Lecture 4: Feature Model and Code Analysis

Gregory Gay

TDA 594/DIT 593 - November 11, 2021

Propositional Logic

- Mandatory: If parent is selected, the child must be.

Mandatory Feature

Optional Feature

Propositional Logic

- Alternative: Choose exactly one
- alternative(p, $\left.\left\{f_{1}, \ldots, f_{n}\right\}\right) \equiv$ $\left(\left(f_{1} \vee \ldots \vee f_{n}\right) \Leftrightarrow p\right)$ $\Lambda_{(f i, f j)}^{1} \neg\left(f_{i} \Lambda^{n} f_{j}\right)$

- Or: Choose at least one
- or $\left(p,\left\{f_{1}, \ldots, f_{n}\right\}\right) \equiv$ $\left.\left(\left(f_{1} \vee \ldots{ }^{\prime}, \ldots f_{n}\right\}\right) \Leftrightarrow p\right)$

Analyses of Feature Models

- Is a feature selection valid?
- Is the feature model consistent?
- Do our assumptions hold (testing)?
- Which features are mandatory?
- Which features can never be selected (dead)?
- How many valid selections does model have?
- Are two models equivalent?
- Given partial selection, what must be included?
- What selections give best cost/size/performance?

Valid Feature Selection

- Translate model into a propositional formula φ.
- Assign true to each selected feature, false to rest.
- Assess whether φ is true.
- If yes, valid selection.

Example - Graph Library

$\phi=$ GraphLibrary \wedge EdgeType $\wedge($ Directed \vee Undirected $) \wedge \neg($ Directed \wedge Undirected $)$
$\wedge(($ Cycle \vee ShortestPath \vee MST $) \Leftrightarrow$ Algorithm $) \wedge($ Cycle \Rightarrow Directed $)$
$\wedge(($ Prim \vee Kruskal $) \Leftrightarrow$ MST $) \wedge \neg(\operatorname{Prim} \wedge$ Kruskal $) \wedge($ MST $\Rightarrow($ Undirected \wedge Weighted $))$

Example - Graph Library

Selection:
\{GraphLibrary, EdgeType, Directed\}

```
\varphi = T \ \ \ \ ~ ( T ~ V ~ F ) ~ \ ~ \neg ( T ~ \ ~ F ) ~
^((F\vee F \vee F)\LeftrightarrowF) ^(F F F F)
\wedge((F\veeF)\LeftrightarrowF)^\neg(F\wedgeF)\wedge (F=>)
F))
\varphi = T \wedge ~ T ~ \ ~ ( T ) ~ \ ~ ᄀ ( F )
^(T) ^(T)
\wedge(T) ^ \neg(F) ^(T)
\phi=GraphLibrary }\wedge\mathrm{ EdgeType }\wedge(\mathrm{ Directed }\vee\mathrm{ Undirected )}\wedge\neg(\mathrm{ Directed }\wedge\mathrm{ Undirected)
    \wedge((Cycle \vee ShortestPath \veeMST ) \LeftrightarrowAlgorithm ) }\wedge(\mathrm{ Cycle }=>\mathrm{ Directed )
    \wedge((Prim\veeKruskal)}\LeftrightarrowMST)\wedge\neg(Prim^Kruskal) ^(MST => (Undirected ^Weighted))
```


Consistent Feature Models

- A consistent model has $1+$ valid selections.
- Inconsistent models do not have any valid selection.
- Contradictory constraints are common.
- Find feature selection that results in $\varphi=$ true
- NP-complete problem, but SAT solvers can often find solutions quickly.

