
Lecture 1: Complexity and
Software Product Lines

Gregory Gay
(Portions of the slides by Thorsten Berger)
TDA 594/DIT 593 - November 2, 2021

2

Covid-19 Safety Procedures
• We will try to be flexible!

• E-mail ggay@chalmers.se if you have concerns.

• Lectures
• In-person or streamed (see Canvas).
• We will monitor chat in livestream for questions.
• STAY HOME if you are sick (with anything)!
• Maintain distance in classroom if possible.

mailto:ggay@chalmers.se

3

Covid-19 Safety Procedures
• Supervision and Group Work

• Can conduct supervision sessions online or in-person.
• Be flexible in how you meet with other students.
• Do NOT meet your group if you have any symptoms.

• Vaccination
• Seriously. Get vaccinated. Come on.
• Kry have walk-in clinics on campus.

4

In the beginning...

Software Was Small
• Both physically…

• And in scope.

5

Software Starts to Grow Up
• Languages like C introduce file linking.

• Enables organization of code and reuse of code.

• SIMULA-67, Smalltalk introduce objects.
• Enables organization of code into focused units that work

with other objects to perform larger tasks.
• Sections of the code “activate” when needed.
• We can group together related functionality, ignore unrelated

functionality, and find what we need when making changes.
• Code can be reused in future projects.

6

7

Fast forward to the present day...

Our Society Depends on Software
This is software: So is this:

 Also, this:

 8

Under the Hood
• Systems have millions of

lines of code.
• In hundreds of classes.

• We want to reuse code.
• On different hardware.
• In many different apps.

• We want the systems to live for years.

9

Growing Pains
• Hard to understand complex systems.
• Hard to find the code you need.
• Hard to plan for new hardware, new variants, ...
• Results in chaos.

• Only 16.1% of projects delivered on time.
• 31.1% cancelled before delivery.
• Delivered projects may be flawed.

10

Designing Modern Software
• The key to delivering robust software?

• Designing an understandable, organized system.
• Verifying that features of the system interact correctly.
• AKA: “taming the complexity”

• This course is about taming complexity.
• Exemplified primarily through software product lines.

11

2018-08-27 Chalmers University of Technology 12

Today’s Goals
Introduce TDA 594/DIT 593 - Software Engineering
Principles for Complex Systems
● AKA: What the heck is going on?
● Go over syllabus
● Clarify course expectations
● Assignments/grading
● Answer any questions
● Discuss software complexity
● Introduce the concept of software product lines

13

TDA/DIT 594 - SE Principles for Complex Systems

14

Complex???????????
• Variability

• The ability to change and customize software to deliver
variants to new users.

• Requires designing code to be reused and to work with
reused code.

• Changeability and Maintainability
• The ability to add new features and options while

ensuring that existing code still works.

15

Software Product Lines
• Highly configurable families of systems.
• Built around common, modularized features.

• Common set of core assets.

• Allows efficient development, customization.
• Examples:

16

Why Software Product Lines?
• Designed FOR reuse of assets.
• Designed TO reuse assets.
• Successful SPLs are highly configurable, and

evolve easily over time.
• Most modern systems intend to achieve at least

one of these two tasks. SPLs achieve both.

Learning Outcomes
Knowledge and understanding
• Explain the challenges of engineering complex systems
• Explain industrial practice and examples of complex software

systems engineering
• Explain processes and concepts for engineering complex

and variant-rich software systems
• Explain business-, architecture-, process-, and

organization-related aspects of engineering complex systems

17

18

Desired Course Outcomes
Skills and abilities
• Model a system from different perspectives
• Engineer a variant-rich system
• Analyze and re-engineer a complex system
• Use and reason about modularization techniques to

increase cohesion and reduce coupling
• Use modern component or service frameworks

