
TDA 594/DIT 593 - Individual Assignment
Due Date: Friday, January 13, 23:59
Submission: Via Canvas (one PDF document per student)

Overview

Now that you are completing the group project and have seen how SPL development affects all
stages of the development lifecycle, we would like you to reflect on what you have learned in an
individual assignment. This assignment tasks you with reflecting on both the theoretical and
practical course material.

Task 1: Comparative Study of Multiple Software Product Lines

In the first group assignment, you created a case study examining the development of a
Software Product Line. In this task, you will write a “comparative study” where you revisit the
case study from Assignment 1 and read an additional case study. Please choose this
additional case study from the list available as part of Assignment 1.

Write a short report summarizing, comparing, and contrasting the two case studies. Your report
should comment on as many of the following aspects as possible:

● Context: For each study, what kind of organization adopted/applied SPL engineering?
Contrast the types of organizations (How did they differ? What did they have in
common?)

● Motivation: For each study, what motivated the transition to, or adoption of, a product
line? How are the motivations similar or different?

● System Type: For each study, what kind of system did they apply SPL engineering to?
Specify the application domain (e.g., embedded system, database management...) and,
if available, the size and scope of the project (e.g., number of variants, number of source
code files). Contrast these factors across the two studies.

● Approach: For each study, how did they develop or transition to a SPL? What
development practices were employed? What development processes or activities (e.g.,
requirements, design, implementation, or testing activities) were affected, and how?
What were the commonalities and differences in the approaches across the two studies.

● Challenges: For each study, what were the key technical or process challenges
encountered when implementing the SPL? Which challenges were shared or differed
across the two studies?

● Results: For each study, what are the important results with regard to business goals,
software architecture (e.g., its ability to meet goals or requirements, changes in
maintainability and changeability), development process, and development
organization? Compare and contrast the results. Reflect on why results may have
differed (positively or negatively).



You should attempt to find information regarding each of the above aspects. State explicitly if
information is not available for an aspect. In such situations, you may speculate on aspects of
the development of the system, but must make clear what you are assuming or speculating.

You must reflect on the choices made by the engineers building these systems and provide
your own commentary and opinions on those choices. In your view - given the knowledge
you have gained in this class - was the approach the developers adopted a good one, given
their development context? If you believe they made the best decision, explain your rationale.
Otherwise, do you have advice on approaches they could have considered instead? Do you see
potential weaknesses in the decisions made? Are there alternatives you feel should have been
considered? Discuss the work performed by these companies in the context of your own
experiences or in the context of other systems that you have read about.

Task 2: Design of a Software Product Line

Consider the following example. Apo-Games is a set of five different Android games for which
the source code is publicly available. These five games have been published within two years
and contain between 2,000 and 6,500 source lines of code. Each game uses a customized
version of a third-party game engine.

Name Year Lines of Code Game Type

ApoClock 2012 3615 Arcade/Puzzle

ApoDice 2012 2523 Level-based Puzzles

ApoSnake 2012 2965 Snake

ApoMono 2013 6487 Level-based Puzzles

MyTreasure 2013 5,360 Level-based Puzzles

● ApoClock provides two different game modes, arcade and puzzle. In both modes, the
player has to hit clocks with a ball before any of the clocks runs out of time. While the
arcade mode is endless and accumulates a score, the goal in the puzzle mode is to clear
a designed level.

● ApoDice is a puzzle game that shows dice to the player, with each die having a number
indicating how often it can move. The player has to move each die to a black square on
the board within the given number of moves. A total of 30 levels are predefined, but
users can add their own.

● ApoMono requires the player to move an avatar from a starting position to a goal.
Throughout the avatar’s path, there are different obstacles, for example, missing tiles or
walls. The player can move some stones on the field to overcome such obstacles.

● ApoSnake is similar to the original Snake game, where the player controls a snake to
collect candy, increasing its size. However, in ApoSnake, the amount of candies in a



level is fixed and they have different colors, which color the snake in the same way. The
snake can then move through any wall that has the same color as itself.

● MyTreasure is a puzzle game within a two dimensional maze. The player has to collect a
golden coin in this maze, for which they have to rotate the maze, allowing the avatar to
move according to gravity. In addition, yellow blocks in the maze also move according to
the current rotation.

All of these games also have an editor that allows the user to create their own custom levels for
that specific game. Custom levels are stored together with all levels that other users created,
and all levels can be retrieved and played by using a button in the menu.

You can read more about Apo-Games at https://dl.acm.org/doi/abs/10.1145/3233027.3236403
or http://apo-games.de/ (you can auto-translate from German in Chrome or using Google
Translate).

The developers of these games want to transition to a Software Product Line where they can
produce new games or variants of existing games with different configurations from a shared set
of common assets. Your task is to perform domain analysis and explain how this transition
should take place.

1. Perform domain analysis and produce a feature diagram for this new SPL.
○ In addition to the feature diagram, briefly explain the features you have identified.

