CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Gregory Gay
TDA 594/DIT 593 - December 1, 2022

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Today’s Goals

 Introduce software testing.

 Introduce process for creating test cases.
 |dentify Independently Testable Functionality
+ |dentify Choices (AKA variation points)
 |dentify Representative Values for each Choice
» Generate Test Case Specifications
* Generate Concrete Test Cases

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Testing Fundamentals and
Test Case Structure

g‘_o-&_ﬁ RN
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Software Testing

* An investigation into system quality.

« Based on sequences of stimuli and
observations.
« Stimuli that the system must react to.
« Observations of system reactions.
* Verdicts on correctness.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

if O_= Expetest(ipputs
then P(?/ “stimulate” the lﬁ&t (ﬂﬁggle
- ESIRB)

. request, GUI e]L%"vae check the correctness of the
else... Fall resulting observation (assertions).

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Anatomy of a Test Case

e |nitialization
* Any steps that must be taken before test execution.

e Test Steps

 |nteractions with the system, and comparisons between
expected and actual values.

e Tear Down
* Any steps that must be taken after test execution.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

JUnit Test Cases

JUnit is a Java-based toolkit
for writing executable tests. o ,
public int evaluate (String

« Create “testing class” expression) {
centered around a int sum = 0;
common target or theme. for (String summand:

’ TeSt CaSes ertten as sum += Integer.valueOf(summand);
methOdS' return sum;

}
}

public class Calculator {

expression.split("\\+"))

UNIVERSITY OF GOTHENBURG

JUnit Test Skeleton

@Test annotation defines a single test:

Type of scenario, and expectation on outcome.
@Test l.e., testEvaluate_GoodInput() or testEvaluate_NullInput()

public void test<Feature or Method Name> <Testing Context>() {
//Define Inputs
try{ //Try to get output.

}catch(Exception error){
fail("Why did it fail?");
}

//Compare expected and actual values through assertions or through
//if-statements/fail commands

}
e

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Writing JUnit Tests

import static org.junit.Assert.assertEquals;

import org.junit.Test;

public class Calculator

public class CalculatorTest {
@Test
void testEvaluate Valid_ShouldPass(){

public

int sum = 0;
? Calculator calculator = new Calculator();

int sum = calculator.evaluate("1+2+3"); -
assertEquals(6, sum); -

for (String summand:

expression.split
sum += Integer.valueOf(summand); }

return sum; }

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Fixtures - Shared Initialization

@BeforeEach annotation defines a common test
Initialization method:

@BeforeEach

public void setUp() throws Exception

{

this.registration = new Registration();
this.registration.setUser(“ggay”);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Fixtures - Teardown Method

@AfterEach annotation defines a common test tear
down method:

@AfterEach

public void tearDown() throws Exception

{

this.registration.logout();
this.registration = null;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assertions

Assertions are a "language” of testing - constraints that
you place on the output.

e assertEquals, assertArrayEquals
e assertFalse, assertTrue

e assertNull, assertNotNull

e assertSame,assertNotSame

&%) CHALMERS NIVERSITY OF GOTHENBURG

assertEquals

fzzic void testAssertEquals() { ¢ CompareS tWO itemS fOI'
assertEquals("failure - strings are not equality.

equal”, "text”, “text"); e For user-defined classes,

} relies on .equals method.

aTest o Compare field-by-field

o assertEquals(studentA.getName(),
studentB.getName())
rather than

byte[] actual = "trial".getBytes(); assertEquals(studentA, studentB)

assertArrayEquals("failure - byte arrays ® assertArrayEquaIS

not same", expected, actual); .
} compares arrays of items.

public void testAssertArrayEquals() {
byte[] expected = "trial".getBytes();

{8%)) UNIVERSITY OF GOTHENBURG

Testing Exceptions

@Test e \When testing error
void exceptionTesting() { hand“ng we eXpeCt

exceptions to be thrown.
IndexOutOfBoundsException.class, o assertThrows checks
() -> { new ArrayList<Object>().get(0);} whether the code block
Y throws the expected
exception.
exception.getMessage()); © assertEquaIs can be
} used to check the
contents of the stack
trace.

Throwable exception =

assertThrows (

assertEquals("Index:0, Size:0",

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Levels of Granularity

oo

i) CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Testing Stages

* We interact with systems
through interfaces.
« APIls, GUIs, CLlIs

« Systems built from subsystems.
» With their own interfaces.

