
Lecture 9: API Design

Gregory Gay
TDA 594/DIT 593 - November 30, 2021

2

Implementing Features
• Features often implemented a standalone services.
• Services can be accessed through an API.

• e.g., web APIs generally use REST interfaces.

• Good API design is crucial to creating a feature
reusable in many clients.

REST
• REST is a web-based API format.

• Services provide resources (through URLs) designed to
be consumed by programs rather than by people.

• Design Principles:
• Stateless
• Resource-Based (URI)
• Uniform Interface (GET, PUT, POST, DELETE)
• Links describe relationships
• Cacheable and monitorable using standard internet tools

3

4

Today’s Goals
• Creating REST APIs.

• Web services with common invocation methods.

• REST API design practices.
• Designing Reusable APIs.

• Features that can be substituted for other features.

5

Hypertext Transfer Protocol (HTTP)

HTTP
• Communication protocol for networked systems.

• Defines how to exchange or transfer hypertext between
nodes in a network.

• How your computer accesses a webpage.

• Defines an API based on requests.
• Requests performed using verbs.

• I get a page, post an update, delete a photo, put up
information.

6

Retrieving Information (GET)

• User types into the browser: http://www.amazon.com
• The browser creates an HTTP request (no body)
• The HTTP request identifies:

• The desired action: GET ("get me resource")
• The target machine (www.amazon.com)

7Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Updating Information (POST)
• The user fills in a form on a webpage.
• The browser creates an HTTP

request with a body
containing form data.

• HTTP request identifies:
• The action: POST ("here is some updated info")
• The target machine (amazon.com)

• The body contains data being POSTed (form data)

8Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

The HTTP API
• HTTP provides a simple set of operations.
• Based on the idea of CRUD (Create, Retrieve,

Update, and Delete)
• PUT: “Here is some new info” (Create)
• GET: “Give me some info” (Retrieve)
• POST: “Here is some updated info” (Update)
• DELETE: “Get rid of this info” (Delete)

9Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Additional Verbs
• HEAD

• “Give me the metadata”
• TRACE

• “Show me what changes have been made”
• OPTIONS

• “What verbs have you implemented for this resource?”
• PATCH

• “Apply partial resource modification”

10

Anatomy of an HTTP Request

• <VERB> is one of the HTTP verbs, <URI> is the resource location
• <Request Header> contains metadata

• Collection of key-value pairs of headers and their values.
• Information about the message and its sender like client type,

the formats client supports, format type of the message body,
cache settings for the response, and more.

• <Request Body> is the actual message content (JSON, XML).
11

Request Header
Request Body

VERB URI HTTP Version

HTTP Request Examples

12

GET:

POST:

GET http://www.w3.org/Protocols/rfc2616/rfc2616.html HTTP/1.1
Host: www.w3.org, Accept: text/html,application/xhtml+xml,application/xml; …,
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 …,
Accept-Encoding: gzip,deflate,sdch, Accept-Language: en-US,en;q=0.8,hi;q=0.6

POST http://MyService/Person/ HTTP/1.1
Host: MyService, Content-Type: text/xml; charset=utf-8, Content-Length: 123
<?xml version="1.0" encoding="utf-8"?>
<Person><ID>1</ID><Name>M Vaqqas</Name>
<Email>m.vaqqas@gmail.com</Email><Country>India</Country></Person>

Request Header
Request Body

VERB URI HTTP Version

http://www.w3.org
http://myservice/Person/

Anatomy of an HTTP Response

• <Response code> contains request status. 3-digit HTTP
status code from a pre-defined list.

• <Response Header> contains metadata and settings
about the response message.

• <Response Body> contains the representation if the
request was successful.

