
Lecture 4: Feature Model and
Code Analysis

Gregory Gay
TDA 594/DIT 593 - November 11, 2021

2

Propositional Logic
• Mandatory: If parent is selected,

the child must be.
• mandatory(p, f) ≡ f ⇔ p

• Optional: Child may only be
chosen if the parent is.
• optional(p, f) ≡ f ⇒ p

Mandatory
Feature

Optional
Feature

3

Propositional Logic
• Alternative: Choose exactly one

• alternative(p, {f
1
,...,f

n
}) ≡

((f
1
 ∨ … ∨ f

n
) ⇔ p)

∧
(fi,fj)

 ￢(f
i
 ∧ f

j
)

• Or: Choose at least one
• or(p, {f

1
,...,f

n
}) ≡

((f
1
 ∨ … ∨ f

n
) ⇔ p)

4

Analyses of Feature Models
• Is a feature selection valid?
• Is the feature model consistent?
• Do our assumptions hold (testing)?
• Which features are mandatory?
• Which features can never be selected (dead)?
• How many valid selections does model have?
• Are two models equivalent?
• Given partial selection, what must be included?
• What selections give best cost/size/performance?

5

Valid Feature Selection
• Translate model into a

propositional formula φ.
• Assign true to each selected

feature, false to rest.
• Assess whether φ is true.

• If yes, valid selection.

6

Example - Graph Library

7

Example - Graph Library
Selection:
{GraphLibrary, EdgeType, Directed}

φ = T ∧ T ∧ (T ∨ F) ∧ ￢(T ∧ F)
∧ ((F ∨ F ∨ F)⇔ F) ∧ (F ⇒ F)
∧ ((F ∨ F) ⇔ F) ∧ ￢(F ∧ F) ∧ (F ⇒ (F ∧
F))

φ = T ∧ T ∧ (T) ∧ ￢(F)
∧ (T) ∧ (T)
∧ (T) ∧ ￢(F) ∧ (T)

8

Consistent Feature Models
• A consistent model has 1+ valid selections.

• Inconsistent models do not have any valid selection.

• Contradictory constraints are common.
• Find feature selection that results in φ = true

• NP-complete problem, but SAT solvers can often find
solutions quickly.

9

Boolean Satisfiability (SAT)
• Find assignments to Boolean variables X1,X2,...,Xn

that results in expression φ evaluating to true.
• Defined over expressions written in conjunctive

normal form.
• φ = (X1 ∨ ￢X2) ∧ (￢X1 ∨ X2)
• (X1 ∨ ￢X2) is a clause, made of variables, ￢, ∨
• Clauses are joined with ∧

10

Conjunctive Normal Form
• Variables: X1,X2,X3,X4,X5
• Clauses (using only ∨ (or) and ￢ (not)):

• (￢X2 ∨ X5), (X1 ∨￢X3 ∨ X4), (X4 ∨ ￢X5), (X1 ∨ X2)

• Expression φ joins clauses with ∧ (and)
• (￢X2 ∨ X5) ∧ (X1 ∨￢X3 ∨ X4) ∧ (X4 ∨ ￢X5) ∧ (X1 ∨

X2)

11

Boolean Satisfiability
• Find assignment to X1,X2,X3,X4,X5 to solve

• (￢X2 ∨ X5) ∧ (X1 ∨￢X3 ∨ X4) ∧ (X4 ∨ ￢X5) ∧ (X1 ∨
X2)

• One solution: 1, 0, 1, 1, 1
• (￢X2 ∨ X5) ∧ (X1 ∨￢X3 ∨ X4) ∧ (X4 ∨ ￢X5) ∧ (X1 ∨

X2)
• (￢0 ∨ 1) ∧ (1 ∨￢1 ∨1) ∧ (1 ∨ ￢1) ∧ (1 ∨ 0)
• (1) ∧ (1) ∧ (1) ∧ (1)
• 1

12

Transformation Rules
• De Morgan’s Laws

• ￢(X ∨ Y) ≡ ￢X ∧ ￢Y
• ￢(X ∧ Y) ≡ ￢X ∨ ￢Y

• Distributivity
• X ∨ (Y ∧ Z) ≡ (X ∨ Y) ∧ (X ∨ Z)
• X ∧ (Y ∨ Z) ≡ (X ∧ Y) ∨ (X ∧ Z)

• Double Negation
• ￢￢X ≡ X

13

Transformation Rules
• X ⇔ Y

• X is equivalent to Y

• ≡ (X ⇒ Y) ∧ (Y ⇒ X)
• (X ⇒ Y) ≡ (￢X ∨ Y)
• If X is true, Y is also true.
• If X is false, Y can be either true or false.