« Subsystems built from units.
« Communication via method calls.
 Set of methods is an interface.

oo

JANY R
g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

Testing Stages
* Unit Testing

Do the methods of a class work?

e System-level Testing

 System (Integration) Testing
« (Subsystem-level) Do the collected
units work?
« (System-level) Does high-level
interaction through APIs/Uls work?
 Exploratory Testing

* Does interaction through GUIs work?

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Unit Testing

Testing the smallest “unit” that can be tested.
 QOften, a class and its methods.

Tested in isolation from all other units.
« Mock the results from other classes.

Test input = method calls.
Test oracle = assertions on output/class variables.

#%) CHALMERS |

) UNIVERSITY OF GOTHENBURG

Unit Testing

 For a unit, tests should:

« Test all “jobs” associated with the unit.

« Individual methods belonging to a class.
« Sequences of methods that can interact.

 Set and check class variables.

« Examine how variables change after
method calls.

« Put the variables into all possible states
(types of values).

Account

- name
- personnummer
- balance

Account (name,
personnummer, Balance)

withdraw (double amount)
deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

_ CHALMERS |) UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Some tests we might want to write:

Account
-~ name « Execute constructor, verify fields.
Naciechiiiing « Check the name, change the name,

make sure changed name is in place.

Account (name,

oersonnummer, Balance) » Check that personnummer is correct.
withdraw (double amount) ° CheCk the balanCe, WlthdraW money,
deposit (double amount) verify that new balance is correct.
changeName(String name) _

getName() « Check the balance, deposit money,
getPersonnummer()

getBalance() verify that new balance is correct.

_ CHALMERS | UNIVERSITY OF GOTHENBURG

Unit Testing - Account

Some potential error cases:

Account
name Withdraw more than is in balance.
- bersonnummer « Withdraw a negative amount.
- balance

« Deposit a negative amount.

Account (name, _ .
personnummer, Balance) « Withdraw/Deposit a small amount

ntial rounding error
withdraw (double amount) (pOte tial round ge O)

deposit (double amount) « Change name to a null reference.
changeName(String name)

getName() « Can we set an “malformed” name?
getPersonnummer()

getBalance() * (i.e., are there any rules on a valid name?)

CHALMERS %)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

« Withdraw money, verify balance.

Account
Each test is « Name based on type of scenario, and expectation
_name @Test on outcome.
i ge{sonnummer public void testWithdraw_normal() {
R // Setup Initialization

Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
// Test Steps
double toWithdraw = 16.0; //Input Input lest Steps

Account (name,
personnummer, Balance)

withdraw (double amount) account.withdraw(toWithdraw);

deposit (double amount) double actual = account.getBalance();
changeName(String name) double expectedBalance = 32.5; // Oracle | Oracle
getName() assertEquals(expected, actual); // Oracle
getPersonnummer() }

getBalance()

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Unit Testing - Account

« Withdraw a negative amount.

Account
* (should throw an exception with
- name appropriate error message)
- personnummer @Test
- balance public void testWithdraw_negative() {
// Setup
Account (name’ Account account = new Account(“Test McTest”, “19850101-1001”, 48.5);
personnummer, Balance) // Test Steps

) double toWithdraw = -2.5; //Input
withdraw (double amount)

deposit (double amount)
changeName(String name)
getName()
getPersonnummer()
getBalance()

Throwable exception = assertThrows(
() -> { account.withdraw(toWithdraw); });
assertEquals(“Cannot withdraw a negative amount: -2.50”,

exception.getMessage()); // Oracle

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

System Testing

 After testing units, test their integration.
* |ntegrate units in one subsystem.
* Then integrate the subsystems.

» Test through a defined interface.

* Focus on showing that functionality accessed through
interfaces is correct.

« Subsystems: “Top-Level” Class, API
« System: API, GUI, CLI, ...

(&86) CHALMERS | ({8})) UNIVERSITY OF GOTHENBURG

il UNI

System Testing

Subsystem made up classes
of A, B, and C. We have
performed unit testing...

« Classes work together to
perform subsystem functions.

« Tests applied to the interface of
the subsystem they form.

 Errors in combined behavior not
caught by unit testing.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Unit vs System Testing

* Unit tests focus on a single class.
« Simple functionality, more freedom.
 Few method calls.

