
Lecture 12: Automated Test Case 
Generation

Gregory Gay
TDA 594/DIT 593 - December 9, 2021



2

Automating Test Creation
• Testing is invaluable, but 

expensive.
• We test for *many* purposes.
• Near-infinite number of 

possible tests we could try. 
• Hard to achieve meaningful 

volume.
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Automation of Test Creation
• Relieve cost by automating 

test creation.
• Repetitive tasks that do not 

need human attention.
• Generate test input.

• Need to add assertions.
• Or just look for crashes.

Automation!

Tests are generating!
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Today’s Goals
• Introduce Search-Based Test Generation 

• (AKA: Fuzzing)
• Test Creation as a Search Problem
• Metaheuristic Search
• Fitness Functions

• Example - Generating Covering Arrays for 
Combinatorial Interaction Testing
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Test Creation as a Search Problem
• Do you have a goal in mind when testing?

• Make the program crash, achieve code coverage, cover 
all 2-way interactions, … 

• You are searching for a test suite that achieves 
that goal.
• Algorithm samples possible test input to find those tests.
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Test Creation as a Search Problem
• “I want to find all faults” cannot be measured.
• However, a lot of testing goals can be.

• Check whether properties satisfied (boolean)
• Measure code coverage (%)
• Count the number of crashes or exceptions thrown (#)

• If goal can be measured, search can be automated.
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Search-Based Test Generation
• Make one or more guesses.

• Generate one or more individual 
test cases or full suites.

• Check whether goal is met.
• Score each guess.

• Try until time runs out.
• Alter the population based on 

strategy and try again!
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Search Strategy
• The order that solutions are tried is the key to 

efficiently finding a solution.
• A search follows some defined strategy. 

• Called a “heuristic”.

• Heuristics are used to choose solutions and to 
ignore solutions known to be unviable.
• Smarter than pure random guessing!
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Heuristics - Graph Search
● Arrange nodes into a hierarchy.

○ Breadth-first search looks at all nodes on 
the same level.

○ Depth-first search drops down hierarchy 
until backtracking must occur.

● Attempt to estimate shortest path.
○ A* search examines distance traveled and estimates 

optimal next step.
○ Requires domain-specific scoring function.
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How Long Do We Spend Searching?
• Exhaustive search not viable.
• Search can be bound by a search budget.

• Number of guesses.
• Time allotted to the search (number of minutes/seconds).

• Optimization problem:
• Best solution possible before running out of budget.
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Generation as Optimization Problem
• Search heuristic becomes important.

• If time bound: time to create, 
execute, and evaluate.

• If attempt bound: strategy used to 
choose next solution.

• Ignoring bad solutions, learning what makes 
a solution good.

• In practice, efficiency in both 
categories is desired.
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Random Search
● Randomly formulate a solution. 

○ Unit testing: choose a class in the 
system, choose random methods, call 
with random parameter values.

○ System-level testing: choose an 
interface, choose random functions 
from interface, call with random values.

● Keep trying until goal attained or 
budget expires.
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Random Search
• Sometime viable:

• Extremely fast.
• Easy to implement, easy to understand.
• All inputs considered equal, so no designer bias.

• However…
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Metaheuristic Search
• Random search is naive.

• Only possible to cover a 
small % of full input space.

• Metaheuristic search adds
intelligence to random.
• Feedback and sampling 

strategies.
• Still fast, able to learn 

from bad guesses.
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Metaheuristic Search



16

Mechanics of Optimization
AKA: How can I get a computer to search?

Fitness Function(s)Metaheuristic
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Search-Based Test Generation

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals 
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure, 

Generate Covering Array,
(...)
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The Metaheuristic
• Decides how to select and 

revise solutions.
• Changes approach based on 

past guesses.
• Fitness functions give feedback.
• Population mechanisms choose 

new solutions and determine how 
solutions evolve.
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The Metaheuristic
• Decides how to select and revise solutions.

• Small adjustments (local search) or sampling 
from the whole space (global search).

• One solution at a time or entire populations.
• Often based on natural phenomena (swarm 

behavior, evolution).
• Trade-off between speed, complexity, and 

understandability.
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“Solutions”
• What is a solution?

• Test Case: Evolved in isolation from other test cases.
• Test Suite: A set of test cases, evolved together.

• Depends on how goal attainment measured.
• Code Coverage

• Test Case: Target one code section at a time.
• Test Suite: Target coverage of entire class/system.
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Local Search
• Generate and score a potential solution.
• Attempt to improve by looking at its neighborhood. 

• Make small, incremental improvements.

• Very fast, efficient if good initial guess. 
• Get “stuck” if bad guess.
• Often include reset strategies.
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Exploring the Neighborhood
● Small changes to solution.

○ For each call:
■ Switch value of boolean, other 

values from an enumerated set, 
bounded range of numeric 
choices.

○ Full test case:
■ Insert a new call.
■ Delete or replace an existing call.

● Can replace by changing the 
function called or its parameters.
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Hill Climbing
● Pick a initial solution at random. 
● Examine the local neighborhood. 
● Choose the best neighbor and “move” to it. 
● Repeat until no better solution can be found.