• ≡ (￢X ∨ Y) ∧ (￢Y ∨ X)

14

Transformation into CNF
 VOD ⇔ TRUE ≡ VOD

mandatory(p, f) ≡ f ⇔ p

optional(p, f) ≡ f ⇒ p

alternative(p, {f1,...,fn}) ≡
((f1 ∨ … ∨ fn) ⇔ p) ∧ ∀(fi,fj) ￢(fi ∧
fj)

or(p, {f1,...,fn}) ≡ ((f1 ∨ … ∨ fn) ⇔ p)

 VOD ⇔ (Record ∨ Play)

 ((Mobile ∨ TV) ⇔ Play)
∧
 ￢(Movile ∧ TV) ≡
 (Mobile ⇔ Play ∧ ￢TV) ∧ (TV ⇔ Play ∧
￢Mobile)

VOD ∧ (VOD ⇔ (Record ∨ Play)) ∧ (Mobile ⇔ Play ∧ ￢TV) ∧ (TV ⇔ Play ∧
￢Mobile)

15

Transformation into CNF
• VOD ∧ (VOD ⇔ (Record ∨ Play)) ∧ (Mobile ⇔

(Play ∧ ￢TV)) ∧ (TV ⇔ (Play ∧ ￢Mobile))
• (VOD ⇔ (Record ∨ Play))

• ≡ (VOD ⇒ (Record ∨ Play)) ∧ ((Record ∨ Play) ⇒ VOD)
• ≡ (￢VOD ∨ (Record ∨ Play)) ∧ (￢(Record ∨ Play) ∨ VOD)
• ≡ (￢VOD ∨ (Record ∨ Play)) ∧ (￢Record ∨ VOD) ∧ (￢Play ∨

VOD)
• (Mobile ⇔ (Play ∧ ￢TV))

• ≡ (Mobile ∨ TV ∨ ￢Play) ∧ (￢Mobile ∨ Play) ∧ (￢Mobile ∨
￢TV)

• (TV ⇔ (Play ∧ ￢Mobile))
• ≡ (TV ∨ Mobile ∨ ￢Play) ∧ (￢TV ∨ Play) ∧ (￢TV ∨ ￢Mobile)

16

DIMACS Format
• Map feature names to

integer IDs.
• VOD = 1
• Record = 2
• Play = 3
• TV = 4
• Mobile = 5

1

2
3

4 5

17

DIMACS Format
VOD ∧

(￢VOD ∨ (Record ∨ Play)) ∧ (￢Record ∨ VOD) ∧ (￢Play ∨ VOD)
∧

(Mobile ∨ TV ∨ ￢Play) ∧ (￢Mobile ∨ Play) ∧ (￢Mobile ∨ ￢TV) ∧

(TV ∨ Mobile ∨ ￢Play) ∧ (￢TV ∨ Play) ∧ (￢TV ∨ ￢Mobile)

1 ∧

(￢1 ∨ (2 ∨ 3)) ∧ (￢2 ∨ 1) ∧ (￢3∨ 1) ∧

(5 ∨ 4 ∨ ￢3) ∧ (￢5 ∨ 3) ∧ (￢5 ∨ ￢4) ∧

(4 ∨ 5 ∨ ￢3) ∧ (￢4 ∨ 3) ∧ (￢4∨ ￢5)

1

2
3

4 5

18

DIMACS Format
1 ∧
(￢1 ∨ (2 ∨ 3)) ∧ (￢2 ∨ 1) ∧ (￢3∨ 1)
∧

(5 ∨ 4 ∨ ￢3) ∧ (￢5 ∨ 3) ∧ (￢5 ∨
￢4) ∧
(4 ∨ 5 ∨ ￢3) ∧ (￢4 ∨ 3) ∧ (￢4∨
￢5)

1
-1 ∨ 2 ∨ 3
-2 ∨ 1
-3 ∨ 1
5 ∨ 4 ∨ -3
-5 ∨ 3
-5 ∨ -4
4 ∨ 5 ∨ -3
-4 ∨ 3
-4∨ -5

● Each clause is stored in a
row, with ∧(AND) omitted.

● Negation (￢) translated into
negative (-)

19

1
-1 ∨ 2 ∨ 3
-2 ∨ 1
-3 ∨ 1
5 ∨ 4 ∨ -3
-5 ∨ 3
-5 ∨ -4
4 ∨ 5 ∨ -3
-4 ∨ 3
-4∨ -5

● Remove disjunction signs (∨)
● Add DIMACs header

○ Comments
○ Indicates CNF format
○ Number of variables
○ Number of CNF clauses

c comments
p cnf 5 10
1
-1 2 3
-2 1
-3 1
5 4 -3
-5 3
-5 -4
4 5 -3
-4 3
-4-5

20

Using a SAT Solver
• Identify assignment that results in true outcome.

