Iy

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

&

Lecture 4: Feature Model and e IV
Code Analysis —

Gregory Gay i
TDA 594/DIT 593 - November 11, 2021 *

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Propositional Logic

 Mandatory: If parent is selected,
the child must be.

e mandatory(p, f) = f & p

« Optional: Child may only be
chosen if the parent is.
« optional(p, f) = f = p

Mandatory Optional
Feature Feature
Y P

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Propositional Logic

« Alternative: Choose exactly one

 alternative(p, {-Fl"”’fn}) - %
((f, V ... V.£) & p)

/\(fi,fj) —|(-Fi A -Fj) f, s fo

 Or: Choose at least one

* OP(pJ {-F]_J"°)-F }) =
((f, V ... V £) & p)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Analyses of Feature Models

Is a feature selection valid?

Is the feature model consistent?

Do our assumptions hold (testing)?

Which features are mandatory?

Which features can never be selected (dead)?
How many valid selections does model have?
Are two models equivalent?

Given partial selection, what must be included?
What selections give best cost/size/performance?

s o

i) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Valid Feature Selection

— T T

 Translate model into a T
propositional formula ¢. b
. || Weighted
 Assign true to each selected <1 S
feature, false to rest. " ey
. B Prim
* Assess whether @ is true. B

 |f yes, valid selection.

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Graph Library

GraphLibrary

./M

Edge Type Weighted Algorithm

N AN

Directed Undirected Cycle ShortestPath MST

JZN

Prim Kruskal

MST => Undirected A Weighted
Cycle => Directed

¢ =GraphLibrary A EdgeType A (DirectedVUndirected) A —(Directed AUndirected)
A((CycleVvShortestPathVVMST) < Algorithm) A (Cycle = Directed)
A((PrimVKruskal) <> MST) A~ (PrimAKruskal) A (MST = (Undirected AWeighted))

NIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

Example - Graph Library

GraphLibrary Selection:
{GraphLibrary, EdgeType, Directed}

¢ =GraphLibrary AEdgeType A (Directed vVUndirected) A—(Directed AUndirected)
A ((CycleVvShortestPath vMST) <> Algorithm) A (Cycle = Directed)
A((PrimVKruskal) < MST) A —(PrimAKruskal) A (MST = (Undirected AWeighted))

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Consistent Feature Models

* A consistent model has 1+ valid selections.
* Inconsistent models do not have any valid selection.

« Contradictory constraints are common.

* Find feature selection that results in ¢ = true

« NP-complete problem, but SAT solvers can often find
solutions quickily.

{
- f
B ‘7‘
y/ 9.
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boolean Satisfiability (SAT)

* Find assignments to Boolean variables X1,X2,...,X
that results in expression ¢ evaluating to true.

« Defined over expressions written in conjunctive
normal form.
c 9o=(X, VX)) A (TX, VX))
« (X, V —X,)is a clause, made of variables, —, V

« Clauses are joined with A

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Conjunctive Normal Form

- Variables: X,,X,,X;,X,, X,

« Clauses (using only V (or) and — (not)
¢+ (X, VX)), (X, VX, V X,), (X, V X,

« Expression ¢ joins clauses with A (and

. g(—;XZ VX)AX VX, VX)AX,VX)A X
2

):
), (X1 V X2)
)

\%

1

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boolean Satisfiability

* Find assignment to X,,X,,X,,X,,X, to solve
* (TX, VX)) A X VX, VX)A X, VX)) A (X
X,)
* One solution: 1,0,1, 1, 1
c (X, VX)AX VX, VX)A X,V —X)A (X
X,)
. (iOV1)/\(1 VAT VHAAY 1)A(1VO0)
* MAMAM)AQN)
o 1

\%

1

\%

1

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Transformation Rules

* De Morgan’s Laws

¢« (XVY)z—XA Y

¢« (XAY)=—XV Y
 Distributivity

c XVIYAZD=XVY)A XYV 2

c XANYVOD=XAY)V XA 2
* Double Negation

e X=X

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Transformation Rules
. XY

« XisequivalenttoY
¢« =(X=2Y) A(Y=X)
¢« X=2Y)=(—XVY)
« If Xis true, Y is also true.
 |f Xis false, Y can be either true or false.

c S(=XVY) A(4YVX)

NIVERSITY OF GOTHENBURG

Transformation into CNF

VOD < TRUE =VOD

VOD

‘/v\' VOD ¢ (Record V Play)