○ Climbs mountains in fitness function landscape.
○ Restart when no improvement can be found.
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Hill Climbing Strategies
● Steepest Ascent

○ Examine all neighbors
○ Pick one with highest 

improvement.

● Random Ascent 
○ Examine random neighbors.
○ Choose first to show any 

improvement.
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Simulated Annealing
● Choose a neighboring test case.

○ If better, select it. If not, select it 
at probability:
prob(score, newScore, time, temp) = e((score - newScore) * (time / temp))

○ Governed by temperature function:
temp(time, maxTime) = (maxTime - time) / maxTime

● Initially, large jumps around search space. 
○ Stabilizes over time.
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Global Search
● Generate multiple solutions. 
● Evolve by examining whole 

search space.
● Typically based on natural processes.

○ Swarm patterns, foraging behavior, evolution.
○ Models of how populations interact and change.
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Genetic Algorithms
● Over multiple generations, evolve a population.

○ Good solutions persist and reproduce.
○ Bad solutions are filtered out.

● Diversity is introduced by:
○ Keeping the best solutions.
○ Some random solutions.
○ Creating “offspring” through mutation and crossover.
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Genetic Algorithms - Mutation
● Copy a high-scoring solution.
● Impose a small change.

○ (add/delete/modify a function call, 
change an input value)

○ Follow the rules for determining the 
neighbors of a test.

○ Choose a neighbor from that set.
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Genetic Algorithms - Crossover
● By “breeding” two good tests, we 

may produce better tests.
● Form two new solutions.

○ Sample from probability 
distribution to decide which 
parent to inherit from.
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Genetic Algorithms - Crossover
● One Point Crossover

○ Splice at crossover point.
● Uniform Crossover

○ Flip coin at each line, second 
child gets other option.

● Discrete Recombination
○ Flip coin at each line for both 

children.

A B C D

1 2 3 4

A B 3 4

1 2 C D

A B C D

1 2 3 4

A B C D

1 2 3 4

A

1 B

2 3

C

D

4

A

A B

2

3

C 4

4
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Let’s take a break.
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Fitness Functions
• Domain-based scoring functions that determine 

how good a potential solution is.
• Should offer feedback:

• Percentage of goal attained.
• Better - information on how to improve solution.

• Can optimize more than one at once.
• Independently optimize functions
• Combine into single score.
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Example - Code Coverage
• Goal: Attain Branch Coverage over the code.

• Tests reach branching point (i.e., if-statement) and 
execute all possible outcomes.

• Fitness function (Attempt 1): 
• Measure coverage and try to maximize % covered.
• Good: Measurable indicator of progress.
• Bad: No information on how to improve coverage.
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Example - Code Coverage
• Attempt 2: Distance-Based Function
• fitness = branch distance + approach level

• Approach level 
• Number of branching points we need to execute to get to the 

target branching point.
• Branch distance 

• If other outcome is taken, how “close” was the target outcome? 
• How much do we need to change program values to get the 

outcome we wanted?
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Example - Branch Coverage
if(x < 10){ // Branch 1

    // Do something.

}else if (x == 10){ // Branch 2

    // Do something else.

}

Approach Level
● If Branch 1 is true, approach 

level = 1
● If Branch 1 is false, approach 

level = 0

Branch Distance
● If x==10 evaluates to false, 

branch distance = 
(abs(x-10)+k).

● Closer x is to 10, closer the 
branch distance.

Goal: Branch 2, True Outcome
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Other Common Fitness Functions
● Number of methods called by test suite
● Number of crashes or exceptions thrown
● Diversity of input or output
● Detection of planted faults
● Amount of energy consumed
● Amount of data downloaded/uploaded
● … (anything that reflects what a good test is)
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What are your testing goals?
(and would they make good fitness functions?)
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What Do I Do With These Inputs?
• If looking for crashes, just run 

generated input.
• If you need to judge correctness, 

add assertions.
• General properties, not specific 

output.
• No: assertEquals(output, 2)
• Yes: assertTrue(output % 2 == 0)
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Generating Covering Arrays for 
Combinatorial Interaction Testing
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CIT

• Instead of testing all combinations, test all 
2-way interactions.

• Covering Array: A set of test specifications 
that covers all pairs of values.

• From 144 specifications to 9

• Generating smallest covering array NP-hard.

• Metaheuristic search can easily generate 
near-smallest covering array.

Allow Content to Load Notify About Pop-Ups Allow Cookies Warn About Add-Ons Warn About Attack Sites Warn About Forgeries

Allow Yes Allow Yes Yes Yes 

Restrict No Restrict No No No

Block Block

Allow Content Allow Cookies

Allow Allow

Allow Restrict

Allow Block

Restrict Allow

Restrict Restrict

Restrict Block

Block Allow

Block Restrict

Block Block

Pop-Ups

Yes

No

No

Yes

Yes

No

No

-

Yes

Add-Ons

Yes

No

No

No

-

Yes

-

Yes

No

Attacks

Yes

-

No

No

-

Yes

-

No

Yes

Forgeries

Yes

No

Yes

No

Yes

No

Yes

-

No
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Generating Covering Arrays
1. Generating Random Solutions
2. Calculating Solution Fitness
3. Evolving Solutions

a. Mutation (Genetic Algorithm) / Neighboring Solution 
(Local Search)

b. Crossover (Genetic Algorithm)
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Generating Random Solution
1. Calculate list of pairs to cover.
2. Until list is empty:

a. Generate random test specification.
b. Remove covered pairs from list.
c. Add specification to covering array.