Boolean Satisfiability (SAT)

- Find assignments to Boolean variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ that results in expression φ evaluating to true.
- Defined over expressions written in conjunctive normal form.
- $\varphi=\left(X_{1} \vee \neg X_{2}\right) \wedge\left(\neg X_{1} \vee X_{2}\right)$
- $\left(X_{1} \vee \neg X_{2}\right)$ is a clause, made of variables, \neg, \vee
- Clauses are joined with \wedge

Conjunctive Normal Form

- Variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$
- Clauses (using only \vee (or) and \neg (not)):

$$
\text { - }\left(\neg X_{2} \vee X_{5}\right),\left(X_{1} \vee \neg X_{3} \vee X_{4}\right),\left(X_{4} \vee \neg X_{5}\right),\left(X_{1} \vee X_{2}\right)
$$

- Expression φ joins clauses with \wedge (and)

$$
\text { - } \left.\left(\neg X_{2}\right) \text {, } X_{5}\right) \wedge\left(X_{1} \vee \neg X_{3} \vee X_{4}\right) \wedge\left(X_{4} \vee \neg X_{5}\right) \wedge\left(X_{1} \vee\right.
$$

Boolean Satisfiability

- Find assignment to $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ to solve

$$
\text { - } \underset{\left.X_{2}\right)}{\left(\neg X_{2} \vee X_{5}\right) \wedge\left(X_{1} \vee \neg X_{3} \vee X_{4}\right) \wedge\left(X_{4} \vee \neg X_{5}\right) \wedge\left(X_{1} \vee\right) ~}
$$

- One solution: 1, 0, 1, 1, 1
- $\left.\left(\neg X_{2}\right) \vee X_{5}\right) \wedge\left(X_{1} \vee \neg X_{3} \vee X_{4}\right) \wedge\left(X_{4} \vee \neg X_{5}\right) \wedge\left(X_{1} \vee\right.$
- $(\neg 0 \vee 1) \wedge(1 \vee \neg 1 \vee 1) \wedge(1 \vee \neg 1) \wedge(1 \vee 0)$
- (1) $\wedge(1) \wedge(1) \wedge(1)$
- 1

Transformation Rules

- De Morgan's Laws
- $\neg(X \vee Y) \equiv \neg X \wedge \neg Y$
- $\neg(X \wedge Y) \equiv \neg X \vee \neg Y$
- Distributivity
- $X \vee(Y \wedge Z) \equiv(X \vee Y) \wedge(X \vee Z)$
- $X \wedge(Y \vee Z) \equiv(X \wedge Y) \vee(X \wedge Z)$
- Double Negation
- $\neg \neg X \equiv X$

Transformation Rules

- $X \Leftrightarrow Y$
- X is equivalent to Y
- $\equiv(X \Rightarrow Y) \wedge(Y \Rightarrow X)$
- $(X \Rightarrow Y) \equiv(\neg X \vee Y)$
- If X is true, Y is also true.
- If X is false, Y can be either true or false.
- $\equiv(\neg X \vee Y) \wedge(\neg Y \vee X)$

Transformation into CNF

> VOD $\wedge(\mathrm{VOD} \Leftrightarrow($ Record \vee Play $)) \wedge($ Mobile \Leftrightarrow Play $\wedge \neg T V) \wedge(T V \Leftrightarrow$ Play \wedge \neg Mobile $)$

Transformation into CNF

- VOD \wedge (VOD \Leftrightarrow (Record V Play)) \wedge (Mobile \Leftrightarrow (Play $\wedge \neg T V)) \wedge(T V \Leftrightarrow($ Play $\wedge \neg$ Mobile $))$
- (VOD \Leftrightarrow (Record V Play))
- $\equiv(\mathrm{VOD} \Rightarrow($ Record \vee Play $)) \wedge(($ Record \vee Play $) \Rightarrow \mathrm{VOD})$
- $\equiv(\neg \mathrm{VOD} \vee($ Record \vee Play $)) \wedge(\neg($ Record \vee Play) $\vee \vee \mathrm{VOD})$
- $\equiv(\neg \mathrm{VOD} \vee($ Record \vee Play $)) \wedge(\neg$ Record $\vee \mathrm{VOD}) \wedge(\neg$ Play \vee VOD)
- (Mobile \Leftrightarrow (Play $\wedge \neg T V))$
- \equiv (Mobile $\vee T V \vee \neg$ Play $) \wedge(\neg$ Mobile \vee Play $) \wedge(\neg$ Mobile \vee $\neg \mathrm{TV}$)
- (TV \Leftrightarrow (Play $\wedge \neg$ Mobile))
- $\equiv(\mathrm{TV} \vee$ Mobile $\vee \neg$ Play $) \wedge(\neg T \vee \vee$ Play $) \wedge(\neg T V \vee \neg$ Mobile $)$