« System tests bring many classes together.
« Focus on testing through an interface.

* One interface call triggers many internal calls.
+ Slower test execution.

« May have complex input and setup.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Interface Errors

* |nterface Misuse
« Malformed data, order, number of parameters.

* Interface Misunderstanding
* Incorrect assumptions made about called component.
* Abinary search called with an unordered array.

* Timing Errors

* Producer of data and consumer of data access data in
the wrong order.

;{," 4 T & T “"’&
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Testing Percentages

« Unit tests verify behavior

of a single class.
« 70% of your tests. ity

« System tests verify class oo ine .
interactions. Jenuaang
« 20% of your tests.
end-to-end journeys. - .
* 10% of your tests. #of tests

«;-o-‘i‘, :‘fmnn,%&
;? CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

T («"

Testing
» 70/20/10 recommended. s

« Unit tests execute quickly, I ﬂ

relatively simple. - .

of tests

« System tests more complex, require more setup,
slower to execute.

« Ul tests very slow, may require humans.

+ Well-tested units reduce likelihood of integration
Issues, making high levels of testing easier.

K /
- f
B ‘7‘
y/ 9.
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

System-Level Tests and SPLs

» Variabllity is a system-level concept.

* Feature options tend to be entire classes or subsystems.
e Unit testing during domain engineering.

» Assets tested in isolation.

« Many interaction errors between features,
depending on chosen options.
 System testing during application engineering.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Creating Test Cases

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Creating System-Level Tests

Identify an Independently
Testable Function

Identify a function that can be tested in (relative) isolation.

. . Identify controllable aspects of the input and environment
Identify Choices] that determine the outcome of the function.

Identify Representative
Input Values

|

Identify types of values for each choice
that lead to different function outcomes.

Generate Test Case] Combine values to form “recipes”

Specifications

for test cases.

Generate Test] Replace
Cases representative
values with
concrete values.

; Identify an Independently
Testable Function

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Independently Testable Functionality

A well-defined function that can be tested in
(relative) isolation.
« Based on the “verbs” - what can we do with this system?
* The high-level functionality offered by an interface.

« Ul - look for user-visible functions.
« Web Forum: Sorted user list can be accessed.
* Accessing the list is a testable functionality.
« Sorting the list is not (low-level, unit testing target)

 Many tests written in terms
of “units” of code.

* An independently testable
function is a capability of

the software.

« Can be at class,
subsystem, or system level.
 Defined by an interface.

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - / Identify Choices

Identify Input Choices

* What choices do we make when using a function”?
 Anything we control that can change the outcome.

 What are the inputs to that feature?
 What configuration choices can we make?

* Are there environmental factors we can vary?

* Networking environment, file existence, file content,
database connection, database contents, disk utilization,

#6) CHALMERS | (8§} UNIVERSITY OF GOTHENBURG | ¢ b \ Identify Choices

Ex: Register for Website

. What are the inputs to that feature? | Register
e (first name, last name, date of e ;
birth, e-mail) Fist Last
* Website is part of product line with | vere
different database options.
e (database type)
« Consider implicit environmental -
factors.
e (database connection, user already
i n d a t a ba S e) Share a little information about yourself.

CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - \ Identify Choices

Parameter Characteristics

* ldentify choices by understanding how parameters
are used by the function.

* Type information is helpful.
« firstName is string, database contains UserRecords.

* ... but context is important.
* Reject registration if in database.
e ... o0rdatabase is full.
e ... Or database connection down.

) CHALMERS | (§)) UNIVERSITY OF GOTHENBURG | AN Identify Choices

Parameter Context

 Input parameter split into multiple “choices” based
on contextual use.

« “Database” is an implicit input for User Registration, but it
leads to more than one choice.

7 13

« “Database Connection Status”, “User Record in

Database”, “Percent of Database Filled” influence
function outcome.

 The Database “input” results in three input choices when we
design test cases.

; Identify an Independently
Testable Function

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example

Class Registration System
What are some independently testable functions?

Register for class

Drop class

Transfer credits from another university
Apply for degree

_ CHALMERS | (&) UNIVERSITY OF GOTHENBURG gl | \ Identify Choices

Example - Register for a Class

@Test

public void testRegistration() {
// Set Up
// Attempt to register for a course
Boolean outcome = registerForCourse(studentID, courselD);
Boolean expected = ... ; // Set expected value, true or false
// Check the result of registration

assertEquals(expected, outcome);

)‘ ﬁﬁmﬁv‘?Maﬁﬁ? ‘ %ﬁ; UNIVERSITY OF GOTHENBURG J \ ‘* \/\ S Identify Ch Oices

Example - Register for a Class

What are the choices we make when we design a test case?