2. Explain how you think that variability should be implemented in this SPL for the features
that you identified.

○ Choose among preprocessors, design patterns, a framework, components,
feature-oriented programming, and aspect-oriented programming. You may
choose to blend implementation mechanisms, as long as you can make a
reasonable argument for your choices.

○ Explain why you have chosen these particular implementation mechanisms for
the affected features, and explain how the specific features you have identified
could be implemented using the chosen mechanisms. Prepare a minimal
skeleton code example to illustrate how you would apply this technique.

■ For example, if you choose design patterns, explain which design
patterns you would apply for a particular subset of features and why those
patterns are the correct ones for those features, and illustrate how those
design pattern could be applied using a minimal code outline.

■ Do not simply quote lecture materials, but relate those materials to the
specific features you have identified.

■ We do not expect executable code, but an illustration of how you would
apply the selected mechanisms.

○ In addition to the information provided above, you can view the source code at
https://bitbucket.org/Jacob_Krueger/apogamessrc/src/master/. You can also
attempt to install and play a subset of the games on an Android device from
https://play.google.com/store/apps/developer?id=Apo-Games&hl=en&gl=US&pli=

https://dl.acm.org/doi/abs/10.1145/3233027.3236403
http://apo-games.de/
https://play.google.com/store/apps/developer?id=Apo-Games&hl=en&gl=US&pli=1


1. You do NOT have to build, run, or deeply analyze the existing source code. It
is available to help inform your opinions.

○ You are welcome to make your own assumptions about how each game works -
or how the theoretical SPL would work - as long as you are clear about what you
are assuming and what has been extracted from the source code or other
documentation.

3. Choose two interesting variants (valid configurations) and contrast them.
○ State each configuration.
○ Explain your view of how each variant would function and how it would differ from

the other selected variant. Describe the functional differences in detail. For
example, what particular use cases or market segments would this variant serve
that the other selected variant could not? What capabilities would this variant
have that the other would not?

Additional Notes
This is an individual assignment. All work must be your own. If you quote another source, you
must cite it properly. You must not work with other students in the course. We will perform
plagiarism checks, and any instances of plagiarism or working together will result in (at
minimum) a failing grade on this assignment. If you are not sure if something will break these
rules, ask us!

There is not a minimum page length for this document. Quality is more important than quantity.
It is important that you cover as many of the criteria as possible in detail, and provide your own
reflections on the development of the chosen system.

Submit your comparative study in PDF form via the submission link on Canvas.

Grading Guidelines

These guidelines are intended to give some guidance, but are not exhaustive. The examiner will
assign a grade based on the correctness and quality of your work.

Grade Guidelines

5 ● Task 1:
○ Covers the full set of stated aspects above for both

studies, as well as additional aspects regarding the
development of the system that you have found
interesting.

○ Each aspect is covered in detail and contrasted
between the two studies. The comparison includes
your original commentary and creative reflection.

○ If some aspects cannot be covered, informed
speculation and discussion is still provided.

https://play.google.com/store/apps/developer?id=Apo-Games&hl=en&gl=US&pli=1


● Task 2:
○ Thorough, well-documented, and correctly-formatted

feature model.Detailed explanations of the identified
features.

○ Clear and detailed explanation of chosen
implementation mechanisms. Explanation relates to
the specific features identified, with specific (skeleton)
code examples and other illustrations of how
implementation could be accomplished.

○ Chosen variants clearly explained and contrasted in
detail, with clear use cases and feature differences.

4 ● Task 1:
○ All aspects covered.
○ Most aspects are covered in detail and contrasted.

Comparison includes your original commentary and
creative reflection.

○ If some aspects cannot be covered, informed
speculation and discussion is still provided.

● Task 2:
○ Thorough, reasonably-documented, and

correctly-formatted feature model. Understandable
explanations of the identified features. Small mistakes
may be present, or slightly fewer features may be
present than a “5”.

○ Detailed explanation of chosen implementation
mechanisms. Explanation relates to the specific
features identified, with specific (skeleton) code
examples.

○ Chosen variants explained and contrasted in detail,
with an attempt to explain use cases and features.

3 ● Task 1:
○ Most aspects covered.
○ Some aspects covered in detail and contrasted, with

original commentary and creative reflection.
○ If some aspects cannot be covered, some speculation

and discussion is still provided.
● Task 2:

○ Documented and correctly-formatted feature model.
Some explanation of the identified features. Small
mistakes may be present, or slightly fewer features
may be present than a “4”.

○ Some explanation of chosen implementation
mechanisms. Explanation relates to the specific
features identified, with skeleton code examples.

○ Chosen variants explained and contrasted, with an
attempt to explain use cases and features.



U ● Task 1:
○ Several aspects missing from the above list.
○ Adequate contrast between studies not provided.
○ Included aspects not covered in sufficient detail.
○ No original commentary or reflection.

● Task 2:
○ Undetailed feature model of many mistakes in the

feature model. Lack of explanation of identified
features.

○ Explanation of chosen implementation mechanisms
lacking. Explanation relates to the specific features
identified, with specific (skeleton) code examples.

○ Chosen variants explained and contrasted in detail,
with an attempt to explain use cases and features.


