
Lecture 12: Automated Test Case
Generation

Gregory Gay
TDA 594/DIT 593 - December 8, 2022

2

Automating Test Creation
• Testing is invaluable, but

expensive.
• We test for *many* purposes.
• Near-infinite number of

possible tests we could try.
• Hard to achieve meaningful

volume.

3

Automation of Test Creation
• Relieve cost by automating

test creation.
• Repetitive tasks that do not

need human attention.
• Generate test input.

• Need to add assertions.
• Or check for crashes, memory

leaks, other problems that can
be measured automatically.

Automation!

Tests are generating!

4

Today’s Goals
• Introduce Search-Based Test Generation

• (AKA: Fuzzing)
• Test Creation as a Search Problem

• Metaheuristic Search Algorithms
• Fitness Functions

5

Random Generation
● Randomly formulate test cases.

○ Unit testing: choose a class in the
system, choose random methods, call
with random parameter values.

○ System-level testing: choose an
interface, choose random functions
from interface, call with random values.

● Keep trying until goal attained or you
run out of time.

6

Example - BMI Calculation

Age BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

7

Example - BMI Calculation

BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

def test_bmi_value_valid():
 bmi_calc = BMICalc(150, 41, 18)
 bmi_value = bmi_calc.bmi_value()
 assert bmi_value == 18.2

def test_bmi_adult():
 bmi_calc = BMICalc(160, 65, 21)
 bmi_class = bmi_calc.classify_bmi_adults()
 assert bmi_class == "Overweight"

def test_bmi_children_4y():
 bmi_calc = BMICalc(100, 13, 4)
 bmi_class = bmi_calc.classify_bmi_teens_and_children()
 assert bmi_class == "Underweight"

8

Random Generation - BMI Example
BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

• Create an empty test case:
def test_1():

• Instantiate the class-under-test with
random values:
def test_1():
 cut = BMICalc(180, 50, 40)

• Insert 1+ method calls or assignments to
class variables.

• Number of calls is random
• Which method/variable is random
• Method parameters are random values

def test_1():
 cut = BMICalc(180, 50, 40)
 output = cut.bmi_value()
 cut.height = 15681

 output2 = cut.classify_bmi_adults()

9

Random Search
• Sometime viable:

• Extremely fast.
• Easy to implement, easy to understand.
• All inputs considered equal, so no designer bias.

• However…

10

Test Creation as a Search Problem
• Do you have a goal in mind when testing?

• Make the program crash, achieve code coverage, cover
all 2-way interactions, …

• You are searching for a test suite that achieves
that goal.

• Search-based test generation based on
guess-and-check process.

11

Test Creation as a Search Problem
• Many testing goals can be measured:

• How many exceptions were thrown?
• How many representative output values were returned?
• What percentage of lines of code were covered?
• How diverse is our input?

• If goal can be measured, search can be automated.

12

Search-Based Test Generation
• Make one or more guesses.

• Generate one or more individual
test cases or full test suites.

• Check whether goal is met.
• Score each guess.

• Try until time runs out.
• Alter the solution based on

feedback and try again!

13

Search Strategy
• The order that solutions are tried is the key to

efficiently finding a solution.
• A search follows some defined strategy.

• Called a “metaheuristic”.

• Metaheuristics are used to choose solutions and to
ignore solutions known to be unviable.
• Smarter than pure random guessing!

14

Heuristics - Graph Search
● Arrange nodes into a hierarchy.

○ Breadth-first search looks at all nodes on
the same level.

○ Depth-first search drops down hierarchy
until backtracking must occur.

● Attempt to estimate shortest path.
○ A* search examines distance traveled and estimates

optimal next step.
○ Requires domain-specific scoring function.

15

Search-Based Test Generation

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure,

Generate Covering Array,
(...)

16

Solution Representation

17

Solution Representation
• Must decide what a solution “looks like”.
• For unit testing:

• A solution is a test suite.
• A test suite contains 1+ test cases.
• Each test case interacts with a class-under-test.
• Each test case initialized the class-under-test.
• Each test case contains one or more actions.

• An action is a method call or variable assignment.
• Each action has parameters (method parameters or values to

assign to variables).

18

External vs Internal Representation
External (Phenotype) Representation
Executable, human-readable

Internal (Genotype) Representation
Can be easily manipulated by metaheuristic

Test Suite
Test Case

Actions,
with ID
(method or
variable),
parameters

19

Fitness Functions

20

Fitness Functions
• Domain-based scoring functions that determine

how good a potential solution is.
• Should represent goals of tester.
• Must return a numeric score.

