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Variant-rich Systems

• Software systems exist in many variants

• Variant-rich systems prevalent in: 
• Automotive/avionics control systems domain
• Robotics
• Highly configurable systems e.g., Linux kernel
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Variant-rich Systems Realization
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Variant-rich Systems Realization
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Exploit the spectrum*

Incremental benefits for incremental effort

Bridge gap using different governance levels

Antkiewicz, Michał, et al. "Flexible product line engineering with a virtual platform." Companion Proceedings of the 36th International Conference on Software Engineering. 2014.



Bridge the gap

6

Clone and own 
with 

provenance

Clone and own 
with features

BC SC

GC FC

Clone and own with 
feature model

Clone and own with 
configuration

Add featuresStore traceability Introduce variability 
mechanisms

Structure features 
into a feature model

Reduce redundancy

Clone & own Level 6: Software 
product line

+ No clone detection + No feature location + Optional features
+ Variation points

+ Overview
+ Validity

+ Consistency
+ Quality



Virtual Platform

• Framework allowing to use subset of product line concepts over the spectrum
• Clone management and incremental migration
• Operators: dedicated support to move along the spectrum

• work on conceptual structures (semi-structured representations of source 
code)

• store and exploit metadata that otherwise gets lost (features & mappings, 
clone traces)

• language-independent

• Formalization and proof-of-concept implementation

• Evaluation of cost and benefit by replaying development history of a real-world 
variant-rich system.
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Overview
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Conceptual Structures

• Asset Tree: hierarchy of assets (Repository, Folder, File, Class, Method, Block)
• Asset tree = asset
• Versioned

• Feature: Set of functionality meaningful to a customer
• If location not stored, makes maintenance difficult
• Facilitates migration
• Can be added in many ways e.g., #ifdef
• Features are mapped to assets via presence conditions

• Feature model: Tree of features
• Structure, relationships, constraints
• Assets (of all types e.g., repository, folder etc.) can have a feature model
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Operators
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Operators
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Benefits

• Query system (convenience operators)
• E.g., getMappedAssets, findClones, detectChanges.

• Clone assets with features (OP-12. CloneAsset)
• Clone features with assets (OP-13. CloneFeature)
• Propagate changes (OP-14. PropagateToAsset and OP-15. PropagateToFeature)
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Evaluation

• Scala-based prototype

• Testing of scenarios covering the spectrum (governance levels)

• Case study: 4 variants

• Cost-benefit analysis
• Simulate development (special branch)

• Git diff → virtual platform operators

• Count operator invocations
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Evaluation

• Incurred cost
• Adding features and mappings (costfeat) + fixing forgotten mappings (costmiss)

• Saved cost
• cost of clone detection (costclone) and feature location (costloc)

14*W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki, “Maintaining feature traceability with embedded annotations,” in SPLC, 2015.

Benefit Saved cost – incurred cost

Assumptions:

costloc = 15 minutes*
costloc = costclone

costmiss = 10 * costfeat

Break-even point: 54 seconds

Greater accuracy if used 
alongside development
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