CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Gregory Gay ’
TDA 594/DIT 593 - November 30, 2021 *

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Implementing Features

« Features often implemented a standalone services.

* Services can be accessed through an API.
* e.g., web APIs generally use REST interfaces.

* Good API design is crucial to creating a feature
reusable in many clients.

AAMN
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

REST
« REST is a web-based APl format.

» Services provide resources (through URLSs) designed to
be consumed by programs rather than by people.

» Design Principles:
« Stateless
« Resource-Based (URI)
* Uniform Interface (GET, PUT, POST, DELETE)
* Links describe relationships
« Cacheable and monitorable using standard internet tools

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals
e Creating REST APIs.

« Web services with common invocation methods.

« REST API design practices.
* Designing Reusable APls.

 Features that can be substituted for other features.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Hypertext Transfer Protocol (HTTP)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

HTTP

« Communication protocol for networked systems.

« Defines how to exchange or transfer hypertext between
nodes in a network.

 How your computer accesses a webpage.
» Defines an APl based on requests.

* Requests performed using verbs.

« | get a page, post an update, delete a photo, put up
information.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Retrieving Information (GET)

[—_];tpi wt\’\\'.mnazon.cmn__) GET / HTTP /1 ; l

— Host: http://www.amazon.com

Q/ I p Amazon
\/k eee | ’ Web Server

« User types into the browser: http://www.amazon.com
* The browser creates an HTTP request (no body)

« The HTTP request identifies:
* The desired action: GET ("get me resource")
* The target machine (www.amazon.com)

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG J >

Updating Information (POST)

The user fills in a form on a webpage.

POST /HTTP/1.1
The browser creates an HTTP o Tyl vons

request with a body P | |Book: DaVince Code
.. Number [113-35-0750 Credit Card: Visa
containing form data. O\] | Number: 123-45-6789

HTTP request identifies: | @ =

* The action: POST ("here is some updated info")
* The target machine (amazon.com)

The body contains data being POSTed (form data)

Amazon

»| Web Server

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The HTTP API

« HTTP provides a simple set of operations.

« Based on the idea of CRUD (Create, Retrieve,
Update and Delete)
PUT: “Here is some new info” (Create)
 GET: “Give me some info” (Retrieve)
 POST: “Here is some updated info” (Update)
« DELETE: “Get rid of this info” (Delete)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Additional Verbs
e HEAD

« “Give me the metadata”
e TRACE

« “Show me what changes have been made”
* OPTIONS

« “What verbs have you implemented for this resource?”
 PATCH

 “Apply partial resource modification”

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Anatomy of an HTTP Request

VERB URI HTTP Version
Request Header

Request Body

« <VERB> is one of the HTTP verbs, <URI> is the resource location

 <Request Header> contains metadata
» Collection of key-value pairs of headers and their values.

» Information about the message and its sender like client type,
the formats client supports, format type of the message body,
cache settings for the response, and more.

« <Request Body> is the actual message content (JSON, XML).

) UNIVERSITY OF GOTHENBURG

HTTP Request Examples

VERB URI HTTP Version
Request Header

Request Body

GET GET http://www.w3.org/Protocols/rfc2616/rfc2616.html HTTP/1.1
] Host: www.wi.org, Accept: text/html,application/xhtml+xml,application/xmil; ...,
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW®64) AppleWebKit/537.36 ...,
Accept-Encoding: gzip,deflate,sdch, Accept-Language: en-US,en;q=0.8,hi;q=0.6

POST http://MyService/Person/ HTTP/1.1
Host: MyService, Content-Type: text/xml; charset=utf-8, Content-Length: 123
POST: <?xml version="1.0" encoding="utf-8"?>
. <Person><ID>1</ID><Name>M Vaggas</Name>
<Email>m.vaqqas@gmail.com</Email><Country>India</Country></Person>

http://www.w3.org
http://myservice/Person/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Anatomy of an HTTP Response

HTTP Version Response Code

Response Header

Response Body

 <Response code> contains request status. 3-digit HT TP
status code from a pre-defined list.

« <Response Header> contains metadata and settings
about the response message.

