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Learning Objectives

⬥ Architecture styles for modularity

⬦ Reduce SPLs complexity

⬥ Robotics Modular Architecture

⬦ Modular autonomous Robots 
⬥ Feature-oriented programming

⬦ Mapping Modules with Features

Main Reference:
Feature-Oriented Software Product Lines: Concepts and Implementation, 
Sven Apel • Don Batory •Christian Kästner • Gunter Saake

Other publications (see slides for references) 2



Architectural Styles
Reduce SPLs complexity
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Architectural Styles 
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Where do Architectures Come From?

Method -Systematic way
• Efficient in familiar terrain

• Scalable and predictable outcome

• Not always successful

• Quality of the methods varies

Creativity –Intuition
• Fun!

• May yield the best result

• May be dangerous

• May be unnecessary

• Theft –Reuse System of the same kind



Example:
- client-server

- P-to-P

- Microservices

- layered

- Event-driven

Architectural Styles



System quality attributes which encompasses all -ilties

Architectural Characteristics



Define the rules for how a system should be constructed

Architectural Decisions

Example:

- SoC

- Information hiding

- Abstaction

- Security controls

- Data access

- Synchronization



A design principle is a guideline rather than a hard-and-fast rule 

Architectural Principles

Guidelines:

- Power consumption

- Documentations

- Test iterations & coverage



Architectural Styles
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Microservices
Popular for modularity, and fast CD

for DevOps, gained significant 

momentum in recent years due to 

mobile and cloud computing.

According to a recent O’Reilly radar 

survey on the growth of cloud computing, 

stated that 52 percent of the 1,283 

responses say they use microservices 

concepts, tools, or methods for software 

development.

https://www.oreilly.com/radar/cloud-adoption-in-2020/


Architectural Styles 
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Separate Decision: 
▪ the user interface (display/client)

▪ the business logic (server)

▪ the persistent state (database) 

of the system



Architectural Styles
Robotics Domain

Robot as an autonomous agent
An autonomous agent is a system situated within 

an environment that senses that environment and 

acts on it, over time, in pursuit of its own agenda 

and so as to affect what it senses in the future.

Applications:

Agriculture

Logistics

Search & rescue

11

Onboard sensors:

Camera

Sensors (location)

Infrared



A Layered Approach to Designing Robot Software

12http://www.ni.com/white-paper/13929/en/

Kinematics describes the 

motion of the bodies and 

deals with finding out 

velocities or accelerations 

for various objects.

An actuator is a component of a machine that is responsible 

for moving and controlling a mechanism or system, like motor.
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Robotics Modular Architecture

Let‘s Decompose the Problem: 

An autonomous robot needs to 

navigate in a complex environment

Need proper modular architecture



-Robotics Modular Architecture
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Most Simple Form: Sense, Compute, Control 



Robotics Modular Architecture
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A bit more Comprehensive: Sense, Plan, Act 

The job of the sensing system is to translate 

raw sensor input (usually sonar or vision 

data) into a world model. 

The job of the planner is to take the world 

model and a goal and generate a plan to 

achieve the goal. 

The job of the execution system is to take the 

plan and generate the actions it prescribes.



Robotics Modular Architecture
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Primitives of Robotics: Sense, Plan, Act 

The sense-plan-act (SPA) 

approach keeps intelligence 

of the system living in the 

planning or the programmer, 

not the execution mechanism.



Robotics Modular Architecture
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Disadvantages of Hierarchical Model 
• Planning–Computation requirements  is very slow 

• The “global world” representation has to contain all 

information needed for planning 

• Sensing and acting are always disconnected 

• The “global world” representation has to be updated

• The world model used by the planner has to be 

frequently updated to achieve a sufficient accuracy 

for the particular task 



Robotics Modular Architecture
Subsumption architecture
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Upper layers have precedence over 

lower layers and subsumes (absorb) 

the output of lower layers.
Mobile Robot can use layers of a control 

system for each level of competence and 

simply add a new layer to an existing set 

to move to the next higher level of overall 

competence.

Additional layers can be added later, to 

add complexity (more features)

The subsumption architecture does not allow for any 

shared memory or other communication between the 

layers, making it impossible for the layers to cooperate 

in order to achieve a common goal



Robotics Modular Architecture
Subsumption architecture
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A module has input and output lines. Input signals can be 

suppressed and replaced with the suppressing signal. Output 

signals can be inhibited. A module can also be reset to state NIL.



Robotics Modular Architecture
Subsumption architecture
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The lowest level layer of control makes sure that the robot 

does not come into contact with other objects. It thus achieves 

level 0 competence. If something approaches the robot it will 

move away

The most important problem we found 

with the Subsumption architecture is that 

is it not sufficiently modular. 

