) iy >

Daniel Striuber - . .
Wardalililghmood Thorsten Berger Ralf Lammel Mukelabai Mukelabai
i i Chalmers | University o . ;
ChalmelCggRRiersity of / vof Chalmers | University of Gothenburg, University of Koblenz-Landau, Chalmers [University of

Gothenburg, Sweden Gothenburg, gl

o Sweden & Ruhr University Bochum, Germany Gothenburg, Sweden
Radboud University,
Germany
Netherlands

Dec 14, 2021

Variant-rich Systems

* Software systems exist in many variants

e Variant-rich systems prevalent in:
* Automotive/avionics control systems domain
* Robotics

e Highly configurable systems e.g., Linux kernel

Vehicle State Observation Active Safety

Control Design Integrated Chassis Control

Variant-rich Systems Realization

‘ ‘ ‘ Clone & own

Basic Calculator (BC)

et

—

et

Scientific Calculator (BC)

2

Graphing Calculator (GC) Financial Calculator (FC)

E asset

Re—

+ Independence

+ Innovation

- Clone detection

- Feature location

Software product line

M feature 1

A

/7 M feature 2 F—\
] feature 3 asset

] featuren

Variant

Integrated platform Configurator

+ Propagation - Expensive

+ Configuration over

) - Variability-related
Implementation

concepts

Variant-rich Systems Realization

Clone & own

Cloned product variants: from ad-hoc to managed software
product lines

Migration?

- risky

Julia I

Publish
© Sprin

Abstr
tion of
By an:
with ¢l
ageme
into a

develo|
We prd

Enhancing Clone-and-Own with Systematic Reuse
for Developing Software Variants

- error-prone

Stefan Fisc

{s

Abstract—To keep pace w
ustom-tailored software system
ice called clone-and-own, wher
wstem is built by coping and a
of a single and configurable sy
hoc product portfolios of multig
pecome impossible to mai

videspread industrial use beca
nvestments and is intuitive, but j
htic reuse. In this work we proy

Bottom-Up Adoption of Software Product Lines -
A Generic and Extensible Approach

- heuristic-based

|

ABSTRA

Although S
an efficient
tion remain:
Line adopti
practitioner:
identificatiof
discovery, as
lenge can b

Synchronizing Software Variants with VariantSync

ABSTRACT

Developing and m
lenge in tods

satisfy the needs
product lines allo
ber of variants, m

Tuning GitHub for SPL deve

repository operations for product engineers

Leticia Montalvillo
University of the Basque Country (UPV/EHU)
ONEKIN Research Group - Facultad de
Informatica - San Sebastian, Spain
leticia.montalvillo@ehu.es

| ABSTRACT

SPLs distinguish between domain engineering (DE) and ap-
plication engineering (AE). Though each realm has its own
lifecyele, they might need to be regularly synchronized to
avoid SPL erosion during evolution. This introduces two
sync paths: update propagation (from DE to AE) and feed-

lopment: branching models &

Oscar Diaz
University of the Basque Country (UPV/EHU)
ONEKIN Research Group - Facultad de
Informatica - San Sebastian, Spain
oscar.diaz@ehu.es

s) [2, 20]. As for
L, it is being proposed to extend the scope
of the product line to emerging application engineering re-
quirements [15]. However, synchronization is achieved not
between artifacts but artifact versions. This requires prop-
: F : P e

Software product line

Exploit the spectrum®

Bridge gap using different governance levels

Incremental benefits for incremental effort

Antkiewicz, Michat, et al. "Flexible product line engineering with a virtual platform." Companion Proceedings of the 36th International Conference on Software Engineering. 2014.

Bridge the gap

‘ ‘ ‘ ' (CIoneV;?rc]i own J |: { Clone and own J |: (Clone and own with J { Clone and own with J

provenance with features configuration feature model

Clone & own Store traceability

Add features Introduce variability Structure features Level 6: S_oftware
mechanisms into a feature model ~ Product line
BC SC BC 31 5C —4 |[—= Reduce redundancy
GC FC GC «— EC o < '“‘;g;. | $ | BC 5C Ej@[ﬂ@
BC SC O EERE
. __D_______]
+ No clone detection + No feature location + Optional features Ej@lfﬂ@l ;@B
+ Variation points HEEE
_ + Consistency
+ Overview + Quality
+ Validity

Virtual Platform

* Framework allowing to use subset of product line concepts over the spectrum
e Clone management and incremental migration
e Operators: dedicated support to move along the spectrum

e work on conceptual structures (semi-structured representations of source
code)

e store and exploit metadata that otherwise gets lost (features & mappings,
clone traces)

* language-independent
e Formalization and proof-of-concept implementation

e Evaluation of cost and benefit by replaying development history of a real-world
variant-rich system.

