
HAnS: IDE-Based Editing Support for 
Embedded Feature Annotations

Chalmers University of Technology

Chalmers | University of Gothenburg

Thorsten Berger

Ruhr University Bochum

Johan Martinson Herman Jansson Mukelabai Mukelabai Alexandre Bergel

University of Chile

Chalmers | University of Gothenburg

Truong Ho-Quang

https://bitbucket.org/easelab/hans-text/



feature location
problem

2



variant-rich systems

3

clone & own

integrated
platform

re-engineering
(feature identification, location, modeling, asset integration, …)

amount of effort amount of attention

Berger et al. A survey of variability modeling in industrial practice. VaMoS, 2013.



traceability

traceability != variability

4

feature Init

feature Init

mainline

fork

traceability
annotation

traceability
annotation

traceability
annotation

variability
annotation
(#IFDEF)



traceability strategies

5

lazy strategy eager strategy

recover traceability
when needed

record and edit
traceability during

development



automated traceability recovery?

6
lazy strategy

Rubin, Chechik. A survey of feature location 
techniques. Domain Engineering. 2013

automated feature location
tools have low

precision and require
high manual effort

systems with 73k, 2k, 43k, 19k LOC
average location time: 15min

Wang, Peng, Xing, Zhao. How developers perform 
feature location tasks: a human-centric and 
process-oriented exploratory study. Journal of 
Software: Evolution and Process, 2013.
Krüger, Berger, Leich. Features and How to Find 
Them: A Survey of Manual Feature Location. 
Software Engineering for Variability Intensive 
Systems: Foundations and Applications. CRC 
Press. 2018

manual feature location



embedded feature annotations

7
Schwarz, Mahmood, Berger. A Common Notation and Tool Support for Embedded Feature Annotations. SPLC. 2020
Ji, Berger, Antkiewicz, Czarnecki. Maintaining Feature Traceability with Embedded Annotations. SPLC. 2015.



feature references

8



HAnS: Helping Annotate Software

9

Jetbrains IntelliJ Plugin

mapping features browsing features refactoring features
• annotation syntax
• code completion 
• live templates
• surrounding live 

templates

https://bitbucket.org/easelab/hans-text/



10









HAnS: Helping Annotate Software

11

mapping features browsing features refactoring features
• feature model view
• find usages
• syntax highlighting



5 / 8Introduction ConclusionsHAnS Evaluation






HAnS: Helping Annotate Software

13

mapping features browsing features refactoring features
• rename a feature
• add / delete from the 

feature model



5 / 8Introduction ConclusionsHAnS Evaluation

HAnS - Refactoring






evaluation – user study

overall methodology
design science (multiple iterations)
evaluation: experiment

experiment with student developers
subject system: a small Snake game
cross-over design:

two groups, two sets of tasks
treatment: HAnS

screen recording
questionnaire

15



developer performance

16



mistakes made

17

Severity Error Plugin Enabled Plugin Disabled

High Feature reference 4 6

High Syntax 2 6

Medium Definition 4 6

High Spelling 0 0

Total: 10 18



some responses

19

“It would be nice to have more 
functionality like finding usages in the 

Feature Model View.” 

“Refactoring was very tedious without 
support for the built-in refactoring in 
IntelliJ.”

“I would have liked to see some functionality 
were I can mark some code and then 
surround it with a begin and end tag.”

positively perceived:
feature browsing
feature referencing
feature refactoring



Need for more integrated tool support

Visualization Reminders to continually annotate

20



further tool support

21

Andam, Burger, Berger, Chaudron. FLOrIDA: Feature LOcatIon DAshboard for Extracting and Visualizing Feature Traces. VaMoS. 2017
Entekhabi, Solback, Steghöfer, Berger. Visualization of Feature Locations with the Tool FeatureDashboard. SPLC. 2019
Abukwaik, Burger, Andam, Berger. Semi-Automated Feature Traceability with Embedded Annotations. ICSME. 2018.
Schwarz, Mahmood, Berger. A Common Notation and Tool Support for Embedded Feature Annotations. SPLC. 2020



FeatRacer: Feature traceability recommender

22

//&begin [sendMail]
… server.post('/mailBox’, 
commandMiddleware, 
function(req, res, next) {
…
}});

//&end [sendMail]
analyze 
changeset

annotate fragment

3 Suggested annotation 
for fragment: sendMail

4 confirm 5
FeatRacer

Working on 
sendMail 
feature

… server.post(‘/mailBox’, 
commandMiddleware, 
function(req, res, next) {
…
}});

commitevolve

2

commit6



23

Needs IDE 
integration



24

HAnS: IDE-Based Editing Support for Embedded Feature Annotations

Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger, Alexandre Bergel and Truong Ho-Quang

https://bitbucket.org/easelab/hans-text/



HaNS plugin

25



Paper Reference

Martinson, J., Jansson, H., Mukelabai, M., Berger, T., Bergel, A., & Ho-Quang, T. (2021, September). 
HAnS: IDE-based editing support for embedded feature annotations. In Proceedings of the 25th ACM 
International Systems and Software Product Line Conference-Volume B (pp. 28-31).

26


	HAnS: IDE-Based Editing Support for Embedded Feature Annotations
	feature location�problem
	variant-rich systems
	traceability
	traceability strategies
	automated traceability recovery?
	embedded feature annotations
	feature references
	HAnS: Helping Annotate Software
	Slide Number 10
	HAnS: Helping Annotate Software
	Slide Number 12
	HAnS: Helping Annotate Software
	Slide Number 14
	evaluation – user study
	developer performance
	mistakes made
	some responses
	Need for more integrated tool support
	further tool support
	FeatRacer: Feature traceability recommender
	Slide Number 23
	Slide Number 24
	HaNS plugin
	Paper Reference

