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Variant-rich Systems

* Software systems exist in many variants

e Variant-rich systems prevalent in:
* Automotive/avionics control systems domain
* Robotics

e Highly configurable systems e.g., Linux kernel

Vehicle State Observation Active Safety

Control Design Integrated Chassis Control



Variant-rich Systems Realization
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Variant-rich Systems Realization
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SPLs distinguish between domain engineering (DE) and ap-
plication engineering (AE). Though each realm has its own
lifecyele, they might need to be regularly synchronized to
avoid SPL erosion during evolution. This introduces two
sync paths: update propagation (from DE to AE ) and feed-

lopment: branching models &
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s) [2, 20]. As for
L, it is being proposed to extend the scope
of the product line to emerging application engineering re-
quirements [15]. However, synchronization is achieved not
between artifacts but artifact versions. This requires prop-
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Exploit the spectrum®

Bridge gap using different governance levels

Incremental benefits for incremental effort

Antkiewicz, Michat, et al. "Flexible product line engineering with a virtual platform." Companion Proceedings of the 36th International Conference on Software Engineering. 2014.



Bridge the gap
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Virtual Platform

* Framework allowing to use subset of product line concepts over the spectrum
e Clone management and incremental migration
e Operators: dedicated support to move along the spectrum

e work on conceptual structures (semi-structured representations of source
code)

e store and exploit metadata that otherwise gets lost (features & mappings,
clone traces)

* language-independent
e Formalization and proof-of-concept implementation

e Evaluation of cost and benefit by replaying development history of a real-world
variant-rich system.



Overview
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Conceptual Structures

» Asset Tree: hierarchy of assets (Repository, Folder, File, Class, Method, Block)
» Asset tree = asset
* Versioned

» Feature: Set of functionality meaningful to a customer
« If location not stored, makes maintenance difficult
» Facilitates migration
e Can be added in many ways e.g., #ifdef
» Features are mapped to assets via presence conditions

e Feature model: Tree of features
e Structure, relationships, constraints
* Assets (of all types e.g., repository, folder etc.) can have a feature model



Operators

Clone and own
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Operators

Clone and own Clone and own
with features with configuration

feature.optional = true
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filel.presencecondition = feature & True
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Benefits

Query system (convenience operators)
e E.g., getMappedAssets, findClones, detectChanges.

Clone assets with features (OP-12. CloneAsset)
Clone features with assets (OP-13. CloneFeature)
Propagate changes (OP-14. PropagateToAsset and OP-15. PropagateToFeature)

12



Evaluation

e Scala-based prototype

e Testing of scenarios covering the spectrum (governance levels)

e Case study: 4 variants
e Cost-benefit analysis

e Simulate development (special branch)
e Git diff - virtual platform operators

e Count operator invocations operator freq.  operator freq.
AddAsset 3,527  AddFeature 229
Change Asset 1,191  AddFeatureModelToAsset 4
Remove Asset 1.060  MapAssetToFeature 368
MoveAsset 303 RemoveFeature 40
Clone Asset 45 MoveFeature 22
PropagateToAsset 8 CloneFeature 54
PropagateToFeature 7

13



Evaluation

e |[ncurred cost
e Adding features and mappings (cost;,,,) + fixing forgotten mappings (cost

miss)
e Saved cost

* cost of clone detection (cost,,,,.) and feature location (cost,,.)

clone

Benefit Saved cost —incurred cost

Assumptions: Break-even point: 54 seconds

cost, .= 15 minutes*

Greater accuracy if used
cost,,. = cost

alongside development

clone

cost, ... = 10 * cost,,,

miss

*W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki, “Maintaining feature traceability with embedded annotations,” in SPLC, 2015. 14



Bridge the gap
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Operators
Traditional/Asset -oriented operators: Feature-oriented operators: Operators to handle
Conventional operators for asset tree feature models
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Evaluation
* Incurred cost
* Adding features and mappings (costs.,,) + fixing forgotten mappings (cost,,;;..)
= Saved cost
+ cost of clone detection {C_O_St,,._,_q_,,g] and feature location (co_s_t,_(,_Q]
Benefit Saved cost —incurred cost
Assumptions: Break-even point: 54 seconds
cost,,. = 15 minutes*
mst“" = cost Greater accuracy if used
e clone alongside development
cost,., = 10 * costy,,
*W. Ji, T. Berger, M. Antkiewicz, and K. Czarnacki, * feature ¥ with [ I SPLC, 2015, 93
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