Because upper layers interfere with the 

internal functions of lower-level behaviors 

they cannot be designed independently 

and become increasingly complex. 



Robotics Modular Architecture
Deliberative planner decomposed into features
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Subsumption layers decomposed into features



Robotics Modular Architecture
Decompose system into three layers*
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Why three layers? Different kinds of decisions 
• need to plan future

• need to remember past 

• need sensors input

so, three layers:
• Deliberative Planner: plans

• Sequencer: saves past

• Reactive control: stateless sensor/actuators

* https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.9376&rep=rep1&type=pdf



Robotics Modular Architecture
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The Deliberator
The key architectural feature of the deliberator is that several

behavior transitions can occur between the time a deliberative 

algorithm is invoked and the time it produces a result. 

The pure deliberative architectures have some unresolved issues 

regarding symbolic representation of the agent’s environment.

The deliberator can produce plans for the sequencer to execute, or it can 

respond to specific queries from the sequencer. 



Robotics Modular Architecture
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The Sequencer

The sequencer's job is to select which primitive Behavior 

(i.e. which transfer function) the controller should use at 

a given time, and to supply parameters for the Behavior. 

The sequencer must be able to respond conditionally to the current situation. 

One approach to the problem is to enumerate all the possible states the robot 

can be in, to use in each state.



Robotics Modular Architecture
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The Reactive Controller Layer

The controller consists of one or more threads of computation 

that implement one or more feedback control loops, tightly 

coupling sensors to actuators.

Usually the controller contains a library of hand-crafted transfer functions 

(called primitive behaviors or skills).

There are several important architectural constraints on the algorithms that go 

into the controller to provide a desired behavior.



Robotics Modular Architecture
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World state component

The world state component is a shared memory 

for the layers. 

At the beginning of each turn the world state 

data are sent to Layer 1. The layer is able to

alter the world state by sending an abstract wish 

with the desired change to the world state 

component. The world state component then 

fulfills the abstract wish by updating the world 

state according to the wish. The world state data

are then sent to Layer 2, and so on. 

A closer look at a subsumption layer 

showing the flow between modules 

inside layer-i. 

Layer-1 does not receive any wish flow.



Robotics Modular Architecture
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The hybrid architecture, shown in the Figure* is 

based on three components:
• world state component, subsumption layers component 

and an arbitrator component. 

• The architecture has two types of flow: data flow and 

wish flow.

• The data flow carries sensor input to the layers, data 

from the world state component to the layers and 

actions from the arbitrator to the actuators. 

• The wish-flow is a special kind of flow between each 

layer in the architecture, from the top layer to the 

arbitrator and from the layers to the world state 

component.

• The layers create a wish list for the arbitrator to convert 

into actions. This wish list is carried by the wish flow. * DAT3 REPORT Applying Machine Learning to Robocode Morten 

Gade Michael Knudsen Rasmus Aslak Kjær Thomas Christensen 



Robotics Modular Architecture
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The hybrid architecture, shown in the Figure

The previous hybrid architecture modules maintain a model of Aalbot’s environment in the world state 

component.

Table of Enemy Information 

Aalbot needs to keep information of the enemy robots in the arena. These data are kept in a table of 

enemy information. The table is indexed by a unique robot identifier. 

For each robot, e, on the battlefield the following fields exist in the table: 

• Position. The (x, y) coordinates of e at the time e was scanned. 

• Energy. The energy of e at time of scan. 

• Heading. The direction that e was facing at time of scan. 

• Velocity. The velocity of e at time of scan. 39 40 World State Component 

• Time stamp. The time at which the information was last updated, i.e. time of last radar scan of e



Robotics Modular Architecture
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In a), Aalbot, identified by a scans a robot r and updates 

its fading memory target map. 

Each square between dotted lines represent a slot, white

squares indicate zero probability of a robot in this area, 

black squares indicate a probability of 1 that this slot holds 

a robot. Grey squares represent values between 0 and 1.

The radar cone of Aalbot is shown as the lines originating

from a. In b), the Aalbot and robot r are depicted in 

another situation. Aalbot has moved its radar so it does not 

scan r  in this turn. However Aalbot updates its target map 

to reflect the new possible positions of r.



Robotics Modular Architecture
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IBM’s Autonomic Architecture IBM MAPE-K* (Monitor, Analyze, Plan, Execute, Knowledge)

MARE-K consists of five main components 

which, form a loop, as shown in Figure:

Monitor. 