« <Response Body> contains the representation if the
request was successful.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

HTTP Response Example

HTTP Version Response Code
Response Header
Response Body

HTTP/1.1 200 OK

Date: Sat, 23 Aug 2014 18:31:04 GMT, Server: Apache/2, Last-Modified: Wed,
01 Sep 2004 13:24:52 GMT, Accept-Ranges: bytes, Content-Length: 32859,
Cache-Control: max-age=21600, must-revalidate, Expires: Sun, 24 Aug 2014
00:31:04 GMT, Content-Type: text/html; charset=iso-8859-1

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmIl1/DTD/xhtml1-strict.dtd"> <html
xmlns="http://www.w3.0rg/1999/xhtml|'> <head><title>Hypertext Transfer
Protocol -- HTTP/1.1</title></head> <body> ...

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

HTTP Status Codes

« Common Responses:
« 200 Ok (succeeded)
e 201 Created (a new resource)
« 202 Accepted (not completed)
« 204 No Content (fulfilled request, nothing to return)
« 205 Reset content (reload page)
« 301 Redirection: moved permanently
400 Bad request
* 401 Unauthorized
* 404 Not found

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Representational State Transfer
(REST)

&%) CHALMERS NIVERSITY OF GOTHENBURG

Representational State Transfer

Client

http://www .boeing.com/aircraft/747

*| Resource

N

* A Client references a resource using a URI.

« Arepresentation of the resource is returned.
* Receiving the representation places the client in a new state.

 When user selects a link in Boeing747.html, it accesses another
resource. New representation places client into another state.

» Client application transfers state with each resource access.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

The Core Idea

« REST modeled after natural workflow of the net.

Design pattern for web services.

A well-designed web app behaves as a network of web
pages (a virtual state-machine).

User progresses through application by selecting links
(state transitions).

Resulting in next page (the next state) being transferred to the
user and rendered.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

REST - Not a Standard

* Not a standard, but an architectural pattern.
* You can't bottle up a pattern.

* You can only understand it and design your web services
based on it.

 REST does prescribe the use of standards (reuse):
« HTTP, URL

« XML/HTML/JPEG/etc. (Resource Representations)

« Frameworks like Hydra offer advice for designing generic,
reusable REST interfaces.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verbs in REST

* Verbs describe actions that are applicable to nouns

 Using different verbs for every noun would make
widespread communication impossible.

« Some verbs only apply to a few nouns.

 |In REST, we use universal verbs.

« All RESTful services offer the same interface.
 Based on HTTP requests and responses.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

REST Fundamentals

e Services offer resources.

* All resources have a unique URI.
« URIs tell a client that there's a concept somewhere.

« Clients request a specific representation of the concept
from the representations the server makes available.

« HTTP verbs are used to retrieve or manipulate
resources in a clear, universal manner.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Representation Formats

« Client and server should be able to comprehend data.
» Structured content often JSON or XML

* Representation should completely represent resource.

+ If partial representation needed, break into subresources.

« Smaller representation = easier to transfer = less time
required to create representation = faster services.

« Representation should be capable of linking resources
to each other via URIs.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Verb Guarantees
« GET, OPTIONS, TRACE, and HEAD are safe.

« Should not change the resource in any way.
« Be careful - no technical limitations ensuring safety.

« PUT and DELETE are idempotent.

« Repeated requests have same effect as a single request.
« Safe operations are also idempotent.
 POST is not idempotent.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Elements of Web Architecture

* Firewalls decide which HT TP messages get out,
and which get in.
« These components enforce web security.

* Routers decide where to send HT TP messages.
 These components manage web scalability.

« Caches decide if saved copy of resource used.
 These components increase web performance.

UNIVERSITY OF GOTHENBURG

POST /HTTP/1.1
F = I I Host: http://www.geocities.com/crafts/woodworking/fred
I rewa s bem: Woodworking set] | | Ttem: Woodworking set j
Number[123.45- Credit Card: Visa <
Bxpiy:[12-0406 Number: 123-45-6789 =
Expiry: 12-04-06
O =
00 ¥ h
« Firewall decides whether HTTP message passes through.
« All decisions based purely on the HTTP header. The /
firewall never looks in the payload. Firewall Rules & Policies
.. Prohibit all POSTs to the
 This is fundamental! geocities Web site.

 This message is rejected.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Privacy of Content

* Firewalls, routers, caches base decisions only on
HTTP header.

 Should never examine the request body.

» Letter analogy: Postal service doesn'’t look inside
your letter (this is illegal), they just act based on
addressing on the outside.

* The content should not matter, just the metadata.

* Protects privacy of data.

%) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

The Parts Depot Web Store

« Parts Depot, Inc wants to deploy a web service to
enable its customers to:
* Get alist of parts.
* Get detailed information about a particular part.
« Submit a Purchase Order (PO).

 How would you architect this?
« Let’s discuss the RESTful way to design this.

@ {
- f
B ‘7‘
4 y/ 9.
g

CHALMERS |) UNIVERSITY OF GOTHENBURG

The RESTful Way

HTTP GET request — URL 1 - @
- ‘
(HTMSI;&I,}S-'LC | HTTP response +—
s
>
HTTP GET request — URL 2 B Part
Response N
(HTMLXML doe) [HTTP response«—| "3 Data
)
HTTP POST e * URL 3 >
(HTML/XML) | .
URL to submitted PO =——HTTP response +—

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Retrieving a List of Parts

Service: Get a list of parts
* Web service offers a URL to parts list resource.
* Client posts GET request to URL to get parts list:

o http://www.parts-depot.com/parts

 How the web service generates parts list is
completely transparent to the client.
 Enforces loose coupling.

http://www.parts-depot.com/parts

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

REST Fundamentals:

1. Create a resource for every service.
2. ldentify each resource using a URI.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Data Returned: Parts List

<?xml version="1.0"?>

<Parts>
<Part id="00345" href="http://lwww.parts-depot.com/parts/00345"/>

<Part id="00346" href="http://lwww.parts-depot.com/parts/00346"/>
<Part id="00347" href="http://www.parts-depot.com/parts/00347"/>
<Part id="00348" href="http://lwww.parts-depot.com/parts/00348"/>

</Parts>
« Contains links to detailed information about parts.

 Client transfers state by choosing among
alternative URLs in a response.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

REST Fundamental:

Data that a service returns should link to

other data.
e Design data as network of information

e Contrast with OO design, which says
to encapsulate information.

i) CHALMERS | €8%)) UNIVERSITY OF GOTHENBURG

Retrieving Details on a Part

Service: Get detailed information about a particular
part

* Web service makes available a URL to each part
resource.

* Aclient can request information on a specific part
by posting GET request to
http://www.parts-depot.com/parts/00345

http://www.parts-depot.com/parts/00345

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Data Returned: Part 00345

<?xml version="1.0"?> <Part>
<Part-ID>00345</Part-1D> <Name>Widget-A</Name>
<Description>This part is used within the frap assembly</Description>
<Specification href="http://www.parts-depot.com/parts/00345/specification"/>
<UnitCost currency="USD">0.10</UnitCost>
<Quantity>10</Quantity>

</Part>

« Data is linked to still more data. Part specification may be
found by traversing the link.

* Response allows client to get more detailed information.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

CHALMERS | UNIVERSITY OF GOTHENBURG

Designing Services with REST

{
- f
B ‘7‘
y/ 9.
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Designing Services With REST
« Destination URL placed in HTTP header.

 Firewalls, routers, caches make decisions based on
information in the HT TP Header.

* Infrastructure will not work if destination not in URL!

« HTTP header should identify final destination, not
Intermediate destination.

{
- f
B ‘7‘
y/ 9.
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Designing Services With REST

* Client requests should be idempotent — multiple
calls should lead to the “same” response.

* Server responses are “idempotent”, but only in
terms of the meaning of information and not
necessarily the content.

« Think of a URL that always returns the current time...

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

PUT and POST
 PUT is idempotent, POST is not.

« Multiple POSTs may create multiple resources.

* PUT requires a full resource ID path.
 Client creates resource.

« POST does not require full resource ID path.
« Server notifies client of resource location.
« Post can still be used for resource updates.

;% CHALMERS | (&) UNIVERSITY OF GOTHENBURG

PUT and POST
 PUT http://MyService/Persons/

 Won't work. PUT requires a complete URI.

 PUT http://MyService/Persons/1

* |Insert a new person, PersonID=1, if it does not already
exist or update existing resource with the payload.

 POST http://MyService/Persons/

* Insert new person (using the payload), generate new ID.

 POST htip://MyService/Persons/

« Update the existing person where PersonID=1

http://myservice/Persons/
http://myservice/Persons/
http://myservice/Persons/
http://myservice/Persons/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Handling POSTs

* Other methods are idempotent, but POST creates
New resources.

* Multiple POSTs of same data must be harmless.

* Put message ID in a header or in the message body.

* This renders multiple posts harmless.
* Prevents “multiple charge” issue with web stores.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Handling POSTs

 Many ways to do this:

« Exact: client or server-side unique transaction ID.