DIMACS Format

- Map feature names to integer IDs.
- $\mathrm{VOD}=1$
- Record = 2
- Play = 3
- TV = 4
- Mobile = 5

DIMACS Format

VOD \wedge
$(\neg \mathrm{VOD} \vee($ Record \vee Play $)) \wedge(\neg$ Record \vee VOD $) \wedge(\neg$ Play \vee VOD $)$
(Mobile $\vee T V \vee \neg$ Play $) \wedge(\neg$ Mobile \vee Play $) \wedge(\neg$ Mobile $\vee \neg T V) \wedge$ (TV \vee Mobile $\vee \neg$ Play $) \wedge(\neg T \vee \vee$ Play $) \wedge(\neg T \vee \vee \neg$ Mobile $)$

$$
\begin{aligned}
& 1 \wedge \\
& (\neg 1 \vee(2 \vee 3)) \wedge(\neg 2 \vee 1) \wedge(\neg 3 \vee 1) \wedge \\
& (5 \vee 4 \vee \neg 3) \wedge(\neg 5 \vee 3) \wedge(\neg 5 \vee \neg 4) \wedge \\
& (4 \vee 5 \vee \neg 3) \wedge(\neg 4 \vee 3) \wedge(\neg 4 \vee \neg 5)
\end{aligned}
$$

DIMACS Format

1				
-1	\vee	2	\vee	
-2	\vee	1		
-3	\vee	1		
5	\vee	4	-3	
-5	\vee			
-5	\vee	-4		
$4 \vee 5$	-3			
-4	\vee			
$-4 \bigvee$	-5			

- Remove disjunction signs (V)
- Add DIMACs header
- Comments
- Indicates CNF format
- Number of variables
- Number of CNF clauses
c comments p cnf 510 \rightarrow
-123
-2 1
-3 1
54-3
-5 3
-5 -4
4-3
-4 3
-4-5

Using a SAT Solver

- Identify assignment that results in true outcome.
- VOD $\wedge(\neg$ VOD $\vee($ Record \vee Play) $) \wedge(\neg$ Record \vee VOD) $\wedge(\neg$ Play \vee VOD $) \wedge$ (Mobile $\vee T V \vee \neg$ Play $) \wedge$ $(\neg$ Mobile \vee Play) $\wedge(\neg$ Mobile $\vee \neg T V) \wedge(T V \vee$ Mobile $\vee \neg$ Play $) \wedge(\neg$ TV \vee Play $) \wedge(\neg T V \vee$ \neg Mobile)
- A satisfying assignment: (1, 1, 1, 1, 0)
- Returns satisfying assignment.
- May return all satisfying assignments found.
- If not satisfiable, may offer information on why.

Activity

- Start with A/B.
- Do C/D if time.
- Translate model into propositional logic formula.
- Provide two valid and two invalid features.
- Is it consistent? If not, why not?

Solution (A)

- Translate model into propositional logic formula.
- Provide two valid and two invalid features.
- Is it consistent? If not, why not?

$$
(E \vee F) \Rightarrow D
$$

$$
A \wedge(B \Rightarrow A) \wedge(C \Leftrightarrow A) \wedge(D \Rightarrow A) \wedge
$$

$$
((C \Leftrightarrow(E \vee F)) \wedge \neg(E \wedge F)) \wedge((E \vee F) \Rightarrow D))
$$

- Valid: A, B, C, D, F ; A, C, D, E
- Invalid: A, B, C, D, E, F ; A, B, C, E
- Is it consistent: Yes

Solution (B)

- Translate model into propositional logic formula.
- Provide two valid and two invalid features.
- Is it consistent? If not, why not?
(b)

$\mathrm{D} \Rightarrow-\mathrm{B}$
$\mathrm{E} \Rightarrow \mathrm{G}$

```
A ^(B\LeftrightarrowA)^ (C=>A) ^(D ( A A) ^
((C\Leftrightarrow(E\veeF))\wedge\neg(E\wedgeF))\wedge(G=>D)\wedge(D=>\negB)
^
(E = G)
```

- Valid: A, B ; A, B, C, F
- Invalid: A, B, D, G; A, B, C, E
- It is consistent: Yes, but D, E, and G are dead features (because B is mandatory).