19

Desired Course Outcomes
Judgement and approach
• Analyze existing systems and discuss possible

improvements or re-engineering potential
• Reason about software modularity concepts
• Recognize the situations in which certain of the taught

principles are appropriate
• Read and analyze scientific literature

20

Teaching Team
• Examiner

• Greg Gay (ggay@chalmers.se) (Course Responsible)
• Supervisors

• Mukelabai Mukelabai (muka@chalmers.se)
• Mazen Mohamad (mazenm@chalmers.se)
• Wardah Mahmood (wardah@chalmers.se)
• Shameer Kumar Pradhan (kumarsh@student.chalmers.se)

mailto:ggay@chalmers.se
mailto:muka@chalmers.se
mailto:mazenm@chalmers.se
mailto:wardah@chalmers.se
mailto:kumarsh@student.chalmers.se

21

Student Representatives
• We want 5-6 Student

Representatives
• Interested?

• E-mail ggay@chalmers.se if
you want to volunteer.

• We will pick random
students if not enough
volunteers.

mailto:ggay@chalmers.se

22

Feedback! Questions!
• Ask questions in Canvas discussion forum.

• If private, contact teachers (about lectures), supervisors
(assignments).

• If highly sensitive, contact me (Greg Gay)
• Course feedback should be sent to student

representatives.
• Send feedback early and often!

Course Content
• https://chalmers.instructure.com/courses/16077

• All lectures, files, reading goes here.
• Pay attention to the schedule/announcements.

• https://greg4cr.github.io/courses/fall21tda594/
• Backup of Canvas page/course materials.
• Likely out of date, but may work if Canvas isn’t

working.

23

https://chalmers.instructure.com/courses/16077
https://greg4cr.github.io/courses/fall21tda594/

24

Course Literature
• Apel, S., Batory, D., Kästner, C., & Saake, G. Feature-oriented

software product lines.
• Van der Linden, F. J., Schmid, K., & Rommes, E. Software product

lines in action: the best industrial practice in product line
engineering.

• Freeman E, Robson E., Bates B., & Sierra, K. Head First Design
Patterns.

• Free via Chalmers library.

• Pezze M., Young M. Software Testing and Analysis: Process,
Principles, and Techniques

• Free via https://ix.cs.uoregon.edu/~michal/book/free.php

• Additional literature will be provided via Canvas.

https://ix.cs.uoregon.edu/~michal/book/free.php

25

Course Design
• Language of Instruction: English
• Lectures

• Tuesday and Thursday, 13:15 - 15:00.
• Attendance is highly recommended.
• In-person and streamed (see Canvas for link).

• Supervision
• Once per week, mandatory attendance.

26

Changes Since Last Occasion
• Lectures topics have been revised.

• Some topics dropped and replaced with more relevant
material.

• Revisions to existing slides for clarity.

• Assignments have been revised.
• Streamlined group assignments.
• Assignment content has been substantially revised.
• Changes to format and grading of individual assignment.

27

Examination Form
• Group Project

• 6.0 Credits, Scale: 3-5 and Fail (U)
• 4-5 assignments
• Groups of 6-7 students
• Correspond to topics covered in

the lectures
• Case Studies, Domain Analysis,

Modeling, Implementation, Testing of
Software Product Lines.

28

For information about Robocode, see https://robocode.sourceforge.io/ and the
RoboWiki (https://robowiki.net/wiki/Main_Page).

https://robocode.sourceforge.io/
https://robowiki.net/wiki/Main_Page

29

Forming Groups (Assignment 0)
• You may choose your groups.

• 6-7 people
• Submit one e-mail per group to ggay@chalmers.se

• Names of all members. I will reply with a group number.

• Indicate in Canvas submission either team number
or if you want to be assigned to a team.

• Due Thursday, November 4, 11:59 PM

mailto:ggay@chalmers.se

30

Examination Form
• Written Assignment

• 1.5 credits, Grading scale: 3-5 and Fail (U)
• One assignment, at end of course.
• Exam-like questions to assess critical understanding.

• All assignments must be submitted.
• Final grade in group project is average of

assignment grades.
• Rubrics provided for each assignment.

31

Failing and Resubmission
• Late assignments:

• -20%/loss of a grade level (5->4) (1 day), 40%/loss of two
levels (5->3) (2 days), fail (3+ days).