* Heuristic: check and remove “likely duplicates”.
 Wasted IDs are irrelevant.

« Duplicated POSTs are not acted on by the server
« Server must send back same response original

POST got, in case the application is retrying
because it lost the response.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Idempotence

« What does this mean, strictly speaking?
« (Call to server must return the same thing each time?
* No side effects?

« What about changing data”
« Time-of-day service.
« Each GET call returns a new time. Is this RESTful?

« As long as the resource is constant.
« The value does not need to be constant, just how we access it.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Statelessness

« Each request contains all information needed to
service the request.

 No client state is held on the server.
« Benefits in scalability and availability.

« Performance may be worse (multiple requests may be
needed to get information).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Well-Structured URIs

* Avoid using spaces. Use _(underscore) or —
(hyphen) instead.

« Remember that URIs are case insensitive.
« Stay consistent with naming conventions.

* URIs are long lasting.

 |If you change the location of a resource, keep old URI.
» Use status code 300 and redirect the client.

s o

6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Well-Structured URIs

 Avoid verbs for resource names unless resource is
actually an operation or a process.

 Bad URIs:

« http://MyService/FetchPerson/Mike

« http://MyService/DeletePerson?id=Mike
* Good URI:

« http://MyService/Persons/Mike

* You can apply verbs to this resource.

http://myservice/FetchPerson/Mike
http://myservice/DeletePerson?id=Mike
http://myservice/Persons/Mike

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Food For Thought

What if Parts Depot has a million parts, will there
be a million static pages?

http://www.parts-depot/parts/000000
http://www.parts-depot/parts/000001

http://www.parts-depot/parts/999999

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Food For Thought

 URLs are logical.
» Express what resource is desired, not physical object.

« Changes to the implementation of the resource will be
transparent to clients (loose coupling!).

« All parts stored in a database. Web service will receive
URL request, parse it for ID, query the database, and
generate the response document at runtime.

{81)) UNIVERSITY OF GOTHENBURG

Food For Thought

Physical URLs Logical URLs

http://www.parts-depot/parts/000000.html http://www.parts-depot/parts/000000
http://www.parts-depot/parts/000001.html http://www.parts-depot/parts/000001
http://www. parts-depot/parts/999999. htrl http://www. parts-depot/parts/999999

e Physical URLs point to HTML pages.

o If there are a million parts,we don’t want a million HTML pages.
e Changes to how these parts data is represented will effect
all clients that were using the old representation.

{81)) UNIVERSITY OF GOTHENBURG

Designing Reusable APIs

Adapted from Verborgh, R. and Dumontier, M. (2018), “A Web API ecosystem through
feature-based reuse”, Internet Computing, IEEE, Vol. 22 No. 3, pp. 29-37.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Human-based Interaction

* Well-designed websites base user interaction on
common interaction patterns.

 Interaction patterns are reused across the web.

Photo/Video

What’s happening?

[B © [

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Code-based Interaction

 API reuse is difficult, as similar APls often have
very different interfaces.

 Different number of HTTP requests to perform a task.
 Different JSON bodies.

* Aclient can’t easily swap an API that posts a photo
to Facebook for one that posts to Twitter.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Designing Reusable APIs

* APIs should be reusable in many applications.

« However, they often require custom code, and rarely
share interaction patterns.

* Result: # of APIs grows rapidly.

* API design should center around common
interaction patterns.
« Like human-based interaction.

AT CHALMERS @}; UNIVERSITY OF GOTHENBURG

Designing Reusable APIs

* |ndividual APls are reusable.
 \We can use one to post a photo to Facebook.

 However, APIs are often not substitutable.
 |f we want to post photos to Facebook or Twitter, the APIs

can’t be swapped.
« We should be able to choose and swap APls that perform

the same kind of functionality.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Top-Down API Design

TOP-DOWNA API is monolithic.

e Clients couple to specific
functionalities iInterface to interact with
implemented as lower-level parts.

single custom interface * Only clear invocation

mechanisms are parameter
names and types.