Solution (C)

- Translate model into propositional logic formula.
- Provide two valid and two invalid features.
- Is it consistent? If not, why not?
$A \wedge((B \vee C \vee D) \Leftrightarrow A) \wedge(E \Leftrightarrow B) \wedge(F \Rightarrow D) \wedge(G \Rightarrow$ D)
- Valid: A, C ; A, B, C, D, E, F, G
- Invalid: A, B, C; A, C, E
- It is consistent: Yes (just remember that B and E need to come as a pair)

Solution (D)

- Translate model into propositional logic formula.
- Provide two valid and two invalid features.
- Is it consistent? If not, why not?
$A \wedge(B \Rightarrow A) \wedge(C \Leftrightarrow A) \wedge(D \Leftrightarrow B) \wedge(E \Rightarrow C) \wedge(F \Rightarrow$ C) \wedge
$(F \Rightarrow E) \wedge(D \Leftrightarrow E)$
- Valid: A, C ; A, B, C, D, E
- Invalid: A, B, C, D ; A, C, F
- It is consistent: Yes, but remember that if you have F, you need E, D, and B as well.
(d)

A

SAT Solver Process

- Express in conjunctive normal form:
- $\begin{aligned} & \varphi=(\neg \times 2 \vee \times 5) \wedge(x 1 \vee \neg \times 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(x 1) \\ & \vee \times 2)\end{aligned}$
- Choose assignment based on how it affects each clause it appears in.
- What happens if we assign x2 = true?
- If any clauses now false, don't apply that value.
- Continue until CNF expression is satisfied.

Branch \& Bound Algorithm

- Set variable to true or false.
- Apply that value.
- Does value satisfy the clauses that it appears in?
- If so, assign a value to the next variable.
- If not, backtrack (bound) and apply the other value.
- Prunes branches of the boolean decision tree as values are applied.

Branch \& Bound Algorithm

$\varphi=(\neg x 2 \vee \mathrm{x} 5) \wedge(x 1 \vee \neg \mathrm{x} 3 \vee \mathrm{x} 4) \wedge(\mathrm{x} 4 \vee \neg \mathrm{x} 5) \wedge(\mathrm{x} 1 \vee$ x2)

1. Set x 1 to false.

$$
\begin{aligned}
& \varphi=(\neg x 2 \vee x 5) \wedge(0 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(0 \vee) \\
& x 2)
\end{aligned}
$$

2. Set $\mathbf{x} 2$ to false.

$$
\varphi=(1 \vee x 5) \wedge(0 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(0 \vee 0)
$$

3. Backtrack and set $x 2$ to true.

$$
\varphi=(0 \vee x 5) \wedge(0 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(0 \vee 1)
$$

DPLL Algorithm

- Set a variable to true/false.
- Apply that value to the expression.
- Remove all satisfied clauses.
- If assignment does not satisfy a clause, then remove that variable from that clause.
- If this leaves any unit clauses (single variable clauses), assign a value that removes those next.
- Repeat until a solution is found.

DPLL Algorithm

$\varphi=(\neg x 2 \vee x 5) \wedge(x 1 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(x 1 \vee$ $\mathrm{x} 2)$

1. Set $\mathbf{x} 2$ to false.

$$
\begin{aligned}
& \varphi=(\neg 0 \vee x 5) \wedge(x 1 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(x 1 \vee 0) \\
& \varphi=(x 1 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(x 1)
\end{aligned}
$$

2. Set $x 1$ to true.

$$
\begin{aligned}
& \varphi=(1 \vee \neg x 3 \vee x 4) \wedge(x 4 \vee \neg x 5) \wedge(1) \\
& \varphi=(x 4 \vee \neg x 5)
\end{aligned}
$$

3. Set $\mathbf{x} 4$ to false, then $\mathbf{x} 5$ to false.

$$
\begin{aligned}
& \varphi=(0 \vee \neg x 5) \\
& \varphi=(\neg 0)
\end{aligned}
$$

Let's take a break!