• VOD ∧ (￢VOD ∨ (Record ∨ Play)) ∧ (￢Record ∨
VOD) ∧ (￢Play ∨ VOD) ∧ (Mobile ∨ TV ∨ ￢Play) ∧
(￢Mobile ∨ Play) ∧ (￢Mobile ∨ ￢TV) ∧ (TV ∨
Mobile ∨ ￢Play) ∧ (￢TV ∨ Play) ∧ (￢TV ∨
￢Mobile)

• A satisfying assignment: (1, 1, 1, 1, 0)

• Returns satisfying assignment.
• May return all satisfying assignments found.
• If not satisfiable, may offer information on why.

21

Activity
• Start with A/B.

• Do C/D if time.
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

https://bit.ly/3BVwMZc

https://bit.ly/3BVwMZc

22

Solution (A)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ (B ⇒ A) ∧ (C ⇔ A) ∧ (D ⇒ A) ∧
((C ⇔ (E ∨ F)) ∧ ￢(E ∧ F)) ∧ ((E ∨ F) ⇒ D))

● Valid: A, B, C, D, F ; A, C, D, E
● Invalid: A, B, C, D, E, F ; A, B, C, E
● Is it consistent: Yes

23

Solution (B)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ (B ⇔ A)∧ (C ⇒ A) ∧ (D ⇒ A) ∧
((C ⇔ (E ∨ F)) ∧ ￢(E ∧ F)) ∧ (G ⇒ D) ∧ (D ⇒ ￢B)
∧
(E ⇒ G)

● Valid: A, B ; A, B, C, F
● Invalid: A, B, D, G ; A, B, C, E
● It is consistent: Yes, but D, E, and G are dead

features (because B is mandatory).

24

Solution (C)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ ((B ∨ C ∨ D) ⇔ A) ∧ (E ⇔ B) ∧ (F ⇒ D) ∧ (G ⇒
D)

● Valid: A, C ; A, B, C, D, E, F, G
● Invalid: A, B, C; A, C, E
● It is consistent: Yes (just remember that B and E

need to come as a pair)

25

Solution (D)
• Translate model

into propositional
logic formula.

• Provide two valid
and two invalid
features.

• Is it consistent? If
not, why not?

A ∧ (B ⇒ A) ∧ (C ⇔ A) ∧ (D ⇔ B) ∧ (E ⇒ C) ∧ (F ⇒
C) ∧
(F ⇒ E) ∧ (D ⇔ E)

● Valid: A, C ; A, B, C, D, E
● Invalid: A, B, C, D ; A, C, F
● It is consistent: Yes, but remember that if you have F,

you need E, D, and B as well.

SAT Solver Process
• Express in conjunctive normal form:

• φ = (￢x2 ∨ x5) ∧ (x1 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (x1
∨ x2)

• Choose assignment based on how it affects each
clause it appears in.
• What happens if we assign x2 = true?
• If any clauses now false, don’t apply that value.
• Continue until CNF expression is satisfied.

26

Branch & Bound Algorithm
• Set variable to true or false.
• Apply that value.
• Does value satisfy the clauses that it appears in?

• If so, assign a value to the next variable.
• If not, backtrack (bound) and apply the other value.

• Prunes branches of the boolean decision tree as
values are applied.

27

Branch & Bound Algorithm
φ = (￢x2 ∨ x5) ∧ (x1 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (x1 ∨
x2)
 1. Set x1 to false.

φ = (￢x2 ∨ x5) ∧ (0 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (0 ∨
x2)

2. Set x2 to false.
φ = (1 ∨ x5) ∧ (0 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (0 ∨ 0)

3. Backtrack and set x2 to true.
φ = (0 ∨ x5) ∧ (0 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (0 ∨ 1)

28

DPLL Algorithm
• Set a variable to true/false.

• Apply that value to the expression.
• Remove all satisfied clauses.
• If assignment does not satisfy a clause, then remove that

variable from that clause.
• If this leaves any unit clauses (single variable clauses),

assign a value that removes those next.
• Repeat until a solution is found.

29

DPLL Algorithm
φ = (￢x2 ∨ x5) ∧ (x1 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (x1 ∨
x2)
1. Set x2 to false.

φ = (￢0 ∨ x5) ∧ (x1 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (x1 ∨ 0)
φ = (x1 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (x1)

2. Set x1 to true.
φ = (1 ∨ ￢x3 ∨ x4) ∧ (x4 ∨ ￢x5) ∧ (1)
φ = (x4 ∨ ￢x5)

3. Set x4 to false, then x5 to false.
φ = (0 ∨ ￢x5)
φ = (￢0)

30

31

Let’s take a break!