Overview

uses
=» (QOperators = \\orking co
P operate g copy
. on
Version
Traditional control are . File are
\ synchronized

commands synchronized

\ system system
use I

Feature- \ v
Developer m oriented \ Traditional modify
commands \ operators \
IDE use \ Asset tree | «—— | Conceptual structure
| Feature- /
oriented modify
uses operators

Virtual Platform

Conceptual Structures

» Asset Tree: hierarchy of assets (Repository, Folder, File, Class, Method, Block)
» Asset tree = asset
* Versioned

» Feature: Set of functionality meaningful to a customer
« If location not stored, makes maintenance difficult
» Facilitates migration
e Can be added in many ways e.g., #ifdef
» Features are mapped to assets via presence conditions

e Feature model: Tree of features
e Structure, relationships, constraints
* Assets (of all types e.g., repository, folder etc.) can have a feature model

Operators

Clone and own
CloneAsset with provenance

/\

AddAsset

Clone and own

AddAsset

AddAsset

addTrace

Trace database

renoveRsset m-

ChangeAsset repo repo*

MoveAsset foll fol1* Vv
fol2 fol2 Y}

filel file2 Y

Clone and own with feature model

AddFeatureModelToAsset

FM

AddFeatureToFeatureModel

RemoveFeature(feature)

ChangeFeature(feature)

MoveFeature(feature)

10

Operators

Clone and own Clone and own
with features with configuration

feature.optional = true

L)

MakeFeatureOptional

MapAssetToFeature

filel.presencecondition = feature & True

11

Benefits

Query system (convenience operators)
e E.g., getMappedAssets, findClones, detectChanges.

Clone assets with features (OP-12. CloneAsset)
Clone features with assets (OP-13. CloneFeature)
Propagate changes (OP-14. PropagateToAsset and OP-15. PropagateToFeature)

12

Evaluation

e Scala-based prototype

e Testing of scenarios covering the spectrum (governance levels)

e Case study: 4 variants
e Cost-benefit analysis

e Simulate development (special branch)
e Git diff - virtual platform operators

e Count operator invocations operator freq. operator freq.
AddAsset 3,527 AddFeature 229
Change Asset 1,191 AddFeatureModelToAsset 4
Remove Asset 1.060 MapAssetToFeature 368
MoveAsset 303 RemoveFeature 40
Clone Asset 45 MoveFeature 22
PropagateToAsset 8 CloneFeature 54
PropagateToFeature 7

13

Evaluation

e |[ncurred cost
e Adding features and mappings (cost;,,,) + fixing forgotten mappings (cost

miss)
e Saved cost

* cost of clone detection (cost,,,,.) and feature location (cost,,.)

clone

Benefit Saved cost —incurred cost

Assumptions: Break-even point: 54 seconds

cost, .= 15 minutes*

Greater accuracy if used
cost,,. = cost

alongside development

clone

cost, ... = 10 * cost,,,

miss

*W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki, “Maintaining feature traceability with embedded annotations,” in SPLC, 2015. 14

Bridge the gap

! [Lewel 2: Clone
andl awn with
provenance |

Level 3: Clane and

wwn with features.

Level 1: Clone

Lewel 4: Clone and own
with canfiguration

Lewel 5: Clone and cwn
with feature madel

uses)
Operators iSperatell Working copy
Version on
Traditional control e) File are
synchronized g
Y commands system u m system synchronized
uses
Feature- use A
Developer N oriented ~ Traditional modify
commands \ operators
+—— | Conceptual structure
IDE use Asset tree
N Feature-
oriented maodify
operators
uses R Virtual Platform

e Store traceability Add f jabili Structure features Level 6: Software
mechanisms inta a feature model Product line
BC 5C BC [y 5C — . Reduce redundancy
%D‘AE L (==
oc [rc i . 8a s qpc Ve
GC e BC st G I
BC sC (] u
+ No clone detection + No feature location +Optional features O RESW
+Variation points nEEE
X + Consistency
+ Overview + Quality
+Validity
5
Operators
Traditional/Asset -oriented operators: Feature-oriented operators: Operators to handle
Conventional operators for asset tree feature models
syncing OP-5. AddFeatureToFeatureModel
OP-1. AddAsset OP-6. RemoveFeature
OP-7. re
B ©F-8 Movefeature
OP-9. MakeFeatureOptional
Feature model evolution << asset related
evolution
OP-10. AddFeatureModelToAsset
9

Wardah Mahmood

Daniel Striiber

Thorsten Berger

8
Evaluation
* Incurred cost
* Adding features and mappings (costs.,,) + fixing forgotten mappings (cost,,;;..)
= Saved cost
+ cost of clone detection {C_O_St,,._,_q_,,g] and feature location (co_s_t,_(,_Q]
Benefit Saved cost —incurred cost
Assumptions: Break-even point: 54 seconds
cost,,. = 15 minutes*
mst“" = cost Greater accuracy if used
e clone alongside development
cost,., = 10 * costy,,
*W. Ji, T. Berger, M. Antkiewicz, and K. Czarnacki, * feature ¥ with [I SPLC, 2015, 93

15

Ralf Limmel

Mukelabai Mukelabai

	Seamless Variability Management With the Virtual Platform
	Variant-rich Systems
	Variant-rich Systems Realization
	Variant-rich Systems Realization
	Slide Number 5
	Bridge the gap
	Virtual Platform
	Overview
	Conceptual Structures
	Operators
	Operators
	Benefits
	Evaluation
	Evaluation
	Slide Number 15