Record Play

A ((Mobile V TV) & Play)
N

o Mobile | —Movile A TV) =
(Mobile ® Play A —TV) A (TV © Play A
—Mobile)

VOD A (VOD ¢ (Record V Play)) A (Mobile & Play A —=TV) A (TV © Play A
—Mobile)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Transformation into CNF

« VOD A (VOD ¢ (Record V Play)) A (Mobile &
(Play A —TV)) A (TV & (Play A —Mobile))
« (VOD ¢ (Record V Play))
« =(VOD = (Record V Play)) A ((Record V Play) = VOD)
« =(—VOD V (Record V Play)) A (—(Record V Play) V VOD)
« =(—VOD V (Record V Play)) A (—Record V VOD) A (—Play V
VOD)
« (Mobile & (Play A —TV))
. = (Mobile V TV V —Play) A (—Mobile V Play) A (—Mobile V
—TV)
« (TV & (Play A —Mobile))
« =(TV V Mobile V —Play) A (—TV V Play) A (—TV V —Mobile)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DIMACS Format

ecord

VoD

 Map feature names to

integer IDs.
VOD =1
Record = 2
Play = 3
TV =4
Mobile = 5

) UNIVERSITY OF GOTHENBURG

VOD A
(A—IVOD V (Record V Play)) A (—Record V VOD) A (—Play V VOD)

(Mobile V TV V —Play) A (—Mobile V Play) A (—Mobile V —TV) A
(TV V Mobile V —Play) A (—TV V Play) A (—TV V —Mobile)

1A
(—1V(2V3) A2V 1A (—3V 1A
5V 4V —3)A(—5V3)A(—5V —4) A
4V 5V —3)A (—4V 3)A (—4V —5)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

A

5V 4V —3)A(—5V3) A (—
—4) A

DIMACS Format
1 A

(M VE2VI3)Y)A(T2V 1) A3V

| __—P

—_—

~

5V \

\
4VOoOV) A(4E4V3I AN
—5
°)Each clause is stored in a

row, with A (AND) omitted.
e Negation (—) translated into
negative (-)

BN

1
-1V2V3
2V 1
-3V 1
5V4V -3
-5V3
5V -4
4 V5V -3
-4V 3
-4V -5

) CHALMERS |

Remove disjunction signs (V
e Add DIMACs header

O

O
O
©)

{81)) UNIVERSITY OF GOTHENBURG

/ 3

Comments
Indicates CNF format

Number of variables ?

Number of CNF clauses

A 4

Cc comments

45-3

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG

Using a SAT Solver

* |dentify assignment that results in true outcome.

« VOD A (—VOD V (Record V Play)) A (—Record V
VOD) A (—Play V VOD) A (Mobile V TV V —Play) A
(—Mobile V Play) A (—Mobile V —TV) A (TV V

Mobile V —Play) A (—TV V Play) A (—TV V
—Mobile)

« A satisfying assignment: (1,1, 1, 1, 0)
* Returns satisfying assignment.
« May return all satisfying assignments found.

e |If not satisfiableI ma¥ offer information on whi.

Activity

Start with A/B. :

« Do C/Dif time.
Translate model
Into propositional
logic formula.

E F

(EVF)=D

Provide two valid ©
and two invalid :
features.

s it consistent? If ==

not, why not?

https://bit.ly/3BVwMZc

(b) A
O Q
[c 0
Q
E F G
D=-B
E=G
(d) x
(@)
:
i . O (@]
D E F

https://bit.ly/3BVwMZc

Solution (A) @

 Translate model B

Into propositional
logic formula.

* Provide two valid
and two invalid
features.

* Is it consistent? If
not, why not?

o)

E

F

(EVF)=D

(&%) UNIVERSITY OF GOTHENBURG

Solution (B) OIS

* Translate model il :
into propositional < o o
logic formula. B O —

* Provide two valid £
and two invalid

features.
* |s it consistent? If
not, why not?

(&%) UNIVERSITY OF GOTHENBURG

Solution (C)

* Translate model
Into propositional
logic formula.

* Provide two valid
and two invalid

(¢) A
features. -
* |Is it consistent? If = 5 =

not, why not?

{81)) UNIVERSITY OF GOTHENBURG

Solution (D)

* Translate model
iInto propositional
logic formula.

* Provide two valid
and two invalid
features.

* Is it consistent? If .
not, why not?

