
Lecture 10: System-Level Testing

Gregory Gay
TDA 594/DIT 593 - December 2, 2021

2

Today’s Goals
• Discuss testing at the system level.

• System (Integration) Testing versus Unit Testing.

• Introduce process for creating System-Level Tests.
• Identify Independently Testable Functionality
• Identify Choices (AKA variation points)
• Identify Representative Values for each Choice
• Generate Test Case Specifications
• Generate Concrete Test Cases

Software Testing
• An investigation into system quality.
• Based on sequences of stimuli and

observations.
• Stimuli that the system must react to.
• Observations of system reactions.
• Verdicts on correctness.

3

SUT

Test Input

Output

Test Oracle
(Expected Output)

Verdict (Pass/Fail)

Anatomy of a Test Case

(I1 O1) (I2 O2) (I3 O3)

Test Inputs
How we “stimulate” the system (method
call, API request, GUI event)..

Test Oracle
How we check the correctness of the
resulting observation (assertions).

if On = Expected(On)
then… Pass
else… Fail

4

Anatomy of a Test Case
• Initialization

• Any steps that must be taken before test execution.

• Test Steps
• Interactions with the system, and comparisons between

expected and actual values.

• Tear Down
• Any steps that must be taken after test execution.

5

Testing Stages
• We interact with systems

through interfaces.
• APIs, GUIs, CLIs

• Systems built from subsystems.
• With their own interfaces.

• Subsystems built from units.
• Communication via method calls.
• Set of methods is an interface.

6

API GUI CLI

API

API

Testing Stages
• Unit Testing

• Do the methods of a class work?
• System-level Testing

• System (Integration) Testing
• (Subsystem-level) Do the collected

units work?
• (System-level) Does high-level

interaction through APIs/UIs work?
• Exploratory Testing

• Does interaction through GUIs work?

7

API GUI CLI

API

API

Unit Testing
• Testing the smallest “unit” that can be tested.

• Often, a class and its methods.

• Tested in isolation from all other units.
• Mock the results from other classes.

• Test input = method calls.
• Test oracle = assertions on output/class variables.

8

Unit Testing
• For a unit, tests should:

• Test all “jobs” associated with the unit.
• Individual methods belonging to a class.
• Sequences of methods that can interact.

• Set and check class variables.
• Examine how variables change after

method calls.
• Put the variables into all possible states

(types of values).

9

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

10

Some tests we might want to write:
• Execute constructor, verify fields.
• Check the name, change the name,

make sure changed name is in place.
• Check that personnummer is correct.
• Check the balance, withdraw money,

verify that new balance is correct.
• Check the balance, deposit money,

verify that new balance is correct.

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

11

Some potential error cases:
• Withdraw more than is in balance.
• Withdraw a negative amount.
• Deposit a negative amount.
• Withdraw/Deposit a small amount

(potential rounding error)
• Change name to a null reference.
• Can we set an “malformed” name?

• (i.e., are there any rules on a valid name?)

Account

- name
- personnummer
- balance

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Unit Testing - Account

12

• Withdraw money, verify balance.

@Test

public void testWithdraw_normal() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = 16.0; //Input

 account.withdraw(toWithdraw);

 double actual = account.getBalance();

 double expectedBalance = 32.5; // Oracle

 assertEquals(expected, actual); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Each test is denoted with keyword @test.Name based on type of scenario, and expectation
on outcome.

Initialization

Test StepsInput

Oracle

Unit Testing - Account

13

• Withdraw a negative amount.
• (should throw an exception with

appropriate error message)
@Test

public void testWithdraw_negative() {

 // Setup

 Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);

 // Test Steps

 double toWithdraw = -2.5; //Input

 Throwable exception = assertThrows(

 () -> { account.withdraw(toWithdraw); });

 assertEquals(“Cannot withdraw a negative amount: -2.50”,

 exception.getMessage()); // Oracle

}

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

System Testing
• After testing units, test their integration.

• Integrate units in one subsystem.
• Then integrate the subsystems.

• Test through a defined interface.
• Focus on showing that functionality accessed through

interfaces is correct.
• Subsystems: “Top-Level” Class, API
• System: API, GUI, CLI, …

14

System Testing
Subsystem made up classes
of A, B, and C. We have
performed unit testing...
• Classes work together to

perform subsystem functions.
• Tests applied to the interface of

the subsystem they form.
• Errors in combined behavior not

caught by unit testing.

A

C

B

Test Cases

15

16

Unit vs System Testing
• Unit tests focus on a single class.

• Simple functionality, more freedom.
• Few method calls.

• System tests bring many classes together.
• Focus on testing through an interface.
• One interface call triggers many internal calls.

• Slower test execution.
• May have complex input and setup.

