CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Gregory Gay
TDA 594/DIT 593 - December 2, 2021

) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Today’s Goals

* Discuss testing at the system level.
« System (Integration) Testing versus Unit Testing.

 Introduce process for creating System-Level Tests.
 |dentify Independently Testable Functionality
+ |dentify Choices (AKA variation points)
 |ldentify Representative Values for each Choice
* Generate Test Case Specifications
» Generate Concrete Test Cases

g‘_o-&_ﬁ RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Software Testing

* An investigation into system quality.

« Based on sequences of stimuli and
observations.
« Stimuli that the system must react to.
« Observations of system reactions.
* Verdicts on correctness.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

if O_= Expetest(ipputs
then P(?/ “stimulate” the lﬁ&t (ﬂﬁggle
- ESIRB)

. request, GUI e]L%"vae check the correctness of the
else... Fall resulting observation (assertions).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Anatomy of a Test Case

e |nitialization
* Any steps that must be taken before test execution.

e Test Steps

 |nteractions with the system, and comparisons between
expected and actual values.

e Tear Down
* Any steps that must be taken after test execution.

oo

i) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Testing Stages

* We interact with systems
through interfaces.
« APIls, GUIs, CLlIs

« Systems built from subsystems.
» With their own interfaces.

« Subsystems built from units.
« Communication via method calls.
 Set of methods is an interface.

oo

JANY R
g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

Testing Stages
* Unit Testing

Do the methods of a class work?

e System-level Testing

 System (Integration) Testing
« (Subsystem-level) Do the collected
units work?
« (System-level) Does high-level
interaction through APIs/Uls work?
 Exploratory Testing

* Does interaction through GUIs work?

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Unit Testing

Testing the smallest “unit” that can be tested.
 QOften, a class and its methods.

Tested in isolation from all other units.
« Mock the results from other classes.

Test input = method calls.
Test oracle = assertions on output/class variables.

#%) CHALMERS |

) UNIVERSITY OF GOTHENBURG

Unit Testing

 For a unit, tests should:

« Test all “jobs” associated with the unit.

« Individual methods belonging to a class.
« Sequences of methods that can interact.

 Set and check class variables.

« Examine how variables change after
method calls.

« Put the variables into all possible states
(types of values).

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

_ CHALMERS |) UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Some tests we might want to write:

Account
-~ name « Execute constructor, verify fields.
Naciechiiiing « Check the name, change the name,

make sure changed name is in place.

Account (name,

oersonnummer, Balance) » Check that personnummer is correct.
withdraw (double amount) ° CheCk the balanCe, WlthdraW money,
deposit (double amount) verify that new balance is correct.
changeName(String name) _

getName() « Check the balance, deposit money,
getPersonnummer()

getBalance() verify that new balance is correct.

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Some potential error cases:

Account
name Withdraw more than is in balance.
- bersonnummer « Withdraw a negative amount.
- balance

« Deposit a negative amount.

Account (name, _ .
personnummer, Balance) « Withdraw/Deposit a small amount

ntial rounding error
withdraw (double amount) (pOte tial round ge O)

deposit (double amount) « Change name to a null reference.
changeName(String name)

getName() « Can we set an “malformed” name?
getPersonnummer()

getBalance() * (i.e., are there any rules on a valid name?)

CHALMERS %)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

« Withdraw money, verify balance.

Account
Each test is « Name based on type of scenario, and expectation
_name @Test on outcome.
i ge{sonnummer public void testWithdraw_normal() {
R // Setup Initialization

Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
// Test Steps
double toWithdraw = 16.0; //Input Input lest Steps

Account (name,
personnummer, Balance)

withdraw (double amount) account.withdraw(toWithdraw);

deposit (double amount) double actual = account.getBalance();
changeName(String name) double expectedBalance = 32.5; // Oracle | Oracle
getName() assertEquals(expected, actual); // Oracle
getPersonnummer() }

getBalance()

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

« Withdraw a negative amount.

Account
* (should throw an exception with
- name appropriate error message)
- personnummer @Test
- balance public void testWithdraw_negative() {
// Setup
Account (name’ Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
personnummer, Balance) // Test Steps

) double toWithdraw = -2.5; //Input
withdraw (double amount)

deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Throwable exception = assertThrows(
() -> { account.withdraw(toWithdraw); });
assertEquals(“Cannot withdraw a negative amount: -2.50”,

exception.getMessage()); // Oracle

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

System Testing

 After testing units, test their integration.
* |ntegrate units in one subsystem.
* Then integrate the subsystems.

