD and DevOps Concern

Development and Operations (DevOps) and Continuous Delivery/Deployment (CD) 

are promising approach to develop and release SPLs at an accelerated pace.

The transformation towards DevOps is heavily influenced by software architecture 

decision. 

It is important to understand how an application should be re-architected to support 

DevOps. 

A conceptual framework was developed* to supplement the architecting process in a 

CD context through introducing the quality attributes that are required to design and 

deploy operations-friendly architectures.

50* https://arxiv.org/ftp/arxiv/papers/1808/1808.08796.pdf



Modularity Drivers

CD and DevOps Concern

Microservices architecture style with some design 

tactics offers a highly modular platform.

Achieving DevOps-driven architectures requires 

loosely coupled architectures and prioritizing 

deployability, testability, maintainability, and 

modifiability.

51



Modularity Drivers

CD and DevOps Concern

Re-architecting quality attributes of

Software architecture should have

Positive impact and promote DevOps 

And CD practices*.

This improvement would not be 

possible without decoupling, and 

separation of concerns at the modular 

level.

52
* https://arxiv.org/ftp/arxiv/papers/1808/1808.08796.pdf