Analyze

Planning component

Execution component

Knowledge (adaptation logic)

The input to the MAPE-K architecture comes 

from the sensory mechanism, while the 

effector mechanisms carry out the action.

* https://www.sciencedirect.com/topics/computer-science/autonomic-computing



Robotics Modular Architecture
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IBM’s Autonomic Architecture IBM MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge)

The Monitor. monitor the surrounding environment, including system resources. 

The Analyze component, uses a number of algorithms to anticipate problems and 

possibly proffer solutions to these problems.

The Planning component uses the information available to the autonomic system 

to choose which, policies to execute. 

The Execution component, effects the most appropriate policy/policies chosen by 

the system to cause a change in the physical environment 
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Robotics Modular Architecture
Decentralized, Collaborative, and Autonomous Robots*

This research developed an architecture for robot applications “Self adaptive

dEcentralized Robotic Architecture” SERA*, that supports human-robot 

collaboration, as well as adaptation and coordination of single- and multi-robot 

systems in a decentralized fashion. 

SERA is based on layers that contain components that 

manage the adaptation at different levels of abstraction 

and communicate through well-defined interfaces.

It uses similar architecture to MAPE-K

*”An Architecture for Decentralized, Collaborative, and Autonomous Robots” Sergio Garc´ıa∗ , Claudio Menghi∗ , Patrizio Pelliccione∗ , 

Thorsten Berger∗ , Rebekka Wohlrab∗† ∗Chalmers | University of Gothenburg, Gothenburg (Sweden) † Systemite AB, Gothenburg (Sweden)
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Robotics Modular Architecture
Decentralized, Collaborative, and Autonomous Robots*

SERA promotes engineering and integration of robotic applications developed by 

different vendors. It also supports Decentralization:

▪ Allows managing large teams of robots. 

▪ Facilitates, through loose coupling, the addition, and removal of robots.

▪ Minimizes the cost of changes since the responsibility of every action is within 

single robot that observes its environment and acts on events autonomously.

▪ Facilitates data-centric workflows since data are passed directly to where they 

are required, at the next robot in the workflow.

▪ Increases robustness and decreases system vulnerability (e.g., reducing single 

points of failure)
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Robotics Modular Architecture
Decentralized, Collaborative, and Autonomous Robots

Instance of SERA architecture of 4 collaborating Robots, Central station, and 3-Layered architectures

Decoupled collaborating Robots
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Robotics Modular Architecture
Decentralized, Collaborative, and Autonomous Robots

Central Station
Interprets high-level mission specifications, provides an interface to specify high-level missions 

of the application in the component. The global mission to be achieved by the whole team in 

a collaborative manner—checks the feasibility of the mission.

Mission Management Layer
Local mission specifications, incorporate real-time constraints, provided to each robot by 

means of timed temporal logic formulae. which is compliant with their dynamic behavior.

Component Control Layer
Provides the control actions required for the implementation of discrete paths that are 

generated by a high-level planner. 



Robotics Modular Architecture
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This is a summary of the milestones this project has achieved and the use cases*: 

Use case 1: Achieving complex collaborative mission via decentralized control and 

coordination of interacting robots 

Use case 2: multi-robot coordination for loading and unloading packages 

Use case 3: multi-robot coordination for dynamic production assistance

*The EU Commission's Innovation Radar highlights 9 innovations developed by Co4Robots as key for the robotics state-of-the-art! 

Find them by searching “Co4Robots” at: https:www.innoradar.eu/

Video demo can be found here: http://www.co4robots.eu/

https://www.innoradar.eu/
Robo Demo Co4Robot.mp4


Feature-Orientation
Mapping Modules with Features
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Feature-Orientation

Solve the problems: 
⬥ Feature Traceability

⬥ Feature Separation

⬥ Collaboration & Roles

⬥ Feature Modularity

38

Feature-oriented programming is an approach for building 

software product lines that relies directly on the notion of 

features. 

The idea is to decompose a system’s design and code into the 

features it provides. This way, the structure of a system aligns with 

its features, ideally, one module or component per feature. 

To this end, new language constructs are needed to express which 

parts of a program contribute to which features and to encapsulate 

the feature’s code in composable, modular units.



Feature-Orientation
Feature Traceability

Feature traceability is the ability to trace a feature from the problem space (feature 

model) to the solution space, and vice versa (its manifestation in design and code artifacts).

The whole idea of feature-orientation and feature-based product derivation depends 

on establishing and managing the mapping between the problem and the solution 

space, in our case, between features and their implementation artifacts.