13

Response Header
Response Body

HTTP Version Response Code

HTTP Response Example

HTTP/1.1 200 OK
Date: Sat, 23 Aug 2014 18:31:04 GMT, Server: Apache/2, Last-Modified: Wed,
01 Sep 2004 13:24:52 GMT, Accept-Ranges: bytes, Content-Length: 32859,
Cache-Control: max-age=21600, must-revalidate, Expires: Sun, 24 Aug 2014
00:31:04 GMT, Content-Type: text/html; charset=iso-8859-1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html
xmlns='http://www.w3.org/1999/xhtml'> <head><title>Hypertext Transfer
Protocol -- HTTP/1.1</title></head> <body> …

14

Response Header
Response Body

HTTP Version Response Code

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

HTTP Status Codes
• Common Responses:

• 200 Ok (succeeded)
• 201 Created (a new resource)
• 202 Accepted (not completed)
• 204 No Content (fulfilled request, nothing to return)
• 205 Reset content (reload page)
• 301 Redirection: moved permanently
• 400 Bad request
• 401 Unauthorized
• 404 Not found

15

16

Representational State Transfer
(REST)

Representational State Transfer

• A Client references a resource using a URI.
• A representation of the resource is returned.

• Receiving the representation places the client in a new state.
• When user selects a link in Boeing747.html, it accesses another

resource. New representation places client into another state.
• Client application transfers state with each resource access.

17Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

The Core Idea
• REST modeled after natural workflow of the net.

• Design pattern for web services.
• A well-designed web app behaves as a network of web

pages (a virtual state-machine).
• User progresses through application by selecting links

(state transitions).
• Resulting in next page (the next state) being transferred to the

user and rendered.

18

REST - Not a Standard
• Not a standard, but an architectural pattern.

• You can't bottle up a pattern.
• You can only understand it and design your web services

based on it.

• REST does prescribe the use of standards (reuse):
• HTTP, URL
• XML/HTML/JPEG/etc. (Resource Representations)
• Frameworks like Hydra offer advice for designing generic,

reusable REST interfaces.
19Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Verbs in REST
• Verbs describe actions that are applicable to nouns
• Using different verbs for every noun would make

widespread communication impossible.
• Some verbs only apply to a few nouns.

• In REST, we use universal verbs.
• All RESTful services offer the same interface.
• Based on HTTP requests and responses.

20

REST Fundamentals
• Services offer resources.
• All resources have a unique URI.

• URIs tell a client that there's a concept somewhere.
• Clients request a specific representation of the concept

from the representations the server makes available.

• HTTP verbs are used to retrieve or manipulate
resources in a clear, universal manner.

21

Representation Formats
• Client and server should be able to comprehend data.

• Structured content often JSON or XML

• Representation should completely represent resource.
• If partial representation needed, break into subresources.
• Smaller representation = easier to transfer = less time

required to create representation = faster services.
• Representation should be capable of linking resources

to each other via URIs.

22

Verb Guarantees
• GET, OPTIONS, TRACE, and HEAD are safe.

• Should not change the resource in any way.
• Be careful - no technical limitations ensuring safety.

• PUT and DELETE are idempotent.
• Repeated requests have same effect as a single request.
• Safe operations are also idempotent.
• POST is not idempotent.

23

Elements of Web Architecture
• Firewalls decide which HTTP messages get out,

and which get in.
• These components enforce web security.

• Routers decide where to send HTTP messages.
• These components manage web scalability.

• Caches decide if saved copy of resource used.
• These components increase web performance.

24Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Firewalls

• Firewall decides whether HTTP message passes through.
• All decisions based purely on the HTTP header. The

firewall never looks in the payload.
• This is fundamental!

• This message is rejected.

25Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Privacy of Content
• Firewalls, routers, caches base decisions only on

HTTP header.
• Should never examine the request body.

• Letter analogy: Postal service doesn’t look inside
your letter (this is illegal), they just act based on
addressing on the outside.
• The content should not matter, just the metadata.
• Protects privacy of data.