Interface Errors
• Interface Misuse

• Malformed data, order, number of parameters.

• Interface Misunderstanding
• Incorrect assumptions made about called component.
• A binary search called with an unordered array.

• Timing Errors
• Producer of data and consumer of data access data in

the wrong order.

17

18

Testing Percentages
• Unit tests verify behavior

of a single class.
• 70% of your tests.

• System tests verify class
interactions.
• 20% of your tests.

• GUI tests verify
end-to-end journeys.
• 10% of your tests.

19

Testing
• 70/20/10 recommended.
• Unit tests execute quickly,

relatively simple.
• System tests more complex, require more setup,

slower to execute.
• UI tests very slow, may require humans.
• Well-tested units reduce likelihood of integration

issues, making high levels of testing easier.

20

Writing Integration and UI Tests
• Testing framework depends on language and

interface type.
• Android: JUnit (Integration - AndroidX, UI - Espresso)
• RESTful API: Postman
• Browser-based GUI: Selenium

21

Android UI Test
@Test

public void successfulLogin() {

 LoginActivity activity =
 ActivityScenario.launch(LoginActivity.class);
 onView(withId(R.id.user_name)).perform(typeText(“test_user”));
 onView(withId(R.id.password))
 .perform(typeText(“correct_password”));
 onView(withId(R.id.button)).perform(click());
 assertThat(getIntents().first())
 .hasComponentClass(HomeActivity.class);

 }

Uses Espresso testing libraries to
interact with Views and Intents.

(Part of AndroidX)

 Setup

Test Steps + Input

Test Oracle

RESTful API Test - Postman

22

Test Step + Input

Test Oracle

23

System-Level Tests and SPLs
• Variability is a system-level concept.

• Feature options tend to be entire classes or subsystems.

• Unit testing during domain engineering.
• Assets tested in isolation.

• Many interaction errors between features,
depending on chosen options.
• System testing during application engineering.

24

Creating System-Level Test Cases

Creating System-Level Tests
Identify an Independently

Testable Function

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify a function that can be tested in (relative) isolation.

Identify controllable aspects of the input and environment
that determine the outcome of the function.

Identify types of values for each choice
that lead to different function outcomes.

Combine values to form “recipes”
for test cases.

Replace
representative

values with
concrete values.

25

Independently Testable Functionality
• A well-defined function that can be tested in

(relative) isolation.
• Based on the “verbs” - what can we do with this system?
• The high-level functionality offered by an interface.
• UI - look for user-visible functions.

• Web Forum: Sorted user list can be accessed.
• Accessing the list is a testable functionality.
• Sorting the list is not (low-level, unit testing target)

26

Identify an Independently
Testable Function

Units and “Functionality”
• Many tests written in terms

of “units” of code.
• An independently testable

function is a capability of
the software.
• Can be at class,

subsystem, or system level.
• Defined by an interface.

27

Identify an Independently
Testable Function

Identify Input Choices
• What choices do we make when using a function?

• Anything we control that can change the outcome.
• What are the inputs to that feature?
• What configuration choices can we make?
• Are there environmental factors we can vary?

• Networking environment, file existence, file content,
database connection, database contents, disk utilization,
…

28

Identify Choices

Ex: Register for Website
• What are the inputs to that feature?

• (first name, last name, date of
birth, e-mail)

• Website is part of product line with
different database options.
• (database type)

• Consider implicit environmental
factors.
• (database connection, user already

in database)

29

Identify Choices

Parameter Characteristics
• Identify choices by understanding how parameters

are used by the function.
• Type information is helpful.

• firstName is string, database contains UserRecords.

• … but context is important.
• Reject registration if in database.
• … or database is full.
• … or database connection down.

30

Identify Choices

Parameter Context
• Input parameter split into multiple “choices” based

on contextual use.
• “Database” is an implicit input for User Registration, but it

leads to more than one choice.
• “Database Connection Status”, “User Record in

Database”, “Percent of Database Filled” influence
function outcome.

• The Database “input” results in three input choices when we
design test cases.

31

Identify Choices

Examples
Class Registration System
What are some independently testable functions?

• Register for class
• Drop class
• Transfer credits from another university
• Apply for degree

32

Identify an Independently
Testable Function

Example - Register for a Class
What are the choices we make when we design a
test case?

• Course number to add
• Student record
• What about a course database? Student record

database?
• What else influences the outcome?

33

Identify Choices

Example - Register for a Class
• Student Record is an implicit input choice.
• How is it used?

• Have you already taken the course?
• Do you meet the prerequisites?
• What university are you registered at?
• Can you take classes at the university the course is

offered at?

34

Identify Choices

35

Example - Register for a Class
• Potential Test Choices:

• Course to Add
• Does course exist?
• Does student record exist?
• Has student taken the course?
• Which university is student registered at?
• Is course at a valid university for the student?
• Can student record be retrieved from database?
• Does the course exist?
• Does student meet the prerequisites?