@Test e Does student meet prerequisites?
public void teiw » Does the course exist?
// Set Up What else influences the outcome?

// Attempt to register for a course

Boolean outcome = registerForCourse(studentID,| courseID);

Boolean expected = ... ; // Set expected value, true or false

// Check the result of registration

assertEquals(expected, outcome);

%) CHALMERS | g‘!}; UNIVERSITY OF GOTHENBURG | ¢ - \ Identify Choices

Example - Register for a Class

* During setup, we can influence a student’s record
and the course records.
 These are “inputs” to consider.

 How are they used?

Has a student already taken the course?
Do they meet the prerequisites?

Does a course exist?

What are the prerequisites of a course.

) CHALMERS | (&) UNIVERSITY OF GOTHENBURG | A Identify Choices

Example - Register for a Class

Test Choices

 Parameter: studentiD
 Validity of Student ID
» Courses Student Has Taken Previously

e Parameter: courselD
 Validity of Course ID
* Prerequisites of Course ID

"} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

EEEEEEEEEEEEEEEEEEEE

Identifying Representative Values

* \We know the functions.

* \We have a set of choices.

* What values should we try?

 For some choices, finite set.
« For many, near-infinite set.

 What about exhaustively
trying all options?

%,:(—a} CHALMERS | @8§) UNIVERSITY OF GOTHENBURG
y\%;?aé‘,' 4 UNIVERSITY OF TECHNOLOGY "4"“"‘_«

Exhaustive Testin

Take the arithmetic
function for the calculator:

add (1nt a, 1int b)

 How long would it take
to exhaustively test this
function?

g 2
£

,J} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Not all Inputs are Created Equal

* Many inputs lead to
same outcome.

e Some inputs better at
revealing faults.

« \We can’t know which in
advance.

« Tests with different input
better than tests with
similar input.

"
AN

0.

(&%) UNIVERSITY OF GOTHENBURG

Input Partitioning

e Consider possible values
for a variable.

e Faults sparse in space of
all inputs, but dense in
parts where they appear.

» Similar input to failing
input also likely to fail.

« Try input from partitions,
hit dense fault space.

Identify Representative

§6) CHALMERS | (8§} UNIVERSITY OF GOTHENBURG B e oyt Val
UNIVERSITY OF TECHNOLOGY N2 ! /i
D\ / nput Values

Equivalence Class

 Divide the input domain into equivalence classes.

* |nputs from a group interchangeable (trigger same
outcome, result in the same behavior, etc.).

* |If one input reveals a fault, others in this class (probably)
will too. In one input does not reveal a fault, the other

ones (probably) will not either.

 Partitioning based on intuition, experience, and
common sense.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Choosing Input Partitions

Equivalent output events.

Ranges of numbers or values.
Membership in a logical group.
Time-dependent equivalence classes.
Equivalent operating environments.
Data structures.

Partition boundary conditions.

Identify Representative
Input Values

Identify Representative

36) CHALMERS | (&) UNIVERSITY OF GOTHENBURG Inout Val
nput Values

Look for Equivalent Outcomes

* Look at the outcomes and group input by the
outcomes they trigger.

 Example: getEmployeeStatus(employeelD)

« QOutcomes include: Manager, Developer, Marketer,
Lawyer, Employee Does Not Exist, Malformed ID

* These are representative values for choice employeelD.
Can potentially break down further.

Identify Representative

{8%)) UNIVERSITY OF GOTHENBURG
Input Values

Data Type

* Divide based on both data type and how parameter
used in function.

* EXx: Integer
« Basic Split: <0, 0, >0

* |If conversions take place from String -> Integer, use a
non-numeric string.

« Other splits based on context.
« Ex: Integer intended to be 5-digit: < 10000, 10000-99999, >= 100000

 Try “expected” values and potential error cases.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Data Type

» Data structures are also prone

to certain types of errors.

* For arrays or lists:
* Only a single value.

« Different sizes and number filled.

* QOrder of elements: access first,
middle, and last elements.