26

The Parts Depot Web Store
• Parts Depot, Inc wants to deploy a web service to

enable its customers to:
• Get a list of parts.
• Get detailed information about a particular part.
• Submit a Purchase Order (PO).

• How would you architect this?
• Let’s discuss the RESTful way to design this.

27

The RESTful Way

28Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Retrieving a List of Parts
Service: Get a list of parts
• Web service offers a URL to parts list resource.
• Client posts GET request to URL to get parts list:

• http://www.parts-depot.com/parts

• How the web service generates parts list is
completely transparent to the client.
• Enforces loose coupling.

29Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

http://www.parts-depot.com/parts

REST Fundamentals:
1. Create a resource for every service.
2. Identify each resource using a URI.

30

Data Returned: Parts List
<?xml version="1.0"?>
<Parts>
 <Part id="00345" href="http://www.parts-depot.com/parts/00345"/>
 <Part id="00346" href="http://www.parts-depot.com/parts/00346"/>
 <Part id="00347" href="http://www.parts-depot.com/parts/00347"/>
 <Part id="00348" href="http://www.parts-depot.com/parts/00348"/>
</Parts>

• Contains links to detailed information about parts.
• Client transfers state by choosing among

alternative URLs in a response.

31Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

REST Fundamental:
Data that a service returns should link to
other data.
● Design data as network of information
● Contrast with OO design, which says

to encapsulate information.

32

Retrieving Details on a Part
Service: Get detailed information about a particular
part
• Web service makes available a URL to each part

resource.
• A client can request information on a specific part

by posting GET request to
http://www.parts-depot.com/parts/00345

33Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

http://www.parts-depot.com/parts/00345

Data Returned: Part 00345
<?xml version="1.0"?> <Part>

 <Part-ID>00345</Part-ID> <Name>Widget-A</Name>

 <Description>This part is used within the frap assembly</Description>

 <Specification href="http://www.parts-depot.com/parts/00345/specification"/>

 <UnitCost currency="USD">0.10</UnitCost>

 <Quantity>10</Quantity>

</Part>

• Data is linked to still more data. Part specification may be
found by traversing the link.

• Response allows client to get more detailed information.
34

35

Let’s take a break!

36

Designing Services with REST

Designing Services With REST
• Destination URL placed in HTTP header.

• Firewalls, routers, caches make decisions based on
information in the HTTP Header.

• Infrastructure will not work if destination not in URL!

• HTTP header should identify final destination, not
intermediate destination.

37

Designing Services With REST
• Client requests should be idempotent – multiple

calls should lead to the “same” response.
• Server responses are “idempotent”, but only in

terms of the meaning of information and not
necessarily the content.
• Think of a URL that always returns the current time…

38

PUT and POST
• PUT is idempotent, POST is not.

• Multiple POSTs may create multiple resources.

• PUT requires a full resource ID path.
• Client creates resource.

• POST does not require full resource ID path.
• Server notifies client of resource location.
• Post can still be used for resource updates.

39

PUT and POST
• PUT http://MyService/Persons/

• Won't work. PUT requires a complete URI.

• PUT http://MyService/Persons/1
• Insert a new person, PersonID=1, if it does not already

exist or update existing resource with the payload.

• POST http://MyService/Persons/
• Insert new person (using the payload), generate new ID.

• POST http://MyService/Persons/1
• Update the existing person where PersonID=1

40

http://myservice/Persons/
http://myservice/Persons/
http://myservice/Persons/
http://myservice/Persons/

Handling POSTs
• Other methods are idempotent, but POST creates

new resources.
• Multiple POSTs of same data must be harmless.

• Put message ID in a header or in the message body.
• This renders multiple posts harmless.

• Prevents “multiple charge” issue with web stores.

41

Handling POSTs
• Many ways to do this:

• Exact: client or server-side unique transaction ID.
• Heuristic: check and remove “likely duplicates”.

• Wasted IDs are irrelevant.
• Duplicated POSTs are not acted on by the server

• Server must send back same response original
POST got, in case the application is retrying
because it lost the response.