Testing Facts About the Model

Testing Facts about Models

- A fact that should be true encoded as formula ψ.
- Check whether $\varphi \wedge \neg \psi$ is satisfiable.
- Is there a valid feature selection for φ that does not satisfy constraint ψ ?
- If yes, there is a problem with the model.

Example - Graph Library

$\phi=$ GraphLibrary \wedge EdgeType $\wedge($ Directed \vee Undirected $) \wedge \neg($ Directed \wedge Undirected)
$\wedge(($ Cycle \vee ShortestPath \vee MST $) \Leftrightarrow$ Algorithm $) \wedge($ Cycle \Rightarrow Directed $)$
$\wedge(($ Prim \vee Kruskal $) \Leftrightarrow M S T) \wedge \neg($ Prim \wedge Kruskal $) \wedge(M S T \Rightarrow($ Undirected \wedge Weighted $))$

Dead and Mandatory Features

- A dead feature is never used.
- A mandatory feature is always used.
- Given model φ and feature F:
- 1+ valid selection with F if $(\varphi \wedge F)$ is satisfiable.
- $1+$ valid selection without F if $(\varphi \wedge \neg F)$ is satisfiable.
- Feature is dead if no selection with it ($\neg(\varphi \wedge F))$
- Feature is mandatory if no selection without it ($\neg(\varphi \wedge$ $\neg F)$)

Example - Graph Library

$\phi=$ GraphLibrary \wedge EdgeType $\wedge($ Directed \vee Undirected $) \wedge \neg($ Directed \wedge Undirected $)$
$\wedge(($ Cycle \vee ShortestPath \vee MST $) \Leftrightarrow$ Algorithm $) \wedge($ Cycle \Rightarrow Directed $)$
$\wedge(($ Prim \vee Kruskal $) \Leftrightarrow M S T) \wedge \neg($ Prim \wedge Kruskal $) \wedge(M S T \Rightarrow($ Undirected \wedge Weighted $))$

Constraint Propagation

- Constraint Propagation - hiding unavailable features after we make partial selections.
- Feature selection often iterative:
- Feature selected, deselected, or no decision made.
- Partial feature selection:
- Set of selected features (S \subseteq F)
- Set of deselected features ($\mathrm{D} \subseteq \mathrm{F}$, with $\mathrm{S} \cap \mathrm{D}=\varnothing$)

Constraint Propagation

- Partial feature selection
- $\operatorname{pfs}(S, D)=\forall(s \in S)$ s $\wedge \forall(d \in D) \neg d$
- Partial selection is valid if ($\varphi \wedge \operatorname{pfs}(S, D)$) satisfiable
- F deactivated if ($\varphi \wedge \operatorname{pfs}(S, D) \wedge F) \underline{n o t}$ satisfiable.
- F activated if ($\varphi \wedge \operatorname{pfs}(\mathrm{S}, \mathrm{D}) \wedge \neg \mathrm{F})$ not satisfiable.

Example - Graph Library

$\phi=$ GraphLibrary \wedge EdgeType $\wedge($ Directed \vee Undirected $) \wedge \neg($ Directed \wedge Undirected $)$
$\wedge(($ Cycle \vee ShortestPath \vee MST $) \Leftrightarrow$ Algorithm $) \wedge($ Cycle \Rightarrow Directed $)$
$\wedge(($ Prim \vee Kruskal $) \Leftrightarrow M S T) \wedge \neg($ Prim \wedge Kruskal $) \wedge($ MST $\Rightarrow($ Undirected \wedge Weighted $))$

Comparing Feature Models

Comparing Feature Models

- Models are equivalent if formulae are equivalent.
- $\neg\left(\varphi_{1} \Leftrightarrow \varphi_{2}\right)$ is not satisfiable.
- φ_{1} is a specialization of φ_{2} if $\left(\varphi_{2} \Rightarrow \varphi_{1}\right)$
- and φ_{2} is a generalization of φ_{1}
- SAT solver can compare two models.