Identify Representative
Input Values

Identify Representative

36) CHALMERS | (&) UNIVERSITY OF GOTHENBURG Inout Val
nput Values

Operating Environments

* Environment may affect behavior of the program.

* Environmental factors can be partitioned.
« Memory may affect the program.
* Processor speed and architecture.

* Client-Server Environment
* No clients, some clients, many clients
* Network latency
Communication protocols (SSH vs HTTPS)

Identify Representative
Input Values

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Input Partition Example

What are the input partitions for:

max (1nt a, 1nt b) returns (1nt c)

We could consider a or b in isolation:

a < 0, a=20, a>2~o

Consider combinations of a and b that change outcome:
a > b, a<Db, a=»>,

Identify Representative

#6) CHALMERS | (B} UNIVERSITY OF GOTHENBURG | £ Val
nput Values

Example - Register for a Class

Parameter: studentlD Parameter: courselD
« Validity of Student ID « Validity of Course ID

» Active Student « Existing Course
* Inactive Student « Non-Existent Course
* Non-Existent Student « Prerequisites of Course |D
« Courses Student Has » Only Courses Taken By Student
Taken Previously e Only Courses Not Taken By
 Matches Prerequisites Student
« Does Not Match « Some Courses Taken by Student

Prerequisites

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Revisit the Roadmap

For each testing choice for a

Identify Representative : :

[L] functlonz yve want to: o
1. Partition each choice into

Generate Test Case] representative values.

Specifications
2. Choose a value for each
Generate Test] choice to form a test
Cases

specification.
3. Assigning concrete values
from each partition.

CHALMERS | UNIVERSITY OF GOTHENBURG | g »& ” | Generat_e_Test Case
[M/ Specifications

Formin ecification

g Specificat

@Test

public void testRegistration() {
// Set Up
setupStudentRecord(studentID, status, coursesTaken);
setupCourse(courselID, prerequisites),
// Attempt to register for a course
Boolean outcome = registerForCourse(studentID, courselD);
Boolean expected = ... ; // Set expected value, true or false
// Check the result of registration

assertEquals(expected, outcome);

UNIVERSITY OF GOTHENBURG

Forming Specification

Test Specifications:

Active, Matches, Existing, Only Taken

Active, Does Not Match, Existing, Only Not Taken
Active, Does Not Match, Existing, Some Taken
Active, - , Non-Existing, -

Inactive, Matches, Existing, Only Taken

Inactive, Does Not Match, Existing, Only Not Taken
Inactive, Does Not Match, Existing Some Taken
Inactive, - , Non-Existing, -

Non-Existing, -, Existing, -

Non-Existing, -, Non-Existing, -

Specifications: 3 *2 * 2 * 3 = 36 - lllegal Combinations

NNNNNNNNNNNNNNNNNNNNN

UNIVERSITY OF GOTHENBURG © Generate Test

Cases
Generate Test Cases
@Test Specification:
public void testRegistration() { Active, Matches, Existing, Only Taken
// Set Up

setupStudentRecord(ggay, active, [TDA@O50, TDA360]);
setupCourse(TDA594, [TDA360]),
// Attempt to register for a course

Boolean outcome = registerForCourse(ggay, TDA594); ¢ Fill in concrete values that

values classes.

e Can create MANY concrete
assertEquals(expected, outcome); tests for each specification.

// Check the result of registration

(&%) UNIVERSITY OF GOTHENBURG

Boundary Values

* Errors tend to occur at
the boundary of a
partition.

« Remember to select
inputs from those
boundaries.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Boundary Values

Generate Test
Cases

Choose test case values at the boundary (and typical)
values for each partition.

« If an input is intended to be a 5-digit integer between
10000 and 99999, you want partitions:

<10000, 10000-99999, >100000

0 5000 SIeiele)

X

100000

-
150000 max int

|\

10000

50000 99999

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

« Unit testing focus on a single class.

« System tests focus on high-level functionality,
integrating low-level components through a UI/API.
 |dentify an independently testable function.
 |dentify choices that influence function outcome.
« Partition choices into representative values.
« Form specifications by choosing a value for each choice.
« Turn specifications into concrete test cases.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Next Time

« System-level testing and feature interactions
« Handling infeasible combinations.
« Selecting a valid subset of representative values.

* Assignment 3 - Dec 4
* Assignment 4 - Out Now - Dec 18

* Any questions?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