• % of a checklist
• raw number
• NOT Boolean (no feedback)

• Can be maximized or minimized.

21

Fitness Functions
• Should offer feedback:

• Small change in solution should not lead to
large change in score.

• Informative functions calculate distance to
optimality.

• Can optimize more than one at once.
• Independently optimize functions
• Combine into single score.

22

Example - Code Coverage
• Goal: Attain Branch Coverage over the code.

• Tests must reach all branching points (i.e., if-statement)
and execute all possible outcomes.

if(x < 10){

 // Do something.

}else if (x == 10){

 // Do something else.

}

In this code:
● Two Branches
● Each must evaluate

to true and false.

23

Example - Code Coverage
• Goal: Attain Branch Coverage over the code.
• Fitness function (Basic):

• Measure coverage and try to maximize % covered.
• Good: Measurable indicator of progress. Can use

standard tools (pytest-cov, Cobertura).
• Bad: No information on how to improve coverage.

24

Example - Code Coverage
• Advanced: Distance-Based Function
• fitness = branch distance + approach level

• Approach level
• Number of branching points we need to execute to get to the

target branching point.
• Branch distance

• If other outcome is taken, how “close” was the target outcome?
• How much do we need to change program values to get the

outcome we wanted?

25

Example - Branch Coverage
if(x < 10){ // Branch 1

 // Do something.

}else if (x == 10){ // Branch 2

 // Do something else.

}

Approach Level
● If Branch 1 is true, approach

level = 1
● If Branch 1 is false, approach

level = 0

Branch Distance
● If x==10 evaluates to false,

branch distance =
(abs(x-10)+k).

● Closer x is to 10, closer the
branch distance.

Goal: Branch 2, True Outcome

26

Other Common Fitness Functions
● Number of methods called by test suite
● Number of crashes or exceptions thrown
● Diversity of input or output
● Detection of planted faults
● Amount of energy consumed
● Amount of data downloaded/uploaded
● … (anything that reflects what a good test is)

27

Bloat Penalty
• Small penalty subtracted from fitness.
• Limits number of tests and number of actions.

• Important not to penalize too heavily.

ex. 10

ex. 30

28

Let’s take a break.

29

Metaheuristic Algorithms

30

The Metaheuristic
• Decides how to select and

revise solutions.
• Changes approach based on

past guesses.
• Fitness functions give feedback.
• Population mechanisms choose

new solutions and determine how
solutions evolve.

31

The Metaheuristic
• Decides how to select and revise solutions.

• Small changes to single solution (local search)
or larger changes to multiple solutions (global
search).

• Often based on natural phenomena (swarm
behavior, evolution).

• Trade-off between speed, complexity, and
understandability.

32

How Long Do We Spend Searching?
• Exhaustive search not viable.
• Search can be bound by a search budget.

• Number of guesses.
• Time allotted to the search (number of minutes/seconds).

• Optimization problem:
• Best solution possible before running out of budget.

33

Local Search
• Generate and score a single potential solution.
• Attempt to improve by looking at its neighborhood.

• Make small, incremental improvements.

• Very fast, efficient if good initial guess.
• Get “stuck” if bad guess.
• Often include reset strategies.

34

Hill Climbing
● Generate a random initial solution.
● Each generation (while budget

remains):
○ Attempt up to max_tries mutations to the solution.

■ If a mutation results in a better solution, set this as the new solution.
■ Keep track of the best mutation seen to date.

○ If we run out of tries, reset to a new random initial solution.

35

Mutation
• Small change to

current solution.
• Impose one of

these changes
at a time:

36

Hill Climber
• User-Controlled Parameters:

• Maximum mutations before a restart (ex: 200)
• Maximum number of restarts (ex: 5)

• Easy to implement, faster than many other
metaheuristics.
• Reliant on initial guesses and restarts.

37

Global Search
● Generate multiple solutions.
● Evolve by examining whole

search space.
● Typically based on natural processes.

○ Swarm patterns, foraging behavior, evolution.
○ Models of how populations interact and change.

38

Genetic Algorithm
● Over multiple generations, evolve a population.

○ Good solutions persist and reproduce.
○ Bad solutions are filtered out.

● Diversity is introduced by:
○ Selecting the best solutions.
○ Creating “offspring” through

mutation and crossover.

39

Genetic Algorithm
• Create a random initial population.
• Start a new generation (while budget remains):

• Create new empty population.
• While space remains:

• Select two “good” members of current population.
• At a small probability, replace these members with “children”

combining genes of members (crossover).
• At a small probability, mutate each member.
• Add members to new population.

