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Automating Test Creation

* Testing is invaluable, but
expensive.
« We test for *many* purposes.
* Near-infinite number of
possible tests we could try.

« Hard to achieve meaningful
volume.
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Automation of Test Creation

* Relieve cost by automating

test creation.
« Repetitive tasks that do not
need human attention.

* Generate test input.
 Need to add assertions.
* Or check for crashes, memory
leaks, other problems that can
be measured automatically.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

7 ’ N\

HEY! GET BACK
TOVORK! _/
2 A7

Automation!

Tests are generating!
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Today’s Goals

* |Introduce Search-Based Test Generation
* (AKA: Fuzzing)

 Test Creation as a Search Problem
» Metaheuristic Search Algorithms
 Fitness Functions
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Random Generation

e Randomly formulate test cases. ‘
o Unit testing: choose a class in the
system, choose random methods, call
with random parameter values.

o System-level testing: choose an
interface, choose random functions
from interface, call with random values.

e Keep trying until goal attained or you
run out of time.
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Example - BMI Calculation

weight

BMI'= s

(height)
Classification (2, 4] (4,7 (7, 10] (10,13  (13,16]  (16,19]  >19
Underweight < 14 <135 <14 <15 <165 <175 <185
Normal weight <175 <14 <20 <22 <245 <265 <25
Overweight ~ <185 <20 <22 <265 <29 <31 <30
Obese >185  >20 > 22 >265  >29 >31 <40

Severely obese — — — — — — > 40
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Example - BMI Calculation

def test bmi value valid():
bmi_calc = BMICalc(150, 41, 18)

bmi_value = bmi_calc.bmi_value() BMiCalc
assert bmi value == 18.2
height
def test_bmi_adult(): weight
bmi_ calc = BMICalc(160, 65, 21) age
bmi_class = bmi_calc.classify _bmi_adults()
assert bmi_class == "Overweight" bmi_value()
classify_bmi_adults()
def test _bmi_children 4y(): classify_bmi_teens_and_children()

bmi calc = BMICalc(1e0, 13, 4)
bmi_class = bmi_calc.classify_bmi_teens_and_children()
assert bmi_class == "Underweight"
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Random Generation - BMI Example

» Create an empty test case:
def test 1():

* |nstantiate the class-under-test with
random values:

def test 1():
cut = BMICalc(1890, 50, 40)

* Insert 1+ method calls or assignments to def test _1():
class variables. cut = BMICalc(180, 50, 49)
«  Number of calls is random output = cut.bmi_value()

cut.height = 15681

«  Which method/variable is random output2 = cut.classify bmi adults()

* Method parameters are random values
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Random Search

Sometime viable:
« Extremely fast.

« Easy to implement, easy to understand.

« All inputs considered equal, so no designer bias.

However...

IM THINKING OF A NUMBER

ONE
SEVEN HUNDRED BILLION.
TRY TO GUESS T

2

é@

%

NOPE.
GUESS
AGAIN.

SI% MILLION
AND FOUR.

NUATS THE MATTER,
DONT YOU LIKE
GAMES 7@

/
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Test Creation as a Search Problem

* Do you have a goal in mind when testing?

* Make the program crash, achieve code coverage, cover
all 2-way interactions, ...

* You are searching for a test suite that achieves
that goal.

« Search-based test generation based on
guess-and-check process.



#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Test Creation as a Search Problem

* Many testing goals can be measured:
 How many exceptions were thrown?
 How many representative output values were returned?
« What percentage of lines of code were covered?
« How diverse is our input?

 If goal can be measured, search can be automated.
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Search-Based Test Generation

e Make one or more guesses. 30

« Generate one or more individual 3 T
test cases or full test suites. s

Searc ®

e Check whether goal is met.
« Score each guess. - i
e Try until time runs out.
 Alter the solution based on
feedback and try again!
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Search Strategy

* The order that solutions are tried is the key to
efficiently finding a solution.

* A search follows some defined strategy.
« Called a “metaheuristic”.

 Metaheuristics are used to choose solutions and to
ignore solutions known to be unviable.
« Smarter than pure random guessing!
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Heuristics - Graph Search

e Arrange nodes into a hierarchy.

o Breadth-first search looks at all nodes on
the same level.

o Depth-first search drops down hierarchy
until backtracking must occur.

e Attempt to estimate shortest path.

o A* search examines distance traveled and estimates
optimal next step.

o Requires domain-specific scoring function.
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Search-Based Test Generation

INPUT x
v

"Z!_\ —
- -+ FUNCTION f: —
—
*
U OUTPUT f(x)
The Metaheuristic The Fitness Functions
(Sampling Strategy) (Feedback Strategies) (Goals)
Genetic Algorithm Distance to Coverage Goals Cause Crashes
Simulated Annealing Count of Executions Thrown Cover Code Structure,

Hill Climber Input or Output Diversity Generate Covering Array,
(...) (...) (...)
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Solution Representation

 Must decide what a solution “looks like”.