» Test through a defined interface.

* Focus on showing that functionality accessed through
interfaces is correct.

« Subsystems: “Top-Level” Class, API
« System: API, GUI, CLI, ...

(&86) CHALMERS | ({8})) UNIVERSITY OF GOTHENBURG

il UNI

System Testing

Subsystem made up classes
of A, B, and C. We have
performed unit testing...

« Classes work together to
perform subsystem functions.

« Tests applied to the interface of
the subsystem they form.

 Errors in combined behavior not
caught by unit testing.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Unit vs System Testing

* Unit tests focus on a single class.
« Simple functionality, more freedom.
 Few method calls.

« System tests bring many classes together.
« Focus on testing through an interface.

* One interface call triggers many internal calls.
+ Slower test execution.

« May have complex input and setup.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Interface Errors

* |nterface Misuse
« Malformed data, order, number of parameters.

* Interface Misunderstanding
* Incorrect assumptions made about called component.
* Abinary search called with an unordered array.

* Timing Errors

* Producer of data and consumer of data access data in
the wrong order.

;{," 4 T & T “"’&
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Testing Percentages

« Unit tests verify behavior

of a single class.
« 70% of your tests. ity

« System tests verify class oo ine .
interactions. Jenuaang
« 20% of your tests.
end-to-end journeys. - .
* 10% of your tests. #of tests

«;-o-‘i‘, :‘fmnn,%&
;? CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

T («"

Testing
» 70/20/10 recommended. s

« Unit tests execute quickly, I ﬂ

relatively simple. - .

of tests

« System tests more complex, require more setup,
slower to execute.

« Ul tests very slow, may require humans.

+ Well-tested units reduce likelihood of integration
Issues, making high levels of testing easier.

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

8 /
- f
== ‘7‘
y/ 9.
g

Writing Integration and Ul Tests

» Testing framework depends on language and
interface type.
* Android: JUnit (Integration - AndroidX, Ul - Espresso)
« RESTful API: Postman

 Browser-based GUI: Selenium

UNIVERSITY OF GOTHENBURG

1 Uses Espresso testing libraries to
An d ro I d U I TeSt interact with Views and Intents.
(Part of AndroidX)
@Test
public void successfullLogin() {

LoginActivity activity =

ActivityScenario.launch(LoginActivity.class);
onView(withId(R.id.user_name)).perform(typeText(“test_user”));
onView(withId(R.id.password))

.perform(typeText(“correct password”));
onView(withId(R.id.button)).perform(click());
assertThat(getIntents().first())

.hasComponentClass(HomeActivity.class);

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

GET pm.test ® 4 oo
» pm.test
GET i\ https://postman-echo.com/get?foo1=bar1&foo2=bar2 Test Ste F' + In put
® (7) Tests ®

1~ pm.test("Status test", function O { T 0 I E(”

s pm.response.to.have.status(200);

El) eSt racle pm.response.to.not.be.error;
pm.response.to.have.
pm.response.to.not.have.

)i
(1) Hea (9) TestResults (1/1) Status: 200 OK
All

PASS Status test

K /
- f
B ‘7‘
y/ 9.
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

System-Level Tests and SPLs

» Variabllity is a system-level concept.

* Feature options tend to be entire classes or subsystems.
e Unit testing during domain engineering.

» Assets tested in isolation.

« Many interaction errors between features,
depending on chosen options.
 System testing during application engineering.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Creating System-Level Test Cases

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Creating System-Level Tests

Identify an Independently
Testable Function

Identify a function that can be tested in (relative) isolation.

. . Identify controllable aspects of the input and environment
Identify Choices] that determine the outcome of the function.

Identify Representative
Input Values

|

Identify types of values for each choice
that lead to different function outcomes.

Generate Test Case] Combine values to form “recipes”

Specifications

for test cases.

Generate Test] Replace
Cases representative
values with
concrete values.

; Identify an Independently
Testable Function

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Independently Testable Functionality

A well-defined function that can be tested in
(relative) isolation.
« Based on the “verbs” - what can we do with this system?
* The high-level functionality offered by an interface.

« Ul - look for user-visible functions.
« Web Forum: Sorted user list can be accessed.
* Accessing the list is a testable functionality.
« Sorting the list is not (low-level, unit testing target)

 Many tests written in terms
of “units” of code.

