
Lecture 14: Course Summary

Gregory Gay
TDA 594/DIT 593 - December 16, 2021

2

SE Principles for Complex Systems

3

Individual Assignment - Jan 10-14
• Take home exam, 10ish open-ended questions.

• Will require reading one research paper.

• Will be made available on Canvas at 9:00 on
January 10th and due January 14, 23:59.

• Based on topics covered in lectures, more
theory-based than group assignments.

Practice Assignment:
https://bit.ly/3oxH3Yc

https://bit.ly/3oxH3Yc

4

Question 1 - Domain/Application
Your company has developed SPL for smart TVs,
according to the following feature diagram:

For each request, decide if you will extend the
platform, add the feature to a single application, or
decline the request.

5

Question 1 - Domain/Application

• Extend the Platform: Easy to support. Few hardware
incompatibilities. Gamers would appreciate the option.

• One Product: Limited customer base. Potential
hardware incompatibility. Performance will change in the
future.

2K resolution for video games
(offering good balance
between image sharpness
and game speed).

6

Question 1 - Domain/Application

• Extend the Platform or Ignore: Would require
extensive effort to create and manage. Would need to
work on all hardware. Could earn a lot of additional
revenue - so may be worth the effort, but can argue
either way.

App Store where developers
can publish their own media
apps, and customers can
select the ones they want.

7

Question 1 - Domain/Application

• Single Product: Relatively little development work, and
may sell a lot of TVs to that restaurant.

• Remote could be added to platform and sold with future
products (or as an add-on).

TVs for a restaurant chain
that display a special app,
and have a remote with
simplified button layout.

8

Question 2 - Feature Modelling
You are developing a word processor as a software
product line, so that you can easily provide different
feature sets for different types of customers.
1. Analyze the domain and identify a set of features.
2. Model the domain with a feature diagram.

9

Question 2 - Feature Modelling
Some items to consider:
● Which features will be requested by many customers?
● Which features will be requested only by a few customers?
● Which features could distinguish your products from others?
● Pay attention to feature dependencies and make sure you

capture cross-tree constraints and model structures.

10

Question 2

11

Question 2

12

Question 3
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

13

Question 3 (A)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ (B ⇒ A) ∧ (C ⇔ A) ∧ (D ⇒ A) ∧
((C ⇔ (E ∨ F)) ∧ ￢(E ∧ F)) ∧ ((E ∨ F) ⇒ D))

● Valid: A, B, C, D, F ; A, C, D, E
● Invalid: A, B, C, D, E, F ; A, B, C, E
● Is it consistent: Yes

14

Question 3 (B)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ (B ⇔ A)∧ (C ⇒ A) ∧ (D ⇒ A) ∧
((C ⇔ (E ∨ F)) ∧ ￢(E ∧ F)) ∧ (G ⇒ D) ∧ (D ⇒ ￢B)
∧
(E ⇒ G)

● Valid: A, B ; A, B, C, F
● Invalid: A, B, D, G ; A, B, C, E
● It is consistent: Yes, but D, E, and G are dead

features (because B is mandatory).

15

Question 3 (C)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ ((B ∨ C ∨ D) ⇔ A) ∧ (E ⇔ B) ∧ (F ⇒ D) ∧ (G ⇒
D)

● Valid: A, C ; A, B, C, D, E, F, G
● Invalid: A, B, C; A, C, E
● It is consistent: Yes (just remember that B and E

need to come as a pair)

16

Question 3 (D)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ (B ⇒ A) ∧ (C ⇔ A) ∧ (D ⇔ B) ∧ (E ⇒ C) ∧ (F ⇒
C) ∧
(F ⇒ E) ∧ (D ⇔ E)

● Valid: A, C ; A, B, C, D, E
● Invalid: A, B, C, D ; A, C, F
● It is consistent: Yes, but remember that if you have F,

you need E, D, and B as well.

17

Question 4 - Implementation
Consider compile-time and load-time binding of
variability decisions.
1. Define each and note how they differ.
2. Explain potential advantages and disadvantages.

18

Question 4 - Implementation
Compile-time Binding:
• Features selected when code is compiled.

• Preprocessors.

• Unselected features removed from code.
• Faster code, lower system requirements, more secure.

19

Question 4 - Implementation
Load-time Binding:
• Features selected when program executed.

• Parameters, design patterns, frameworks, components
can do this (or run-time).

• Configuration file, command line

• Flexible, user can change settings.
• Slower, insecure.