* For unit testing:
« A solution is a test suite.
* A test suite contains 1+ test cases.
 Each test case interacts with a class-under-test.
 Each test case initialized the class-under-test.

« Each test case contains one or more actions.
« An action is a method call or variable assignment.

« [Each action has parameters (method parameters or values to
assign to variables).
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External vs Internal Representation

Internal (Genotype) Representation External (Phenotype) Representation

Can be easily manipulated by metaheuristic Executable, human-readable
[ | Test Suite | | import pytest
[ |TéstCase | 2 import bmi_calculator
[-1, [246, 680, 2]], ;
(2, [18]], 4 def test_0():
(4, (11, 5 cut = bmi_calculator.BMICalc (246,680, 2)
{;' E??G]]’ Actions, 6 cut.age = 18
[4' []]' with ID 7 cut.classify _bmi_teens_and_children()
[1' [263] (mgthod or 8 cut.weight = 466
[5' (1] ’ variable), 9 cut.classify bmi_adults ()
] ’ parameters 10 cut.classify _bmi_teens_and_children ()
] 1 cut.weight = 26

12 cut.classify _bmi_adults()
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Fithess Functions
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Fithess Functions

« Domain-based scoring functions that determine
how good a potential solution is.

INPUT x « Should represent goals of tester.
( e Must return a numeric score.
FUNCTION f: * % of a checklist

19 « raw number
OUTPUT f(x) « NOT Boolean (no feedback)

e Can be maximized or minimized.
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Fithess Functions
 Should offer feedback:

« Small change in solution should not lead to
INPUT x large change in score.

- . . .
( « |nformative functions calculate distance to

FUNCTION f: optimality.

X+ Can optimize more than one at once.

* |Independently optimize functions
« Combine into single score.




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Example - Code Coverage

« Goal: Attain Branch Coverage over the code.

« Tests must reach all branching points (i.e., if-statement)
and execute all possible outcomes.

Lfx < 1) . In this code:
// Do _something. e Two Branches
telse|if (x == 10){ e Each must evaluate
// Do something else. to true and false.

)
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Example - Code Coverage

« Goal: Attain Branch Coverage over the code.

* Fitness function (Basic):
« Measure coverage and try to maximize % covered.

« Good: Measurable indicator of progress. Can use
standard tools (pytest-cov, Cobertura).

« Bad: No information on how to improve coverage.
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Example - Code Coverage

 Advanced: Distance-Based Function

* fitness = branch distance + approach level

 Approach level

« Number of branching points we need to execute to get to the
target branching point.

 Branch distance
» |If other outcome is taken, how “close” was the target outcome?

 How much do we need to change program values to get the
outcome we wanted?
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Example - Branch Coverage

if(x < 10){ // Branch 1
// Do something.
telse if (x == 10){ // Branch 2

// Do something else.
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Other Common Fitness Functions

Number of methods called by test suite

Number of crashes or exceptions thrown
Diversity of input or output

Detection of planted faults

Amount of energy consumed

Amount of data downloaded/uploaded

... (anything that reflects what a good test is)
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Bloat Penalty

« Small penalty subtracted from fitness.
 Limits number of tests and number of actions.

ex. 10

bloat penalty(solution) = (num_test_cases/num_tests_penalty)

+ (average_test_length/length_test_penalty)
ex. 30

* Important not to penalize too heavily.
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Let’s take a break.
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Metaheuristic Algorithms
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The Metaheuristic

2
Z

Decides how to select and
revise solutions.

« Changes approach based on
past guesses.

* Fitness functions give feedback.

* Population mechanisms choose
new solutions and determine how
solutions evolve.
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The Metaheuristic

* Decides how to select and revise solutions.

« Small changes to single solution (local search)

or larger changes to multiple solutions (global
search).

« Often based on natural phenomena (swarm
behavior, evolution).

« Trade-off between speed, complexity, and
understandability.
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g Y
‘\;‘,7‘
7N\

9

How Long Do We Spend Searching?

 Exhaustive search not viable.

* Search can be bound by a search budget.
 Number of guesses.
« Time allotted to the search (number of minutes/seconds).
« Optimization problem:
» Best solution possible before running out of budget.
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Local Search

* Generate and score a single potential solution.
» Attempt to improve by looking at its neighborhood.

« Make small, incremental improvements.
* Very fast, efficient if good initial guess.