• If final group average is failing, all group
assignments must be resubmitted.

• If any assignment is failed, may resubmit two times.
• Resubmissions due <= 1 month after course completion.
• Must provide a changelog and explanation.

Other Policies
Integrity and Ethics:
Homework and programs you submit for this class must be entirely your own. If
this is not absolutely clear, then contact me. Any other collaboration of any type
on any assignment is not permitted. It is your responsibility to protect your work
from unauthorized access. Violation = failing grade and reporting.

Classroom Climate:
Arrive on time, don’t talk during lecture, don’t use chat unless asking or
answering questions. Disruptive students will be warned and dismissed.

32

Other Policies
Diversity
Students in this class are expected to work with all other students, regardless
of gender, race, sexuality, religion, etc. Zero-tolerance policy for discrimination.

Special Needs
We will provide reasonable accommodations to students that have disabilities.
Contact teaching team early to discuss individual needs.

33

34

Let’s take a break!

35

Complexity and Variability

36

A Fairy Tale

37

Why Isn’t the Fairy Tale True?
• The Law of Continuing Change

• A program used in a real-world environment must
change, or become progressively less useful in that
environment.

• The Law of Increasing Complexity
• As a program evolves, it becomes more complex, and

extra resources are needed to preserve and simplify its
structure

38

Development at Google

39

Development at Google
• >30,000 developers in 40+ offices
• 13,000+ projects under active development
• Single code tree with mixed language code

• All builds from source
• 30k commits per day (1 every 3 seconds)
• 30+ sustained code changes per minute with 90+ peaks
• 50% of code changes monthly
• Requires execution of 150+ million test cases / day

40

Customization

Customization Standardization

Replaceable Parts

Hand-Crafting Assembly Line

Automated Assembly LineProduct Lines

41

Mass Customization
Volvo XC90

Choose your engine...

Choose your color.

Select bonus features.

42

BMW X3, Scania Fuel Indicator

43

Number of Variants Explodes
• 30 years ago: Mass Production

• Few extras (alternative cassette player or roof rack)
• Single variant (Audi 80, 1.3l, 55hp) 40% of all sales

• Now: Mass Customization
• 1020 configurations at Audi, 1032 configurations at BMW

• 100 different undercarriages, 50 steering wheels
• Identical configurations are rarely produced

• This is OK because of shared assets.

44

The Sandwich Shop
● Sandwiches are

build to match
customer requests.

● Not arbitrary.
Customer chooses
from a set of
successive choices.
○ Meats, toppings,

sauces.
○ Shared assets.

45

Customized Computers

46

Standardized Software

• Industry agreed on standard platforms
• Ex: Excel instead of your own spreadsheet program.

• Tries to satisfy the needs of most customers.
• For most customers, many features are not needed.
• Can lead to software that is hard to use, slow, buggy.
• May still be missing features, not support hardware, ...

47

Customized Software
• Personalization

• individual requirements, look & feel, special algorithms

• Hardware
• robots (sensors and actuators), computers (hardware devices)

• Resource restrictions
• energy consumption, performance, memory demand

• Software and product quality
• usability
• maintenance/verification/validation effort grows with functionality

48

Complexity Grows in Time and Space

time (revisions)

space (variants)

branch

branch

49

Variability Adds Complexity

50

Variability in Software Ecosystems

 eCos Linux Kernal Eclipse Debian Android

What: embedded OS, OS kernal, IDE, desktop/server OS, mobile OS

Customization: config options, config options, add-ons, packages, apps (event handling)

51

Variability in Software Ecosystems

 eCos Linux Kernal Eclipse Debian Android

Options 2.8K 13K > 7K 28K > 3.3M

52

Controlling Variability
• Variability mechanisms introduced controlled

points where customization can occur.
• called variation points

• Variation points determine the concrete software
variants that can occur.
• In a closed system, we know how many variants are

possible (Linux kernal)
• In an open system, we cannot know all possible variants

• (Android - ex: different apps can be bound to variation points)

53

Variability Mechanisms
• Linux and eCos use feature models

• Hierarchical menus of config options
• Centralized list of options, constraints limit combinations.