(d) A

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

SAT Solver Process

» EXxpress in conjunctive normal form:
« @=(x2V x5 A1V x3Vx4) A x4V —x5) A (x1
V x2)
* Choose assignment based on how it affects each
clause it appears in.
« What happens if we assign x2 = true?
 If any clauses now false, don’t apply that value.
* Continue until CNF expression is satisfied.

8 /
- f

‘\;‘,7‘

y A%

g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Branch & Bound Algorithm

Set variable to true or false.
Apply that value.

Does value satisfy the clauses that it appears in?
 |f so, assign a value to the next variable.
 |f not, backtrack (bound) and apply the other value.

Prunes branches of the boolean decision tree as

values are applied.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

G {
- f
== ‘7‘
4 y/ 9.
g

Branch & Bound Algorithm

e=(%x2V x5 AX1V —x3Vx4) Ax4dV —x5) A (x1V
X2)
1. Set x1 to false.
¢=(—x2V x5 AOV —x3Vx4) A4V —x5)A 0V
X2)
2. Set x2 to false.
Pp=(1Vx5) AOV —x3Vx4) Ax4V —x5) A 0V 0)
3. Backtrack and set x2 to true.
e=(0V x5 AOV x3Vx4) Ax4V —x5)A0VA1)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

 Set a variable to true/false.
* Apply that value to the expression.
« Remove all satisfied clauses.

 If assignment does not satisfy a clause, then remove that
variable from that clause.

 |f this leaves any unit clauses (single variable clauses),
assign a value that removes those next.

« Repeat until a solution is found.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

DPLL Algorithm

@=(x%x2V x5 AXx1V —x3Vx4) Ax4dV —x5 A (x1V
X2)

1. Set x2 to false.
@=("0VxXx5) AXx1TV —x3V x4) A x4V —x5 A (x1V0)
=1V —x3V x4) A x4V —x5) A (x1)
2. Set x1 to true.
e=(1V —x3Vx4) A(x4V —x5) A (1)
¢ = (x4 V —x5)
3. Set x4 to false, then x5 to false.
¢ =(0V —x5)
¢ =(70)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Testing Facts About the Model

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Testing Facts about Models

« Afact that should be true encoded as formula y.

 Check whether @ A —wy is satisfiable.

* |[s there a valid feature selection for ¢ that does not
satisfy constraint p?

 If yes, there is a problem with the model.

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Graph Library

GraphLibrary

.//N

Edge Type Weighted Algorithm

AN AN

Directed Undirected Cycle ShortestPath MST

JZN

Prim Kruskal

MST => Undirected A Weighted
Cycle => Directed

¢ =GraphLibrary AEdgeType A (Directed VvVUndirected) A —(Directed AUndirected)
A ((CycleVShortestPath vMST) <> Algorithm) A (Cycle = Directed)
A((PrimVKruskal) < MST) A -~ (PrimAKruskal) A (MST = (Undirected AWeighted))

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Dead and Mandatory Features

* A dead feature is never used.
A mandatory feature is always used.

* Given model ¢ and feature F:
« 1+ valid selection with F if (¢ A F) is satisfiable.
« 1+ valid selection without F if (¢ A —F) is satisfiable.
« Feature is dead if no selection with it (7(¢@ A F))

- Feature is mandatory if no selection without it (7(¢@ A
F))

)} CHALMERS | UNIVERSITY OF GOTHENBURG

4 UNIVERSITY OF TECHNOLOGY

Example - Graph Library

GraphLibrary
Edge Type Weighted Algorithm
Directed Undirected Cycle ShortestPath MST

JZN

Prim Kruskal

MST => Undirected A Weighted
Cycle => Directed

¢ =GraphLibrary AEdgeType A (Directed VvVUndirected) A —(Directed AUndirected)
A((CycleVvShortestPath Vv MST) <> Algorithm) A (Cycle = Directed)
A((PrimVKruskal) < MST) A -~ (PrimAKruskal) A (MST = (Undirected AWeighted))

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Constraint Propagation

« Constraint Propagation - hiding unavailable
features after we make partial selections.

 Feature selection often iterative:
 Feature selected, deselected, or no decision made.