Identify Choices

36

Let’s take a break.

Identifying Representative Values
• We know the functions.
• We have a set of choices.
• What values should we try?

• For some choices, finite set.
• For many, near-infinite set.

• What about exhaustively
trying all options?

Test Input Data

Test Output Results

Program

37

Identify Representative
Input Values

Exhaustive Testing
Take the arithmetic
function for the calculator:
add(int a, int b)

• How long would it take
to exhaustively test this
function?

Test Input Data

Test Output Results

Program

232 possible integer values
for each parameter.
= 232 x 232 = 264
combinations = 1013 tests.

1 test per nanosecond
= 105 tests per second
= 1010 seconds
or… about 600 years!

38

Identify Representative
Input Values

Not all Inputs are Created Equal
• Many inputs lead to

same outcome.
• Some inputs better at

revealing faults.
• We can’t know which in

advance.
• Tests with different input

better than tests with
similar input.

Test Input Data

Test Output Results

Program

I

O

39

Identify Representative
Input Values

Input Partitioning

40

Identify Representative
Input Values

• Consider possible values
for a variable.

• Faults sparse in space of
all inputs, but dense in
parts where they appear.

• Similar input to failing
input also likely to fail.

• Try input from partitions,
hit dense fault space.

Equivalence Class
• Divide the input domain into equivalence classes.

• Inputs from a group interchangeable (trigger same
outcome, result in the same behavior, etc.).

• If one input reveals a fault, others in this class (probably)
will too. In one input does not reveal a fault, the other
ones (probably) will not either.

• Partitioning based on intuition, experience, and
common sense.

41

Identify Representative
Input Values

Example
substr(string str, int index)

What are some possible partitions?
● index < 0
● index = 0
● index > 0
● str with length < index
● str with length = index
● str with length > index
● ...

42

Identify Representative
Input Values

Choosing Input Partitions
• Equivalent output events.
• Ranges of numbers or values.
• Membership in a logical group.
• Time-dependent equivalence classes.
• Equivalent operating environments.
• Data structures.
• Partition boundary conditions.

43

Identify Representative
Input Values

Look for Equivalent Outcomes
• Look at the outcomes and group input by the

outcomes they trigger.
• Example: getEmployeeStatus(employeeID)

• Outcomes include: Manager, Developer, Marketer,
Lawyer, Employee Does Not Exist, Malformed ID

• Abstract values for choice employeeID.
• Can potentially break down further.

44

Identify Representative
Input Values

Look for Ranges of Values
• Divide based on data type and how variable used.

• Ex: Integer input. Intended to be 5-digit:
• < 10000, 10000-99999, >= 100000
• Other options: < 0, 0, max int
• Can you pass it something non-numeric? Null pointer?

• Try “expected” values and potential error cases.

45

Identify Representative
Input Values

Look for Membership in a Group
Consider the following inputs to a program:

• A floor layout
• A country name.

• All can be partitioned into groups.
• Apartment vs Business, Europe vs Asia, etc.

• Many groups can be subdivided further.
• Look for context that an input is used in.

46

Identify Representative
Input Values

Timing Partitions
• Timing and duration of an

input may be as important as
the value.
• Timing often implicit input.

• Trigger an electrical pulse 5ms
before a deadline, 1ms before the
deadline, exactly at the deadline,
and 1ms after the deadline.

• Close program before, during, and
after the program is writing to (or
reading from) a disc.

47

Identify Representative
Input Values

Operating Environments
• Environment may affect behavior of the program.
• Environmental factors can be partitioned.

• Memory may affect the program.
• Processor speed and architecture.
• Client-Server Environment

• No clients, some clients, many clients
• Network latency
• Communication protocols (SSH vs HTTPS)

48

Identify Representative
Input Values

Data Structures
• Data structures are prone to

certain types of errors.
• For arrays or lists:

• Only a single value.
• Different sizes and number filled.
• Order of elements: access first,

middle, and last elements.

49

Identify Representative
Input Values

Input Partition Example
What are the input partitions for:
max(int a, int b) returns (int c)

We could consider a or b in isolation:
a < 0, a = 0, a > 0

Consider combinations of a and b that change outcome:
a > b, a < b, a = b

50

Identify Representative
Input Values

Revisit the Roadmap

Identify Representative
Values

Generate Test Case
Specifications

Generate Test
Cases

For each testing choice for a
function, we want to:
1. Partition each choice into

representative values.
2. Choose a value for each

choice to form a test
specification.