• Debian and Eclipse use manifest-based packages.
• Structured metadata about the options.
• Version info, dependencies, categorization.
• Central repositories

• Android uses service-oriented apps.
• Provide a common interface and constraints on capabilities
• Hook to concrete apps at run-time.

54

Variability Management
• Friction between managing variability and

encouraging it.
• Management allows control of scope, limitation of number

of variants.
• However, encouragement unleashes innovation and

encourages competition.

• Many options we will cover in class will help
manage and control variability.

55

Software Product Lines

56

Software Customization
Build Independently Clone & Own Shared Assets

57

Software Product Lines
• Build variants from reusable shared assets.

• Customers select from configuration options.
• Assets = code components, interfaces, other resources.

• Enables customization, while retaining benefits of
mass production.
• Avoids explosion in “space” as we manage the portfolio

of assets instead of each individual variant.

58

Feature-Oriented Approach
• Features distinguish products from a product line.

• Editor Version A has spell-check. Version B does not.
• E-mail client A supports IMAP and POP3. Client B

supports only POP3.

• Product line artifacts and process structured around
features and feature interactions.
• Discuss control, implementation, verification of features.
• Connects requirements to customizations in code.

59

Example: Linux Kernal
• > 8M Lines of Code
• Supports > 22 hardware architectures
• > 13,000 configuration options

60

Ex: Linux Configuration Tools
• Kconfig used to

tailor Linux kernal
for custom use.

• Compiles a custom
Linux kernal with
only the selected
options.

• Omits unnecessary
or incompatible
features.

61

Configuration Options
• Linux kernal customization managed

through a feature model.
• Configuration options are features.
• Constraints are used to prevent illegal

combinations.
• #IFDEF in C/C++ allows conditional

compilation.
• If we select this option, the contained

code will be compiled into the custom
build. If not, it is omitted entirely.

• Unique build tailored to choices.

62

Constraints on Features
#ifdef ASH
 #ifdef NOMMU
 #error “... ASH will not run on NOMMU”
 #endif

 #ifdef EDITING
 void init() {
 initEditing();
 int maxlength = 1 *
 #ifdef EDITING_MAX_LEN
 EDITING_MAX_LEN;
 #endif
 }
 #endif
#endif

Preprocessor error if:
(ASH ∧ NOMMU)

Parser error if:
(ASH ∧ EDITING ∧ ¬ EDITING_MAX_LENGTH)

Feature models prevent these errors via feature constraints.

63

Benefits of Product Lines
• Products tailored to specific customers.
• Reduced costs, fast start-up, reduced complexity

through asset reuse.
• Slower initial effort, but it pays off quickly.

• Improved quality from testing assets in isolation.
• Frequently used assets will be heavily tested over time.

• Can quickly produce new variants or change
variants to respond to market conditions.

64

Success Stories
• Boeing
• Bosch Group
• Cummins, Inc.
• Ericsson
• General Dynamics
• General Motors
• Hewlett Packard
• Lockheed Martin
• Lucent
• NASA
• Nokia
• Philips
• Siemens
• Volvo
• … (more success stories at https://splc.net/fame.html)

https://splc.net/fame.html

65

Hewlett Packard Printer Firmware
• > 2000 features
• Hundreds of printer models.
• Production costs reduced by 75%.
• Development time reduced by 33%.
• Reported defects reduced by 96%.

We Have Learned
• Modern software is complex!

• Variability: The ability to change and customize software
to deliver variants to new users.

• Changeability and Maintainability: The ability to add new
features while ensuring that existing code still works.

• Software must evolve to remain useful.
• Evolution introduces additional complexity.

• Software Product Lines are designed to enable and
take advantage of reuse.

66

Next Time
• Introduction to Domain and Application Engineering

• Plan your team selection.
• The earlier, the better!

• Due Thursday, November 4, 11:59 PM.
• 6-7 people, e-mail names to ggay@chalmers.se
• Submit group number or desire to be assigned to a team

on Canvas.

67

mailto:ggay@chalmers.se