* An independently testable
function is a capability of

the software.

« Can be at class,
subsystem, or system level.
 Defined by an interface.

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - / Identify Choices

Identify Input Choices

* What choices do we make when using a function”?
 Anything we control that can change the outcome.

 What are the inputs to that feature?
 What configuration choices can we make?

* Are there environmental factors we can vary?

* Networking environment, file existence, file content,
database connection, database contents, disk utilization,

#6) CHALMERS | (8§} UNIVERSITY OF GOTHENBURG | ¢ b \ Identify Choices

Ex: Register for Website

. What are the inputs to that feature? | Register
e (first name, last name, date of e ;
birth, e-mail) Fist Last
* Website is part of product line with | vere
different database options.
e (database type)
« Consider implicit environmental -
factors.
e (database connection, user already
i n d a t a ba S e) Share a little information about yourself.

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - \ Identify Choices

Parameter Characteristics

* ldentify choices by understanding how parameters
are used by the function.

* Type information is helpful.
« firstName is string, database contains UserRecords.

* ... but context is important.
* Reject registration if in database.
e ... o0rdatabase is full.
e ... Or database connection down.

) CHALMERS | (§)) UNIVERSITY OF GOTHENBURG | AN Identify Choices

Parameter Context

 Input parameter split into multiple “choices” based
on contextual use.

« “Database” is an implicit input for User Registration, but it
leads to more than one choice.

7 13

« “Database Connection Status”, “User Record in

Database”, “Percent of Database Filled” influence
function outcome.

 The Database “input” results in three input choices when we
design test cases.

; Identify an Independently
Testable Function

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Examples

Class Registration System
What are some independently testable functions?

Register for class

Drop class

Transfer credits from another university
Apply for degree

TR ‘\\ | S ,,x;\
6) CHALMERS | () UNIVERSITY OF GOTHENBURG | O _ A Identify Choices

Example - Register for a Class

What are the choices we make when we design a
test case?

e Course number to add

« Student record

 \What about a course database? Student record
database?

e What else influences the outcome?

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - \ Identify Choices

Example - Register for a Class

« Student Record is an implicit input choice.

 How is it used?
« Have you already taken the course?
« Do you meet the prerequisites?
« What university are you registered at?

« Can you take classes at the university the course is
offered at?

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - \ Identify Choices

Example - Register for a Class

 Potential Test Choices:

Course to Add

Does course exist?

Does student record exist?

Has student taken the course?

Which university is student registered at?

Is course at a valid university for the student?
Can student record be retrieved from database?
Does the course exist?

Does student meet the prerequisites?

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

"} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

EEEEEEEEEEEEEEEEEEEE

Identifying Representative Values

* \We know the functions.

* \We have a set of choices.

* What values should we try?

 For some choices, finite set.
« For many, near-infinite set.

 What about exhaustively
trying all options?

%,:(—a} CHALMERS | @8§) UNIVERSITY OF GOTHENBURG
y\%;?aé‘,' 4 UNIVERSITY OF TECHNOLOGY "4"“"‘_«

Exhaustive Testin

Take the arithmetic
function for the calculator:

add (1nt a, 1int b)

 How long would it take
to exhaustively test this
function?

g 2
£

,J} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Not all Inputs are Created Equal

* Many inputs lead to
same outcome.

e Some inputs better at
revealing faults.

« \We can’t know which in
advance.

« Tests with different input
better than tests with
similar input.

"
AN

0.

(&%) UNIVERSITY OF GOTHENBURG

Input Partitioning

e Consider possible values
for a variable.

e Faults sparse in space of
all inputs, but dense in
parts where they appear.

» Similar input to failing
input also likely to fail.

« Try input from partitions,
hit dense fault space.

Identify Representative

§6) CHALMERS | (8§} UNIVERSITY OF GOTHENBURG B e oyt Val
UNIVERSITY OF TECHNOLOGY N2 ! /i
D\ / nput Values

Equivalence Class

 Divide the input domain into equivalence classes.

* |nputs from a group interchangeable (trigger same
outcome, result in the same behavior, etc.).

* |If one input reveals a fault, others in this class (probably)
will too. In one input does not reveal a fault, the other

ones (probably) will not either.

 Partitioning based on intuition, experience, and
common sense.