3. Assigning concrete values
from each partition.

51

Forming Specification
Function insertPostalCode(int N, list A).
• Choice: int N

• 5-digit integer between 10000 and 99999
• Representative Values: <10000, 10000-99999, >100000

• Choice: list A
• list of length 1-10
• Representative Values: Empty List, List of Length 1, List

Length 2-10, List of Length > 10

52

Generate Test Case
Specifications

Forming Specifications
Choose concrete values for each combination of input partitions:
insertPostalCode(int N, list A)

int N

list A

Test Specifications:
insert(< 10000, Empty List)
insert(10000 - 99999, list[1])
insert(> 99999, list[2-10])
...

Concrete Test Cases:
insert(5000, {})
insert(96521, {11123})
insert(150000, {11123, 98765})
...

< 10000
10000 - 99999
> 99999

Empty List
List[1]
List[2-10]
List[>10]

53

Generate Test Case
Specifications

(3 * 4 = 12 abstract specifications)

(Each specification = 1000s of
potential test cases)

Generate Test Cases
Generate Test Case

Specifications

Generate Test
Cases

substr(string str, int index)

Specification:
str: length >=2, contains
special characters
index: value > 0

Test Case:
str = “ABCC!\n\t7”
index= 5

54

Generate Test
Cases

Boundary Values

• Errors tend to occur at
the boundary of a
partition.

• Remember to select
inputs from those
boundaries.

55

Generate Test
Cases

Boundary Values
Choose test case values at the boundary (and typical)
values for each partition.
• If an input is intended to be a 5-digit integer between

10000 and 99999, you want partitions:
<10000, 10000-99999, >100000

0 5000 9999

10000 50000 99999

100000 150000 max int

56

Generate Test
Cases

Example - Set Microservice
● Microservice related to Sets:

○ void insert(Set set, Object obj)
○ Boolean find(Set set, Object obj)
○ void delete(Set set, Object obj)

● For each function, identify choices.
● For each choice, identify representative values.
● Create test specifications with expected

outcomes.
57

58

Example - Set Microservice
void insert(Set set, Object obj)

• What are our choices?

Identify an Independently
Testable Function

Identify Choices

● Parameter: set
○ Choice 1: Number of items in the set

● Parameter: obj
○ Choice 2: Is obj already in the set?
○ Choice 3: Type of obj (e.g., valid, invalid, null)

59

Example - Set Microservice
void insert(Set set, Object obj)

Parameter: set

• Choice: Number of items in the set
• Representative Values:

• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

Identify Representative
Input Values

Parameter: obj

• Choice: Is obj already in the set?

• Representative Values:

• obj already in set

• obj not in set

• Choice: Type of obj

• Representative Values:

• Valid obj

• Null obj

60

Example - Set Microservice
void insert(Set set,
Object obj)

• (4 * 2 * 2) = 16 specifications
• Some are invalid (null in set).

Can remove/ignore those.
• Each can become 1+ test cases.

• (1 item, Yes, Valid) becomes:
• insert({“Bob”}, “Bob”);

Generate Test Case Specifications

Generate Test
Cases

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Empty No Null Error or no change

1 item Yes Valid Error or no change

1 item No Valid Obj added to Set

1 item No Null Error or no Change

10 items Yes Valid Error or no change

10 items No Valid Obj added to Set

10 items No Null Error or no Change

10000 Yes Valid Error or no change (may be slowdown)

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error or no Change (may be slowdown)

Activity - System-Level Testing
● Microservice related to Sets:

○ void insert(Set set, Object obj)
○ Boolean find(Set set, Object obj)
○ void delete(Set set, Object obj)

● For each microservice, identify choices.
● For each choice, identify the representative values.
● Create four abstract test specifications with

expected outcomes.
61

Solution - Test Specifications
Insert Empty/ Object not in Set obj in container

One element / Object not in Set obj in container

Multiple elements / Object not
in Set

obj in container

100+ / Object not in Set obj in container

(any choice) / Object in Set Error or no change

(any choice) / Null Object Error

Exists One element / Object in Set True

Empty / Object not in Set False

100 + / Object in Set True

100 + / Object not in Set False

(any choice) / Null Object Error

Delete One element / Object in Set obj no longer in
set

One element / Object not in
Set

no change (or
error)

(any choice) / Null Pointer error

100 + / Object in Set obj no longer in
set

Empty / Object not in Set no change (or
error)

62

We Have Learned
• Unit testing focus on a single class.
• System tests focus on high-level functionality,

integrating low-level components through a UI/API.
• Identify an independently testable function.
• Identify choices that influence function outcome.
• Partition choices into representative values.
• Form specifications by choosing a value for each choice.
• Turn specifications into concrete test cases.

63

Next Time
• System-level testing and feature interactions

• Handling infeasible combinations.
• Selecting a valid subset of representative values.

• Assignment 4 - Dec 12
• Any questions?

64