39



Feature-Orientation
Feature Traceability

Refers to the ability to localize all implementation artifacts of a feature at one location 

in the codebase. Features are explicitly represented in the code

If feature code is not properly separated in terms of dedicated units (for example, 

one feature is implemented as part of many components of a system), feature 

traceability is impaired.

40



Feature-Orientation
Feature Traceability
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In SPL development, feature-

oriented traceability is expected 

to map features to SPL designs 

and implementation elements, 

including commonalities and 

variations, to enable feature-

oriented product derivation and 

evolution.



Feature-Orientation
Feature implementability
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Every product represented in the 

feature model can be implemented 

using the existing assets considering 

the implementability relation, which 

associates each feature in the scope 

with a set of core assets that are 

required for implementing the 

feature(s).

Optimize implementability aiming for high map coverage of features over artifacts.



Feature-Orientation
Feature tangling
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Feature tangling and scattering have negative impacts on the system’s 

implementability and maintainability.

When separating features into distinct artifacts, developers can easily find all code

related to that feature for maintenance or evolution tasks. Related pieces of code 

are implemented together, which is known as cohesion. 

Due to the scattering and lack of cohesion, it can be nontrivial to trace a feature to 

the code fragments that are implementing it.



Feature-Orientation
Modularity of Feature-Oriented Programming
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Language-based approach to overcome the feature traceability problem

where every feature implemented through a feature module*

• Good feature traceability

• Separation and modularization of features

• Simple feature composition

The core idea of feature-oriented programming was to use features as an 

additional dimension of decomposing a program.

* Christian Prehofer. "Feature-oriented programming: A fresh look at objects." ECOOP'97—Object-Oriented Programming. 1997. Don 

Batory, Jacob Neal Sarvela, Axel Rauschmayer. "Scaling step-wise refinement." International Conference on Software Engineering. 2003



Feature-Orientation
Modularity of Feature-Oriented Programming
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• When decomposing a program into features, the individual parts are typically 

called feature modules.

• The idea is to place everything related to a feature into a separate structure 

(file or folder), which is then called feature module.

• Most concepts and tools in feature-oriented software development follow this 

notion of modularity, focusing on locality and cohesion.

• In very large SPLs and features variations, 2f , then modularity of features 

becomes so critical, especially in agile development environment.



Feature-Orientation
Separation of Classes
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Features often realized by multiple classes, Classes often realized more than one 
feature, Keep class structure, but separate classes by features.



Feature-Orientation
Class & Feature refinements*
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Feature refinement — module that encapsulates the implementation of a feature.

A feature refinement encapsulates not an entire method or class, but rather fragments of 

methods and classes.

Figure 1 depicts three classes, c1—c3. Refinement r1 cross-cuts these classes, i.e., it 

encapsulates fragments of c1—c3. The same holds for refinements r2 and r3. Composing 

refinements r1—r3 yields a set of fully-formed classes c1—c3. 

Feature refinements are often called layers

In general, feature refinements are modular, 

though unconventional, building blocks of 

programs.

*Generating Product-Lines of Product-Families Don Batory, Roberto E., 

Jean-Philippe Martin Department of Computer Sciences UTA.



Feature-Orientation
Collaborations & Roles* 
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Collaboration-based design is a fundamental technique to decompose systems into 

collaborations. A collaboration is a set of interacting classes, each class playing a distinct role, 

to achieve a certain function or capability.

Typically, a software system consists of multiple collaborations implementing multiple features. 

So, a class often participates in the implementation of multiple features.

Separating the different roles of a class as well as bundling all roles (the responsibilities a class 

takes in a collaboration) that belong to a collaboration are key objectives of collaboration-

based design and feature-oriented programming.

* Feature-Oriented Software Product Lines, ch.6 



Feature-Orientation
Collaborations & Roles 
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a sample collaboration-based design is shown below, it is inspired by the graph library. The 

diagram uses UML-like notation with some extensions: rows (grey boxes) denote collaborations; 

white boxes represent classes or roles; solid arrows (that link classes column-wise) denote the 

application of a new role to a class.

Collaboration BasicGraph consists of the classes

Graph, Edge, and Node, which together provide 

the functionality to construct and display graph 

structures. Collaboration Weighted adds roles to 

the classes Graph and Edge as well as a new 

class Weight; which extends the graph 

implementation to support weighted edges.



Feature-Orientation
Collaborations & Roles 
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Collaboration can be viewed as a set of 

classes that interact with each other to 

realize a feature:

•Different classes represent different roles 
within a collaboration

•A class represents different roles in 

different collaborations

•A role encapsulates the 

behavior/functionality of a class that is 

relevant for a collaboration 