Identify Representative

36) CHALMERS | (&) UNIVERSITY OF GOTHENBURG | Ual
nput Values

Example

substr (string str, 1nt index)

What are some possible partitions?

index <0
index =0
index >0
str with length < index
str with length = index
str with length > index

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Choosing Input Partitions

Equivalent output events.

Ranges of numbers or values.
Membership in a logical group.
Time-dependent equivalence classes.
Equivalent operating environments.
Data structures.

Partition boundary conditions.

Identify Representative
Input Values

Identify Representative

36) CHALMERS | (&) UNIVERSITY OF GOTHENBURG Inout Val
nput Values

Look for Equivalent Outcomes

* Look at the outcomes and group input by the
outcomes they trigger.

 Example: getEmployeeStatus(employeelD)

« QOutcomes include: Manager, Developer, Marketer,
Lawyer, Employee Does Not Exist, Malformed ID

« Abstract values for choice employeelD.
Can potentially break down further.

Identify Representative

36) CHALMERS | (&) UNIVERSITY OF GOTHENBURG | £ Val
nput Values

Look for Ranges of Values

* Divide based on data type and how variable used.

« EX: Integer input. Intended to be 5-digit:
« < 10000, 10000-99999, >= 100000
e Other options: <0, 0, max int
« Can you pass it something non-numeric? Null pointer?

e Try “expected” values and potential error cases.

Identify Representative

#6) CHALMERS | (B} UNIVERSITY OF GOTHENBURG | £ Val
nput Values

Look for Membership in a Group

Consider the following inputs to a program:
* Afloor layout
* A country name.

* All can be partitioned into groups.
« Apartment vs Business, Europe vs Asia, etc.

 Many groups can be subdivided further.
* Look for context that an input is used in.

‘ CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Timing Partitions

* Timing and duration of an
iInput may be as important as

the value.
« Timing often implicit input.
« Trigger an electrical pulse 5ms
before a deadline, 1ms before the

deadline, exactly at the deadline,
and 1ms after the deadline.

* Close program before, during, and
after the program is writing to (or
reading from) a disc.

Identify Representative
Input Values

RESET

START START
STOP EVENT TIMER sTOP

Identify Representative

36) CHALMERS | (&) UNIVERSITY OF GOTHENBURG Inout Val
nput Values

Operating Environments

* Environment may affect behavior of the program.

* Environmental factors can be partitioned.
« Memory may affect the program.
* Processor speed and architecture.

* Client-Server Environment
* No clients, some clients, many clients
* Network latency
Communication protocols (SSH vs HTTPS)

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Data Structures

« Data structures are prone to
certain types of errors.

* For arrays or lists:
* Only a single value.
 Different sizes and number filled.

* QOrder of elements: access first,
middle, and last elements.

Identify Representative
Input Values

Identify Representative
Input Values

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Input Partition Example

What are the input partitions for:

max (1nt a, 1nt b) returns (1nt c)

We could consider a or b in isolation:

a < 0, a=20, a>2~o

Consider combinations of a and b that change outcome:
a > b, a<Db, a=»>,

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Revisit the Roadmap

For each testing choice for a

Identify Representative : :

[L] functlonz yve want to: o
1. Partition each choice into

Generate Test Case] representative values.

Specifications
2. Choose a value for each
Generate Test] choice to form a test
Cases

specification.
3. Assigning concrete values
from each partition.

CHALMERS | %@Q UNIVERSITY OF GOTHENBURG | - \,?”" / Generat.e. Tes.t SEEE
L e/ Specifications

Forming Specification

Function insertPostalCode(int N, list A).

 Choice: intN
« 5-digit integer between 10000 and 99999
 Representative Values: <10000, 10000-99999, >100000

 Choice: listA
* list of length 1-10

 Representative Values: Empty List, List of Length 1, List
Length 2-10, List of Length > 10

éﬂ’} CHALMERS | UNIVERSITY OF GOTHENBURG

Forming Specifications

Choose concrete values for each combination of input partitions:
insertPostalCode (int N, 1list A)

int N Test Specifications: (3* 4=12 abstract specifications)

insert(< 10000, Empty List)
insert (10000 - 99999, list[1])
insert(> 99999, list[2-10])

Concrete Test Cases: _
insert(5000, {})

insert(96521, {11123})

insert (150000, {11123, 98765})

list A

[\\\ 4 < — v R4 A
#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG gl e M Generate Test
> ! 2 \ | 7 K| Y
Cases

Generate Test Cases

[Generate Test Case] substr(string str, int index)

Specifications

Generate Test

Specification:
Cases]

str: length >=2, contains
special characters
index: value >0

Test Case:
str = “ABCCN\n\t7”

index=5

(&%) UNIVERSITY OF GOTHENBURG

Boundary Values

* Errors tend to occur at
the boundary of a
partition.