32

Testing Facts About the Model

33

Testing Facts about Models
• A fact that should be true encoded as formula ψ.
• Check whether φ ∧ ￢ψ is satisfiable.

• Is there a valid feature selection for φ that does not
satisfy constraint ψ?

• If yes, there is a problem with the model.

34

Example - Graph Library
1. ψ = Kruskal ⇒ Weighted
2. ψ = Prim ⇒ Weighted
3. ψ = ￢(Prim ∧ Kruskal)
4. ψ = Weighted ⇒ MST

For each, assess
whether (φ ∧
￢ψ)
is satisfiable.

35

Dead and Mandatory Features
• A dead feature is never used.
• A mandatory feature is always used.
• Given model φ and feature F:

• 1+ valid selection with F if (φ ∧ F) is satisfiable.
• 1+ valid selection without F if (φ ∧ ¬F) is satisfiable.
• Feature is dead if no selection with it (¬(φ ∧ F))
• Feature is mandatory if no selection without it (¬(φ ∧

¬F))

36

Example - Graph Library
● No dead features.

○ If Undirected made
mandatory, Directed and
Cycle would be dead.

● GraphLibrary and
EdgeType are mandatory.

37

Constraint Propagation
• Constraint Propagation - hiding unavailable

features after we make partial selections.
• Feature selection often iterative:

• Feature selected, deselected, or no decision made.

• Partial feature selection:
• Set of selected features (S ⊆ F)
• Set of deselected features (D ⊆ F, with S ∩ D = ∅)

38

Constraint Propagation
• Partial feature selection

• pfs(S,D) = ∀(s∊S) s ∧ ∀(d∊D) ￢d

• Partial selection is valid if (φ ∧ pfs(S,D)) satisfiable
• F deactivated if (φ ∧ pfs(S,D) ∧ F) not

satisfiable.
• F activated if (φ ∧ pfs(S,D) ∧ ￢F) not

satisfiable.

39

Example - Graph Library
Selecting Cycle activated Directed.

Directed and Undirected are
mutually exclusive, so Undirected
is deactivated.

40

Comparing Feature Models

41

Comparing Feature Models
• Models are equivalent if formulae are equivalent.

• ¬(φ1 ⇔ φ2) is not satisfiable.

• φ1 is a specialization of φ2 if (φ2 ⇒ φ1)
• and φ2 is a generalization of φ1

• SAT solver can compare two models.

42

Example - Graph Library

Use SAT Solver
to prove
φright ⇔ φleft

43

Feature-to-Code Mappings

44

Feature-To-Code Mappings
• Feature models describe the problem space.
• Models are implemented in source code.
• Similar analyses can examine mapping of feature

models to code.
• Which code assets are never used?
• Which code assets are always used?
• Which features have no influence on product portfolio?

45

Dead Code
• Features that can

never be incorporated.
• Feature B, in the code,

required Feature A to
also be selected.

• Model states that A
and B are mutually
exclusive.

46

Presence Conditions
• Describes the set of

products containing a
code fragment.

• pc(c) = (conditions for
c to be included in a
product)
• pc(line 3) = A
• pc(line 5) = A ∧ B
• pc(line 8) = ¬ A

● pc(lines 3-5) = A ∧ B
● pc(lines 3-8) = A ∧ B ∧ ¬A

○ (cannot be included in any product)

47

Dead Code
• Fragment is dead if

never included in any
product.
• φ represents all valid

products.
• Fragment C is dead

iff (φ ∧ pc(C)) is not
satisfiable.

True

A

A ∧ B

¬A

C pc()

φ = Program ∧ (A ∨ B) ∧ ¬(A ∧
B)
(φ ∧ pc(line 5)) is not satisfiable:
Program ∧ (A ∨ B) ∧ ¬(A ∧ B) ∧ (A ∧
B)

48

Mandatory Code
• Fragment is mandatory

if always included in a
product.
• φ represents all valid

products.
• Fragment C is

mandatory iff
(φ ∧ ¬pc(C))
is not satisfiable.

If code implemented correctly,
the fragment for EdgeType
will be mandatory.

We Have Learned
• Feature Models can be expressed using

propositional logic formulae (φ).
• Based on model and cross-tree constaints.

• Valid feature selections result in (φ = true).
• SAT Solvers can identify valid configurations.

• If none can be found, the model is inconsistent.
• Enables many different model analyses.

49

50

We Have Learned
• Feature-Model Analysis

• Check properties of model are true.
• Dead and mandatory features
• Effects of partial selections
• Comparisons between two models

• Mapping of models and code
• Dead and mandatory code

Next Time
• Variability Implementation

• Assignment 1
• Due November 14
• Reach out to supervisors (and me) with questions

• Assignment 2
• Due November 21
• Feature modelling and analysis for mobile robots

51