{81)) UNIVERSITY OF GOTHENBURG

Bottom-Up API Design

feature-bound client A feature offers interface to a
coupled to common function type.

reusable features e Search text, upload file, update

‘dularinterfacefeal' status, etc.
« Should be simple, self-describing.

rovide
: « Clients couple to select
features, not entire API.

functionalities

defining

* APIs reuse features.
BOTTOM-UP &5 « Whole API may not be identical.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

1: Web APIls Consist of Features with Common Interfaces

* A web service should be split into features with their
own interfaces.
« Accessing/updating/sorting list of items, pagination,
updating a status, uploading a photo, search.
« Features can be optionally selected by client or
enabled/disabled by server.
« Clients only affected by changes to selected features.
« Clients can make use of only what they need.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

1: Web APIls Consist of Features with Common Interfaces

* OpenSearch — —
SpeCIfleS a Com mOn 2 Log in/ create account ;I

format for performing
search and publishing

* Also specifies a i o
format for
auto-completion of i
partial search terms.

th e re S u It S Kreuzbeere Suggestions
" Kreuzbein
Kreuzberg (Berg)
Kreuzberg (Wipperfiirth)

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

2: Partition Interface for Feature Reuse

 |If a feature is available elsewhere, reuse it in your
APl instead of implementing it yourself.
« Clients could perform task with any API offering feature.

* If designing a new feature, make it available
separately for reuse.
« Feature-specific repository, documentation.

* Prioritize reuse when possible, make new
functionality available as features.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

2: Partition Interface for Feature Reuse

* Atom defines XML format for
representing collection of items.
* E.g., blog posts
* Could create feature for “post a

blog entry” that uses Atom as a
generic representation.

LR 11

 “Postto Facebook”, “Post to
Twitter” could use same shared
input format.

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.0rg/2005/Atom">

<title>Example Feed</title>
<link href="http://example.org/"/>
<updated>2003-12-13T18:30:02Z</updated>
<author>

<name>John Doe</name>
</author>

<entry>
<title>Atom-Powered Robots Run Amok</title>
<link href=
"http://example.org/2003/12/13/atom@3"/>
<updated>2003-12-13T18:30:02Z</updated>
<summary>Some text.</summary>
</entry>

</feed>

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

3: APl Responses Should Advertise Relevant Features

« Server should include or link to supported features.

e Support indicated in header of HTTP response or inside
response body.

« Can indicate which optional parts are implemented.

 Clients can determine whether API offers needed
features at runtime.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

3: APl Responses Should Advertise Relevant Features

GET /
* Hypermedia: Embed links to
resources within JSON body deserntion” s rexample APT o
of HTTP response. T e
» Ex: GET call to entry point Ctreres ~orders® 1,
returns links to accessible e e eny,
{ "rel": "customer-by-id",
resources. ""hmle'f"':' "/custome)r{/{id}.»"'}:,
» GitHub API uses hypermedia b et ~feustomer (Tenail}),
to broadcast functionality. ;o
}

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

4: Features Describe their Functionality and Invocation

 When queried, a feature should describe its
functionality and how it is accessed in a standard
form (e.g., hypermedia, JSON schema).
« Reduces need to find documentation on an API.

* APIs implementing a feature do not need to use same
URL structure/parameter names.

* Client can query feature for details at runtime.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

4: Features Describe their Functionality and Invocation

Hydra Console

L]
° Hyd ra is a standard
Enter an URL: | https://www.markus-lanthaler.com/hydra/event-api/

Documentation: EntryPoint ~

f ic AP
Or generlc S- Response
The main entry point or homepage of the API.
IRI

The entity's IRI

{
"@context": “"/hydra/event-api/contexts/EntryPoint.jsonl @id
W Operations

* Includes ways to
describe functionality %
and invocation. : - o

 Hydra Console infers Documented Operations

details from Hydra N .
peration: Select an operation ~
AP I S a N d re N d e rS [E3] Retrieves all Event entities

dOCU mentatlon . 7@Createsanew Event entity 7

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned
« REST is a web-based APl format.

» Services provide resources (through URLSs) designed to
be consumed by programs rather than by people.

» Design Principles:
« Stateless
« Resource-Based (URI)
* Uniform Interface (GET, PUT, POST, DELETE)
* Links describe relationships
« Cacheable and monitorable using standard internet tools

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* APIs should be designed to be reusable.

APls should be split into features.

Features should have a common interface with
compatible features with separate implementations.

The overall APl should be partitioned into these separate
features with their own interfaces.

APIs should advertise available features.

Features should broadcast their functionality and
Invocation details.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

« System-Level Test Design

» Assignment 3 - due tonight

* Assignment 4 - December 12
» Modularization and design patterns
* Any questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