Example - Graph Library

Use SAT Solver to prove
 $\varphi_{\text {right }} \Leftrightarrow \varphi_{\text {left }}$

Cycle v ShortestPath v MST

$$
\begin{aligned}
\phi_{\text {left }}= & \text { Algorithm } \wedge((\text { Cycle } \vee \text { ShortestPath } \vee \text { MST }) \Leftrightarrow \text { Algorithm }) \\
\phi_{\text {right }}= & \text { Algorithm } \wedge(\text { Cycle } \Rightarrow \text { Algorithm }) \wedge(\text { ShortestPath } \Rightarrow \text { Algorithm }) \\
& \wedge(\text { MST } \Rightarrow \text { Algorithm }) \wedge(\text { Cycle } \vee \text { ShortestPath } \vee \text { MST })
\end{aligned}
$$

Feature-to-Code Mappings

Feature-To-Code Mappings

- Feature models describe the problem space.
- Models are implemented in source code.
- Similar analyses can examine mapping of feature models to code.
- Which code assets are never used?
- Which code assets are always used?
- Which features have no influence on product portfolio?

Dead Code

- Features that can never be incorporated.
- Feature B, in the code, required Feature A to also be selected.

```
l line 1
#ifdef A
3 line 3
#ifdef B
5 line 5
##endif
# #else
8 line 8
# #endif
8 line 8
9 \#endif
```


- Model states that A and B are mutually exclusive.

Presence Conditions

- Describes the set of products containing a code fragment.
- pc(c) = (conditions for c to be included in a product)
- pc(line 3) $=A$
- pc(line 5) $=A \wedge B$
- $\mathrm{pc}($ line 8$)=\neg \mathrm{A}$
- pc(lines 3-5) = A \wedge B

1 line 1
2 \#ifdef A
3 line 3
4 \#ifdef B
5 line 5
6 \#endif
7 \#else
8 line 8
9 \#endif

- pc(lines 3-8) $=\mathrm{A} \wedge \mathrm{B} \wedge \neg \mathrm{A}$
- (cannot be included in any product)

Dead Code

- Fragment is dead if never included in any product.
- φ represents all valid products.
- Fragment C is dead iff ($\varphi \wedge \mathrm{pc}(\mathrm{C})$) is not satisfiable.

	C	pc()
1	line 1	True
2	\#ifdef A	
3	line 3	A
4	\#ifdef B	
5	line 5	$A \wedge B$
6	\#endif	
7	\#else	$\neg \mathrm{A}$
8	line 8	ᄀ
9	\#endif	

8 line 8
$\varphi=$ Program $\wedge(A \vee B) \wedge \neg(A \wedge$ B)
($\varphi \wedge \mathrm{pc}($ line 5$)$) is not satisfiable:
Program $\wedge(A \vee B) \wedge \neg(A \wedge B) \wedge(A \wedge$ B)

Mandatory Code

- Fragment is mandatory if always included in a product.
- φ represents all valid products.
- Fragment C is mandatory iff (φ 人 ᄀрс(C))
is not satisfiable.

We Have Learned

- Feature Models can be expressed using propositional logic formulae (φ).
- Based on model and cross-tree constaints.
- Valid feature selections result in ($\varphi=$ true).
- SAT Solvers can identify valid configurations.
- If none can be found, the model is inconsistent.
- Enables many different model analyses.

We Have Learned

- Feature-Model Analysis
- Check properties of model are true.
- Dead and mandatory features
- Effects of partial selections
- Comparisons between two models
- Mapping of models and code
- Dead and mandatory code

Next Time

- Variability Implementation
- Assignment 1
- Due November 14
- Reach out to supervisors (and me) with questions
- Assignment 2
- Due November 21
- Feature modelling and analysis for mobile robots

UNIVERSITY OF GOTHENBURG

CHALMERS
 UNIVERSITY OF TECHNOLOGY