« Remember to select
inputs from those
boundaries.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boundary Values

Generate Test
Cases

Choose test case values at the boundary (and typical)
values for each partition.

« If an input is intended to be a 5-digit integer between
10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

0 5000 SIeiele)

X

100000

-
150000 max int

|\

10000

50000 99999

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Set Microservice

e Microservice related to Sets:
o void insert(Set set, Object obj)
o Boolean find(Set set, Object obj)
o void delete(Set set, Object obj)

e For each function, identify choices.
e For each choice, identify representative values.

e Create test specifications with expected
outcomes.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Set Microservice

VOid inser‘t(Set set, ObJECt Ob]) [Identifyanlndependently]

Testable Function

 What are our choices? [\dentify Choices]

e Parameter: set
o Choice 1: Number of items in the set
e Parameter: obj
o Choice 2: Is obj already in the set?
o Choice 3: Type of obj (e.g., valid, invalid, null)

UNIVERSITY OF GOTHENBURG

Example - Set Microservice

void insert(Set set, Object obj) [ldentirxpll?j(:r\);'aelzzgtative]

Parameter: obj

Parameter: set + Choice: Is obj already in the set?
« Choice: Number of items in the set * Representative Values:
* Representative Values: - obj already in set
Empty Set
- Setwith 1 item * objnotin set
« Set with 10 items « Choice: Type of obj
* Setwith 10000 items « Representative Values:
« Valid obj
* Null obj

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

Example - Set Microservice

| Generate Test Case Specifications |

Set Size Obj in Set Obj Status Outcome VO l d 1 n S e r‘t (S et S et ’
Empty No Valid Obj added to Set O b j e C -t O b j)
Empty No Null Error or no change
* * _ " "

1item Yes Valid Error or no change ¢ (4 2 2) - 1 6 SpeCIflcatlonS
1 item No Valid Obj added to Set ¢ Some are In\/.alld (nu” In Set)'

| Can remove/ignore those.
1 item No Null Error or no Change

« Each can become 1+ test cases.

10 items Yes Valid Error or no change
10 items No Valid Obj added to Set [Generate Test]
10 items No Null Error or no Change cases
10000 Yes Valid Error or no change (may be slowdown) ° (1 ite m , Yes , Va I id) beCO m eS :
10000 No Valid Obj added to Set(may be slowdown) o i n S e r‘t ({ “BO b,’ }) “BO b,,) _;
10000 No Null Error or no Change (may be slowdown)

@ {
- f
B ‘7‘
4 y/ 9.
g

) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Activity - System-Level Testing

e Microservice related to Sets:

o void insert(Set set, Object obj)
o Boolean find(Set set, Object obj)
o void delete(Set set, Object obj)

e For each microservice, identify choices.
e For each choice, identify the representative values.

e Create four abstract test specifications with
expected outcomes.

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Solution - Test Specifications

Insert Empty/ Object not in Set obj in container

One element / Object not in Set | obj in container

Multiple elements / Object not | obj in container Delete One element / Object in Set obj no longer in

in Set set

100+ / Object not in Set obj in container One element / Object not in no change (or

(any choice) / Object in Set Error or no change Set error)

(any choice) / Null Object Error (any choice) / Null Pointer error

Exists One element / Object in Set True 100 + / Object in Set obj no longer in

set

Empty / Object not in Set False

100 + / Object in Set True Empty / Object not in Set no change (or
error)

100 + / Object not in Set False

(any choice) / Null Object Error

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Unit testing focus on a single class.

« System tests focus on high-level functionality,
integrating low-level components through a UI/API.
 |dentify an independently testable function.
 |dentify choices that influence function outcome.
« Partition choices into representative values.
« Form specifications by choosing a value for each choice.
« Turn specifications into concrete test cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

« System-level testing and feature interactions
« Handling infeasible combinations.
« Selecting a valid subset of representative values.

* Assignment 4 - Dec 12
* Any questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