• If no better solution is found for N generations, terminate
early (stagnation).

40

Selection
• Rather than searching

for best population
member:

• Select a random subset.
• Calculate fitness for each.
• Return best.

41

Crossover
• Creates two “child”

solutions by
combining tests
from each parent
solution.

42

Crossover
● Single-Point Crossover

○ Splice at crossover point.
● Uniform Crossover

○ Flip coin at each test, second
child gets other option.

● Discrete Recombination
○ Flip coin at each test for both

children.

A B C D

1 2 3 4

A B 3 4

1 2 C D

A B C D

1 2 3 4

A B C D

1 2 3 4

A

1 B

2 3

C

D

4

A

A B

2

3

C 4

4

43

Genetic Algorithm Parameters
• All parameters affect solution quality. Usually some

experimentation required.
• Population Size (default: 20)
• Tournament Size (# population members compared

during selection, default: 6)
• Crossover Probability (default: 0.7)
• Mutation Probability (default: 0.7)
• Stagnation Threshold (# generations without

improvement before ending, default: 30)

44

Examining the Resulting Test Suites

45

1000 Generations of Evolution
• Genetic Algorithm run

for 1000 generations
for BMICalc.

• Stagnation turned off.
• Highly variable until ~

200 generations, then
small changes
afterwards.

46

Examples of Generated Test Cases

47

What Do I Do With These Inputs?
• If looking for crashes, just run

generated input.
• If you need to judge correctness,

add assertions.
• General properties, not specific

output.
• No: assertEquals(output, 2)
• Yes: assertTrue(output % 2 == 0)

48

Additional Concepts

49

Not Just Test Generation...
Can be applied to any problem with:
• Large search space.
• Fitness function and solution generation with low

computational complexity.
• Approximate continuity in fitness function scoring.
• No known optimal solution.

Automated Program Repair
• Produce patches for common bug types.
• Many bugs can be fixed with just a few changes to

the source code - inserting new code, and deleting
or moving existing code.
• Add null values check.
• Change conditional expression.
• Move a line within a try-catch block.

50

Generate and Validate
• Genetic programming - solutions represent

sequences of edits to the source code.
• Generate and validate approach:

• Fitness function: how many tests pass?
• Patches that pass more tests create new population:

• Mutation: Change one edit into another.
• Crossover: Merge edits from two parent patches.

51

GenProg Results
• Repaired 55/105 bugs at average $8 per bug.

• Projects with over 5 million lines of code
• Supported by 10000 test cases.

• Patch infinite loops, segmentation faults, buffer
overflows, denial of service vulnerabilities, “wrong
output” faults, and more.

52

Risks of Automation
• Structural coverage is important.

• Unless we execute a statement, we’re unlikely to detect a
fault in that statement.

• More important: how we execute the code.
• Humans incorporate context from a project.
• “Context” is difficult for automation to derive.
• One-size-fits-all approaches.

53

Limitations of Automation
• Automation produces different tests than humans.

• “shortest-path” approach to attaining coverage.

• Apply input different from what humans would try.

• Execute sequences of calls that a human might not try.
• Automation can be very effective, but more work is

needed to improve it.

54

55

I Want to Try This Out!
• Fuzzing often based on metaheuristic search.

• AFL (American Fuzzy Lop), Google OSS-Fuzz use
genetic algorithms, fitness = code coverage.

• http://lcamtuf.coredump.cx/afl/
• https://google.github.io/oss-fuz
• system-level tests

• The Fuzzing Book has tutorials and code for many
specialized approaches:

• https://www.fuzzingbook.org/

http://lcamtuf.coredump.cx/afl/
https://google.github.io/oss-fuz
https://www.fuzzingbook.org/

56

I Want to Try This Out!
• Python:

• Tutorial for beginners:
https://greg4cr.github.io/pdf/21ai4se.pdf

• https://github.com/Greg4cr/PythonUnitTestGeneration

• EvoSuite for Java: http://www.evosuite.org/
• Sapienz (Facebook) tests Android/iOS apps

• Will be open-source in end of 2020 2022?.
• Older version available

• https://github.com/Rhapsod/sapienz/

https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/
https://github.com/Rhapsod/sapienz/blob/master/README.md

57

Summary

The Metaheuristic
(Algorithm)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure,
Maximize Battery Use,

(...)

Next Time
• Research in Software Product Lines

• Assignment 4 - Any questions?

58

