
Seamless Variability Management With the Virtual Platform

Wardah Mahmood

Chalmers | University of 
Gothenburg, Sweden

Daniel Strüber

Chalmers | University of 
Gothenburg,

Radboud University, 
Netherlands

Thorsten Berger

Chalmers | University of Gothenburg, 
Sweden & Ruhr University Bochum, 

Germany

Ralf Lämmel

University of Koblenz-Landau, 
Germany

Mukelabai Mukelabai

Chalmers | University of 
Gothenburg, Sweden

Dec 14, 2021



Variant-rich Systems

• Software systems exist in many variants

• Variant-rich systems prevalent in: 
• Automotive/avionics control systems domain
• Robotics
• Highly configurable systems e.g., Linux kernel

2



Variant-rich Systems Realization

3

asset

asset asset

Basic Calculator (BC) Scientific Calculator (BC)

Graphing Calculator (GC) Financial Calculator (FC)

feature 3

feature 2
feature 1

feature n

ConfiguratorIntegrated platform

Variant

asset

+ Independence

+ Innovation

- Clone detection

- Feature location

+ Propagation

+ Configuration over 
Implementation 

- Expensive

- Variability-related 
concepts 

assetasset

Clone & own Software product line



Variant-rich Systems Realization

4

asset

asset asset

Basic Calculator (BC) Scientific Calculator (BC)

Graphing Calculator (GC) Financial Calculator (FC)

feature 3

feature 2
feature 1

feature n

ConfiguratorIntegrated platform

Variant

asset

+ Independence

+ Innovation

- Clone detection

- Feature location

+ Propagation

+ Configuration over 
Implementation 

- Expensive

- Variability-related 
concepts 

assetasset

Clone & own Software product line

Migration?

- risky

- error-prone
- heuristic-based



5

Exploit the spectrum*

Incremental benefits for incremental effort

Bridge gap using different governance levels

Antkiewicz, Michał, et al. "Flexible product line engineering with a virtual platform." Companion Proceedings of the 36th International Conference on Software Engineering. 2014.



Bridge the gap

6

Clone and own 
with 

provenance

Clone and own 
with features

BC SC

GC FC

Clone and own with 
feature model

Clone and own with 
configuration

Add featuresStore traceability Introduce variability 
mechanisms

Structure features 
into a feature model

Reduce redundancy

Clone & own Level 6: Software 
product line

+ No clone detection + No feature location + Optional features
+ Variation points

+ Overview
+ Validity

+ Consistency
+ Quality



Virtual Platform

• Framework allowing to use subset of product line concepts over the spectrum
• Clone management and incremental migration
• Operators: dedicated support to move along the spectrum

• work on conceptual structures (semi-structured representations of source 
code)

• store and exploit metadata that otherwise gets lost (features & mappings, 
clone traces)

• language-independent

• Formalization and proof-of-concept implementation

• Evaluation of cost and benefit by replaying development history of a real-world 
variant-rich system.

7



Overview

8

Conceptual structure



Conceptual Structures

• Asset Tree: hierarchy of assets (Repository, Folder, File, Class, Method, Block)
• Asset tree = asset
• Versioned

• Feature: Set of functionality meaningful to a customer
• If location not stored, makes maintenance difficult
• Facilitates migration
• Can be added in many ways e.g., #ifdef
• Features are mapped to assets via presence conditions

• Feature model: Tree of features
• Structure, relationships, constraints
• Assets (of all types e.g., repository, folder etc.) can have a feature model

9



Operators

10

repo

fol1

file1

fol2

AddAsset

RemoveAsset

ChangeAsset

Clone and own
Clone and own 
with provenanceCloneAsset

addTrace

source target version

repo repo* v

fol1 fol1* v

fol2 fol2 v

file1 file2 v

Clone and own with feature model

FMAddFeatureModelToAsset

AddFeatureToFeatureModel

RemoveFeature(feature)

ChangeFeature(feature)

MoveFeature(feature)

AddAsset

AddAsset
repo*

fol1*

file1*

fol2*

repo*

fol1*

file1*

fol2*

MoveAsset

Trace database



Operators

11

Clone and own 
with features

Clone and own 
with configuration

FM

MapAssetToFeature

repo*

fol1*

file1*

fol2*

FM

MakeFeatureOptional

repo*

fol1*

file1*

fol2*

file1.presencecondition = feature & True

feature.optional = true



Benefits

• Query system (convenience operators)
• E.g., getMappedAssets, findClones, detectChanges.

• Clone assets with features (OP-12. CloneAsset)
• Clone features with assets (OP-13. CloneFeature)
• Propagate changes (OP-14. PropagateToAsset and OP-15. PropagateToFeature)

12



Evaluation

• Scala-based prototype

• Testing of scenarios covering the spectrum (governance levels)

• Case study: 4 variants

• Cost-benefit analysis
• Simulate development (special branch)

• Git diff → virtual platform operators

• Count operator invocations

13



Evaluation

• Incurred cost
• Adding features and mappings (costfeat) + fixing forgotten mappings (costmiss)

• Saved cost
• cost of clone detection (costclone) and feature location (costloc)

14*W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki, “Maintaining feature traceability with embedded annotations,” in SPLC, 2015.

Benefit Saved cost – incurred cost

Assumptions:

costloc = 15 minutes*
costloc = costclone

costmiss = 10 * costfeat

Break-even point: 54 seconds

Greater accuracy if used 
alongside development



15Wardah Mahmood Daniel Strüber Thorsten Berger Ralf Lämmel Mukelabai Mukelabai


	Seamless Variability Management With the Virtual Platform
	Variant-rich Systems
	Variant-rich Systems Realization
	Variant-rich Systems Realization
	Slide Number 5
	Bridge the gap
	Virtual Platform
	Overview
	Conceptual Structures
	Operators
	Operators
	Benefits
	Evaluation
	Evaluation
	Slide Number 15