 Partial feature selection:
« Set of selected features (S € F)
« Set of deselected features (D < F, with S N D = 2)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Constraint Propagation

Partial feature selection
+ pfs(S,D) = V(s€S)s A V(deD) —d

Partial selection is valid if (¢ A pfs(S,D)) satisfiable

F deactivated if (¢ A pfs(S,D) A F) not
satisfiable.
F activated if (¢ A pfs(S,D) A —F) not
satisfiable.

y CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Graph Library

GraphLibrary
Edge Type Weighted Algorithm

-—

T e

=

ShortestPath MST

JZN

Prim Kruskal

MST => Undirected A Weighted
Cycle => Directed

¢ =GraphLibrary AEdgeType A (Directed VvVUndirected) A —(Directed AUndirected)
A ((CycleVShortestPath vMST) <> Algorithm) A (Cycle = Directed)
A((PrimVKruskal) < MST) A -~ (PrimAKruskal) A (MST = (Undirected AWeighted))

{8%)) UNIVERSITY OF GOTHENBURG

Comparing Feature Models

No Products Products
Added Added
No Products © @
Deleted
Refactoring Generalization

Products @
Deleted

Specialization Arbitrary Edit

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Comparing Feature Models

* Models are equivalent if formulae are equivalent.
* (@, © @,) is not satisfiable.

* @, Is a specialization of ¢,if (¢, = @,)
* and @, is a generalization of @,
« SAT solver can compare two models.

CHALMERS | UNIVERSITY OF GOTHENBURG

Example - Graph Library

(a) Algorithm | (b) Algorithm
Use SAT Solver e ~_ T .. T
tO prove ’ Cycle ’ ShortestPath ‘ MST ‘ Cycle ’ ShortestPath MST
(Pl’ight < (pl eft Cycle v ShortestPath v MST

¢+ = Algorithm A ((Cycle Vv ShortestPath v MST) < Algorithm)
¢rigne = Algorithm A (Cycle = Algorithm) A (ShortestPath = Algorithm)
A (MST = Algorithm) A (Cycle Vv ShortestPath v MST)

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Feature-to-Code Mappings

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Feature-To-Code Mappings

* Feature models describe the problem space.
 Models are implemented in source code.

« Similar analyses can examine mapping of feature
models to code.
* Which code assets are never used?
* Which code assets are always used?
* Which features have no influence on product portfolio?

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Dead Code

* Features that can
never be incorporated.

 Feature B, in the code,
required Feature A to
also be selected.

 Model states that A
and B are mutually
exclusive.

OB W —

line 1
#ifdef A
line 3
#ifdef B
line 5
#endif
#else
line 8
#endif

Program

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Presence Conditions

* Describes the set of L L Program
products containinga 3 tines /o\
code fragment. 5 Uine's

* pc(c) = (conditions for | {525 ’ ’
c to be included in a 9 #endif
product)

 pc(line 3) = A e pc(lines3-5)=AAB

. pclline5)=AAB © Pc(lines3-8)=AABA-A

o (cannot be included in any product)

* pc(line 8)="A

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Dead Code

C pc()

 Fragment is dead if 1 line 1 True
never included in any 3 line 3

4 #ifdef B
product. 5 lines AAB

. 6 #endif

* (@ represents all valid Tidese
products. o

Program

A

SN

 Fragment C is dead

iff (@ A pc(C))isnot ¢ =Program A (A V B) A 7(A A

satisfiable. B)

B

(@ A pc(line 5)) is not satisfiable:
Program A(AVB)A(AAB)A(AA

b

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Mandatory Code

 Fragment is mandatory
iIf always included in a

| Directed I lUndirected | I Cycle | | ShortestPath I [MST]
product.
. MST => Undirected A Weighted l Pri | | _— |
* (@ represents all valid] [
p rOd u Cts . ¢ =GraphLibrary AEdgeType A (Directed VvV Undirected) A—(Directed AUndirected)
A((CycleVvShortestPath VMST) < Algorithm) A (Cycle = Directed)
P Frag ment C IS A((PrimVKruskal) < MST) A —(PrimAKruskal) A (MST = (Undirected AWeighted))

mandatory iff

(@ A =pc(C)) If code implemented correctly,

is not satisfiable. the fragment for EdgeType
will be mandatory.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Feature Models can be expressed using
propositional logic formulae ().
« Based on model and cross-tree constaints.

« Valid feature selections result in (¢ = true).

« SAT Solvers can identify valid configurations.
 If none can be found, the model is inconsistent.
« Enables many different model analyses.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* Feature-Model Analysis
» Check properties of model are true.
« Dead and mandatory features
» Effects of partial selections
« Comparisons between two models

* Mapping of models and code
 Dead and mandatory code

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

» Variability Implementation

* Assignment 1
 Due November 14
« Reach out to supervisors (and me) with questions

* Assignment 2
 Due November 21
« Feature modelling and analysis for mobile robots

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