42

Idempotence
• What does this mean, strictly speaking?

• Call to server must return the same thing each time?
• No side effects?

• What about changing data?
• Time-of-day service.
• Each GET call returns a new time. Is this RESTful?

• As long as the resource is constant.
• The value does not need to be constant, just how we access it.

43

Statelessness
• Each request contains all information needed to

service the request.
• No client state is held on the server.

• Benefits in scalability and availability.
• Performance may be worse (multiple requests may be

needed to get information).

44

Well-Structured URIs
• Avoid using spaces. Use _ (underscore) or –

(hyphen) instead.
• Remember that URIs are case insensitive.
• Stay consistent with naming conventions.
• URIs are long lasting.

• If you change the location of a resource, keep old URI.
• Use status code 300 and redirect the client.

45

Well-Structured URIs
• Avoid verbs for resource names unless resource is

actually an operation or a process.
• Bad URIs:

• http://MyService/FetchPerson/Mike
• http://MyService/DeletePerson?id=Mike

• Good URI:
• http://MyService/Persons/Mike
• You can apply verbs to this resource.

46

http://myservice/FetchPerson/Mike
http://myservice/DeletePerson?id=Mike
http://myservice/Persons/Mike

Food For Thought
What if Parts Depot has a million parts, will there
be a million static pages?

http://www.parts-depot/parts/000000
http://www.parts-depot/parts/000001
...
http://www.parts-depot/parts/999999

47Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Food For Thought
• URLs are logical.

• Express what resource is desired, not physical object.
• Changes to the implementation of the resource will be

transparent to clients (loose coupling!).
• All parts stored in a database. Web service will receive

URL request, parse it for ID, query the database, and
generate the response document at runtime.

48Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Food For Thought

49

Logical URLs
http://www.parts-depot/parts/000000
http://www.parts-depot/parts/000001
...
http://www.parts-depot/parts/999999

● Physical URLs point to HTML pages.
○ If there are a million parts,we don’t want a million HTML pages.

● Changes to how these parts data is represented will effect
all clients that were using the old representation.

Slide from: REST by Roger Costello and Timothy Kehoe http://www.xfront.com/REST-full.ppt

Physical URLs
http://www.parts-depot/parts/000000.html
http://www.parts-depot/parts/000001.html
...
http://www.parts-depot/parts/999999.html

50

Designing Reusable APIs

Adapted from Verborgh, R. and Dumontier, M. (2018), “A Web API ecosystem through
feature-based reuse”, Internet Computing, IEEE, Vol. 22 No. 3, pp. 29–37.

51

Human-based Interaction
• Well-designed websites base user interaction on

common interaction patterns.
• Interaction patterns are reused across the web.

52

Code-based Interaction
• API reuse is difficult, as similar APIs often have

very different interfaces.
• Different number of HTTP requests to perform a task.
• Different JSON bodies.

• A client can’t easily swap an API that posts a photo
to Facebook for one that posts to Twitter.

53

Designing Reusable APIs
• APIs should be reusable in many applications.

• However, they often require custom code, and rarely
share interaction patterns.

• Result: # of APIs grows rapidly.

• API design should center around common
interaction patterns.
• Like human-based interaction.

54

Designing Reusable APIs
• Individual APIs are reusable.

• We can use one to post a photo to Facebook.

• However, APIs are often not substitutable.
• If we want to post photos to Facebook or Twitter, the APIs

can’t be swapped.
• We should be able to choose and swap APIs that perform

the same kind of functionality.

55

Top-Down API Design
• API is monolithic.
• Clients couple to specific

interface to interact with
lower-level parts.

• Only clear invocation
mechanisms are parameter
names and types.

56

Bottom-Up API Design
• A feature offers interface to a

common function type.
• Search text, upload file, update

status, etc.
• Should be simple, self-describing.