20

Question 4 - Implementation
Discuss best binding times are suitable for:
• Multiple alternative localization features for the GUI

of a satellite navigation system.
• (language selection, metric versus imperial units, etc.)

Run-time:
User may want to change preferences without a reboot.
Multiple users may share same device, could customize
options for each profile.

21

Question 4 - Implementation
Discuss best binding times are suitable for:
• Two alternative sorting features in a database:

• Very fast or power- efficient sorting algorithm.

Load or Run-time:
Switch based on current needs.
If run-time, can switch based on battery state (but could be
issues if switched at runtime)

22

Question 4 - Implementation
Discuss best binding times are suitable for:
• Two alternative features in an operating system:

• Single-processor support and multi-processor support.

Compile or Load-time:
Hardware can’t change without reboot.
Could change hardware and reboot (load-time), but this is
often compile-time (company sells different products).

23

Question 4 - Implementation
Discuss best binding times are suitable for:
• Two alternative features for edge representations in

a library of graph algorithms:
• directed and undirected edges.

Compile or Load-time:
Other features depend on edge type, so issues at run-time.
Compile-time could be efficient if changes infrequent.

24

Question 4 - Implementation
Discuss best binding times are suitable for:
• Multiple optional features for supported file formats

in printer firmware.

Compile-time:
The file types are unlikely to change often.
Embedded system benefits from simple/fast executable.

25

Question 5 - Design Patterns
Choose one of: strategy, decorator, factory, facade,
adapter, and template method pattern.
1. Describe the goal of the pattern and how it is

applied to a system.
2. Describe how the pattern would help enable

controlled variability.
3. Give an example of a system that would benefit

from the application of this pattern.

26

Let’s Take a Break

27

Question 5 - Design Patterns
Factory Pattern
• Performs object creation based on selected options
• Returns an object (Product) on request.

• All Products implement a common interface.
• New Products can be added, or existing ones changed.
• Client does not need to know details of object creation or

which object it is interacting with.

28

Question 5 - Design Patterns

29

Question 6 - Modularity/APIs
“Let’s Make a Deal” is a game where contestants are
presented with three doors.
● One leads to a prize, the others lead to nothing.
● Users select one door.
● Host opens one of the other doors.
● Users can then choose to open their door or the

remaining unopened door.

30

Question 6 - Modularity/APIs
Implement Let’s Make a Deal as a web service:
● Creation of games.
● User selection of a door.
● The game will open one of the other doors.
● User opening of a door.
● Querying of the current state of the game and outcome (if

complete) by user.
● Deletion of a game.

31

Question 6 - Modularity/APIs
1. Create a REST API for this game.

a. Determine the appropriate resources and verbs, and
explain your API.

2. Extend your API into a generic, reusable API that
could be used as the interface for additional games.
a. Redesign your interface as a generic “game” interface.
b. Explain why your new design could be reused for a

different game.

32

Question 6 - Modularity/APIs

Once game is over, only GET is allowed for {gid}

Resource Verb

/games get – status of games server
post – create new game

/games/{gid} get – status of game (in_play, won, lost)
delete – delete the game resource

/games/{gid}/doors get – status of all doors

/games/{gid}/doors/{1..3} get – door status {closed, selected, opened}
put – update door status

33

Question 6 - Modularity/APIs
Resource Verb

/games get – status of games server
post – create new game

/games/{gid} get – status of game {results based on game}
delete – delete the game resource

/games/{gid}/items get – status of any in-game item
post - create a new item (requires authentication)

/games/{gid}/items/{iid} get – item status {results based on game}
put – update item status
delete - delete the item resource (requires
authentication)

Question 7 - Testing
find(pattern,file)

• Finds instances of a pattern in a file
• find(“john”,myFile)

• Finds all instances of john in the file
• find(“john smith”,myFile)

• Finds all instances of john smith in the file
• find(““john” smith”,myFile)

• Finds all instances of “john” smith in the file

34

Question 7 - System Testing
• Parameters: pattern, file
• What can we vary for each?

• What can we control about the pattern? Or the file?
• What values can we choose for each choice?