3. Return covering array.

Allow No Block No Yes Yes

(Content = Allow, Pop-Ups = Yes)
(Content = Allow, Pop-Ups = No)
(Content = Restrict, Pop-Ups = Yes)
… 

(Content = Allow, Pop-Ups = Yes)
(Content = Allow, Pop-Ups = No)
(Content = Restrict, Pop-Ups = Yes)
… 

.. .. .. .. .. ..

Allow No Block No Yes Yes
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Fitness Function
• Size of the covering array.

• coveringArray.length();
• Want to minimize the score (smaller 

arrays are better)

• Can be measured, fast calculation.
• Tells us which solutions are better.
• Does not offer detailed feedback, 

but still works.

..

..

..

..

..

..

..

..

..



44

Mutation
• Change a value in a test specification.

• Set a limit on number of changes made at one time.
• Maybe we can make it smaller with a few changes?

• If all pairs covered in fewer tests, discard remainder.
• If no longer a covering array:

• Throw out solution OR
• Revert change and try again OR
• Revert change and mutate different solution.
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Crossover
• Take two covering arrays, create two “child” arrays.
• For each specification, flip a coin:

• Heads: 

• Tails:

• Check each child:
• If not a covering array, discard.
• If still a covering array, remove redundant specifications.

Parent A
Parent B

Parent A
Parent B

Child A
Child B

Child A
Child B
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Search Process
• Generate population at random.
• Score each by size.
• Create new population.

• Retain best arrays (10%)
• Create mutations (30%)
• Create children (30%)
• Generate random (30%)

• Repeat until budget expires.
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Not Just Test Generation...
Can be applied to any problem with:
• Large search space.
• Fitness function and solution generation with low 

computational complexity.
• Approximate continuity in fitness function scoring.
• No known optimal solution.



Automated Program Repair
• Produce patches for common bug types. 
• Many bugs can be fixed with just a few changes to 

the source code - inserting new code, and deleting 
or moving existing code. 
• Add null values check.
• Change conditional expression.
• Move a line within a try-catch block.
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Generate and Validate
• Genetic programming - solutions represent 

sequences of edits to the source code. 
• Generate and validate approach:

• Fitness function: how many tests pass?
• Patches that pass more tests create new population:

• Mutation: Change one edit into another.
• Crossover: Merge edits from two parent patches.
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GenProg Results
• Repaired 55/105 bugs at average $8 per bug.

• Projects with over 5 million lines of code
• Supported by 10000 test cases.

• Patch infinite loops, segmentation faults, buffer 
overflows, denial of service vulnerabilities, “wrong 
output” faults, and more.
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Risks of Automation
• Structural coverage is important.

• Unless we execute a statement, we’re unlikely to detect a 
fault in that statement.

• More important: how we execute the code.
• Humans incorporate context from a project.
• “Context” is difficult for automation to derive.
• One-size-fits-all approaches.
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Limitations of Automation
• Automation produces different tests than humans.

• “shortest-path” approach to attaining coverage.

• Apply input different from what humans would try.

• Execute sequences of calls that a human might not try.
• Automation can be very effective, but more work is 

needed to improve it.
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I Want to Try This Out!
• Fuzzing often based on metaheuristic search.

• AFL (American Fuzzy Lop), Google OSS-Fuzz use 
genetic algorithms, fitness = code coverage.

• http://lcamtuf.coredump.cx/afl/
• https://google.github.io/oss-fuz 
• system-level tests

• The Fuzzing Book has tutorials and code for many 
specialized approaches:

• https://www.fuzzingbook.org/ 

http://lcamtuf.coredump.cx/afl/
https://google.github.io/oss-fuz
https://www.fuzzingbook.org/
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I Want to Try This Out!
• Python: 

• Tutorial for beginners: 
https://greg4cr.github.io/pdf/21ai4se.pdf

• https://github.com/Greg4cr/PythonUnitTestGeneration 

• EvoSuite for Java: http://www.evosuite.org/ 
• Sapienz (Facebook) tests Android/iOS apps

• Will be open-source in end of 2020 2022?.
• Older version available

• https://github.com/Rhapsod/sapienz/ 

https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/
https://github.com/Rhapsod/sapienz/blob/master/README.md
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Summary

The Metaheuristic
(Algorithm)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals 
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure, 
Maximize Battery Use,

(...)



Next Time
• User Interface design for variable systems

• Assignment 4 - Due Sunday
• Assignment 5 - December 19

• Final assignment - on testing
• Questions?
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