• Clients couple to select
features, not entire API.

• APIs reuse features.
• Whole API may not be identical.

57

1: Web APIs Consist of Features with Common Interfaces

• A web service should be split into features with their
own interfaces.
• Accessing/updating/sorting list of items, pagination,

updating a status, uploading a photo, search.

• Features can be optionally selected by client or
enabled/disabled by server.
• Clients only affected by changes to selected features.
• Clients can make use of only what they need.

58

1: Web APIs Consist of Features with Common Interfaces

• OpenSearch
specifies a common
format for performing
search and publishing
the results.

• Also specifies a
format for
auto-completion of
partial search terms.

59

2: Partition Interface for Feature Reuse
• If a feature is available elsewhere, reuse it in your

API instead of implementing it yourself.
• Clients could perform task with any API offering feature.

• If designing a new feature, make it available
separately for reuse.
• Feature-specific repository, documentation.

• Prioritize reuse when possible, make new
functionality available as features.

60

2: Partition Interface for Feature Reuse
• Atom defines XML format for

representing collection of items.
• E.g., blog posts
• Could create feature for “post a

blog entry” that uses Atom as a
generic representation.

• “Post to Facebook”, “Post to
Twitter” could use same shared
input format.

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

 <title>Example Feed</title>
 <link href="http://example.org/"/>
 <updated>2003-12-13T18:30:02Z</updated>
 <author>
 <name>John Doe</name>
 </author>

 <entry>
 <title>Atom-Powered Robots Run Amok</title>
 <link href=
 "http://example.org/2003/12/13/atom03"/>
 <updated>2003-12-13T18:30:02Z</updated>
 <summary>Some text.</summary>
 </entry>

</feed>

61

3: API Responses Should Advertise Relevant Features

• Server should include or link to supported features.
• Support indicated in header of HTTP response or inside

response body.
• Can indicate which optional parts are implemented.

• Clients can determine whether API offers needed
features at runtime.

62

3: API Responses Should Advertise Relevant Features

• Hypermedia: Embed links to
resources within JSON body
of HTTP response.

• Ex: GET call to entry point
returns links to accessible
resources.

• GitHub API uses hypermedia
to broadcast functionality.

GET /

{
 "version": "1.2.3",
 "description": "Example API to
manage orders",
 "links": [
 { "rel": "orders",
 "href": "/orders" },
 { "rel": "customers",
 "href": "/customers"},
 { "rel": "customer-by-id",
 "href": "/customer/{id}"},
 { "rel": "customer-by-email",
 "href": "/customer{?email}"},
 ...
]
}

63

4: Features Describe their Functionality and Invocation

• When queried, a feature should describe its
functionality and how it is accessed in a standard
form (e.g., hypermedia, JSON schema).
• Reduces need to find documentation on an API.
• APIs implementing a feature do not need to use same

URL structure/parameter names.

• Client can query feature for details at runtime.

64

4: Features Describe their Functionality and Invocation

• Hydra is a standard
for generic APIs.
• Includes ways to

describe functionality
and invocation.

• Hydra Console infers
details from Hydra
APIs and renders
documentation.

We Have Learned
• REST is a web-based API format.

• Services provide resources (through URLs) designed to
be consumed by programs rather than by people.

• Design Principles:
• Stateless
• Resource-Based (URI)
• Uniform Interface (GET, PUT, POST, DELETE)
• Links describe relationships
• Cacheable and monitorable using standard internet tools

65

66

We Have Learned
• APIs should be designed to be reusable.

• APIs should be split into features.
• Features should have a common interface with

compatible features with separate implementations.
• The overall API should be partitioned into these separate

features with their own interfaces.
• APIs should advertise available features.
• Features should broadcast their functionality and

invocation details.

Next Time
• System-Level Test Design

• Assignment 3 - due tonight
• Assignment 4 - December 12

• Modularization and design patterns
• Any questions?

67