• File name:
• File exists with that name
• File does not exist with that name

• What constraints can we apply between choice
values? (if, single, error)

35

Question 7 - System Testing
• Pattern size:

• Empty
• single character
• many characters
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

36

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on any single line line:
○ One
○ more than one

(22*33*41) = 108 test specifications

ERROR and SINGLE Constraints

37

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

37

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (12*23*31) = 30
[error]

IF Constraints

38

• Pattern size:
• Empty
• single character
• many character
• longer than any line in the file

• Quoting:
• pattern has no quotes
• pattern has proper quotes
• pattern has improper quotes (only one “)

• Embedded spaces:
• No spaces
• One space
• Several spaces

38

● File name:
○ Existing file name
○ no file with this name

● Number of occurrence of pattern in file:
○ None
○ exactly one
○ more than one

● Pattern occurrences on target line:
○ One
○ more than one

[error]

[error]

[error]

[single]

[single]

4 (error) + 2 (single) + (13*23) (quoted = true) +
(14*22) (quoted = false) = 18[error]

[property quoted]

[if quoted]
[if quoted]

39

Question 8 - Combinatorial Testing

• Full set of test specifications = 144
• Create set covering all pairwise value

combinations.
• Hint: Start with two variables with most values. Add one

variable at a time.

Allow
Content to
Load

Notify About
Pop-Ups

Allow Cookies Warn About
Add-Ons

Warn About
Attack Sites

Warn About
Forgeries

Allow Yes Allow Yes Yes Yes

Restrict No Restrict No No No

Block Block

40

Question 8 - Combinatorial Testing
Allow Content Allow Cookies

Allow Allow

Allow Restrict

Allow Block

Restrict Allow

Restrict Restrict

Restrict Block

Block Allow

Block Restrict

Block Block

Pop-Ups

Yes

No

-

-

Yes

No

No

-

Yes

Add-Ons

Yes

No

-

No

-

Yes

-

Yes

No

Attacks

Yes

Yes

No

No

-

Yes

-

No

Yes

Forgeries

Yes

No

Yes

No

Yes

No

Yes

-

No

No No

Yes

41

Question 9 - Automation
Metaheuristic search techniques can be divided into
local and global search techniques.
1. Define “local” search and “global” search.

● Local search: formulate a solution, and improve by
making small changes.

● Global search: more than one solution at a time, and
freely change those solutions.

42

Question 9 - Automation
Metaheuristic search techniques can be divided into
local and global search techniques.
2. Contrast the two approaches. What are the

strengths and weaknesses of each?
Local search: Fast, easy to understand. Depend on initial
guess to not get stuck.
Global search: Do not get stuck easily, but are slower.

43

Question 9 - Automation
3. Choose and explain an algorithm.
Simulated Annealing:
● Generate random initial solution.
● Each round, pick a neighbor.

○ If better, make it new solution.
○ If worse, make it solution based on result of a probability.

● Probability of accepting worse solution decreases over
time - allows rapid early exploration.

44

Question 10 - Research in SPLs
Read the following research paper: “Variability
Management With The Virtual Platform”
1. What problem are the authors attempting to address?
2. Why is this problem important to address?
3. What did the authors do to address this problem?
4. What conclusions did they come to?
5. What is one thing you think could be done to extend

this work in the future?

45

Question 10 - Research in SPLs
What problem are the authors addressing?
• Clone & Own: New variant created by cloning existing

code and making changes.
• Flexible, inexpensive to start, but hard to maintain and does not

scale to large number of variants.

• Product line development: Asset platform, compose
new products from platform
• Expensive upfront effort, but scales well.

• Authors want to ease transition.

46

Question 10 - Research in SPLs
Why is this problem important to address?
• Very expensive to start with a platform.
• Many developers cannot start with SPL.
• Transition is difficult and failure has high

consequences (bad or cancelled products).
• Simple, incremental transition methods can reduce

that risk.

47

Question 10 - Research in SPLs
What did the authors do to address this problem?
• Virtual platform collects metadata (features, feature

locations, clone traces).
• Metadata used in operators available to developers

• Clone and feature creation/evolution/management.
• Operators allow management of clones, transition

to platform.

48

Question 10 - Research in SPLs
What conclusions did they come to?
• Costs - maintaining features, dealing with

omissions during feature maintenance.
• Benefits - reduced manual feature location, clone

detection and maintenance.
• Benefits far outweigh costs.
• Reduced effort from pure clone & own.

49

Question 10 - Research in SPLs
What is one thing you think could be done to
extend this work in the future?
• Use metadata to train a prediction model.

• Could predict feature-to-asset mappings.
• Could suggest operators to the developer that they may

want to apply.
• (You are moving code - perhaps you should use the “move asset”

operator?)
• You do NOT need to be an expert - just think a little

and try to be creative!

50

Wrap-Up
• Thank you for making this a great course!
• Any remaining questions?