« Get “stuck” if bad guess.
« Often include reset strategies.
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Hill Climbing

e (Generate a random initial solution.

e Each generation (while budget
remains):

o Attempt up to max_tries mutations to the solution.
m |f a mutation results in a better solution, set this as the new solution.

m Keep track of the best mutation seen to date.
o If we run out of tries, reset to a new random initial solution.
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Add an action to
a test case

Mutation

[2, [18]],
[1, [26]],
[5, [0,
[4, 111

[-1, [246, 680, 2]],

« Small change to
current solution.
* Impose one of

[l

[--]

[-1, [246, 680, 2]],
[2, [18]],
261

[5, 01

Delete an action
from a test case

[y

B |

[-1, [248, 680, 2]], Change a parameter of [-1, [246, 680, 2]],
2, [18]], an action (decrease or 12, (181,
th e S e C h a n g e S [1[.5[.23111. increase by 1-10) [1f5[,1 3]]],
. [.1 B
at a time:

Add a new test
case

[2, [18]],
[1, [26]],

Delete a test
case

[5, {11

[-1, [246, 680, 2]],

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],
[5, [

[...]

[...]
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Hill Climber

« User-Controlled Parameters:
« Maximum mutations before a restart (ex: 200)
« Maximum number of restarts (ex: 5)

« Easy to implement, faster than many other

metaheuristics.
« Reliant on initial guesses and restarts.
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—
Global Search  cmgass
e Generate multiple solutions.

e Evolve by examining whole
search space.

O

Ak -
e .»__;E«.._.;_.:)

e Typically based on natural processes.
o Swarm patterns, foraging behavior, evolution.
o Models of how populations interact and change.
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Genetic Algorithm

e Over multiple generations, evolve a population.
o (Good solutions persist and reproduce.

o Bad solutions are filtered out. A oo »)4517@*
e Diversity is introduced by: . Mﬂﬂj‘
o Selecting the best solutions. L sl 'SWOOO”’W%]O.\\&‘
o Creating “offspring” through %@%@7\

mutation and crossover.
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Genetic Algorithm

« Create a random initial population.

« Start a new generation (while budget remains):
« Create new empty population.

* While space remains:
« Select two “good” members of current population.
« At a small probability, replace these members with “children”
combining genes of members (crossover).
« At a small probability, mutate each member.
« Add members to new population.

 |If no better solution is found for N generations, terminate
early (stagnation).
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Selection

| [..] 1 | [...] I (| [..] I} (1 (.1
« Rather than searching = ] T | = |l[ = J
for best population ) Gty Gt Gt
mem b er. Select N (tournament size) members of the
« Select a random subset. | | population at random.
e (Calculate fitness for each. v
e Return best. l e l - T
I [.] |‘| [--] |]
| o [ || 4 ’

Identify the best solution in the subset.
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Crossover

1T . [T Select two “parent” test cases.

Creates two “child —
solutions by = N
[...] '

combining tests | "t 2 ol

>

from each parent ’ ‘
solution.

EEEse——

/N

Return “children” that blend
elements of Parents A and B.

If (1), Child A gets test T from
Parent A. Child B gets test T
from Parent B.

If (2), the reserve happens.
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Crossover

e Single-Point Crossover
o Splice at crossover point.

e Uniform Crossover

o Flip coin at each test, second
child gets other option.

e Discrete Recombination

o Flip coin at each test for both
children.
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Genetic Algorithm Parameters

* All parameters affect solution quality. Usually some

experimentation required.

« Population Size (default: 20)

« Tournament Size (# population members compared
during selection, default: 6)

« Crossover Probability (default: 0.7)

« Mutation Probability (default: 0.7)

« Stagnation Threshold (# generations without
improvement before ending, default: 30)
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Examining the Resulting Test Suites
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1000 Generations of Evolution

100 25
* Genetic Algorithmrun =, 4 o
for 1000 generations g >
for BMICalc. & ;-
o Stagnation turned off. i e g
° H|gh|y variable until ~ % 200 400 600 800 s 200 400 600 800
200 generations, then Generation Generation
small changes 12
afterwards. s 1
i B
- l
‘o

200 400 600 800

Generation
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Examples of Generated Test Cases

def test_0():
cut = bmi_calculator.BMICalc(120,860,13)

cut

.classify_bmi_teens_and_children()

def test_2():

cut

cut.

cut

o bk et
cut.

= bmi_calculator.BMICalc(43,243,59)

classify_bmi_adults()

.height = 526

classify bmi_adults()
classify_bmi_adults()

def test_5():

cut

cut.

cut

cut.
cut.

cut

cut.

= bmi_calculator.BMICalc(374,343,1

age = 123

.classify bmi_adults()

¢

age = 18
classify_bmi_teens_and_children()

.weight = 396

classify_bmi_teens_and_children()

7)

def test_7():
cut = bmi_calculator.BMICalc(609,-1, 94)

def test_11():
cut = bmi_calculator.BMICalc(491,712,20)
cut.classify bmi_adults ()

def test_17():
cut = bmi_calculator.BMICalc(608,717,6)
cut.classify bmi_teens_and_children()
cut.age = 91
cut.classify bmi_teens_and_children()
cut.classify bmi_teens_and_children()



* If looking for crashes, just run
generated input.

* |If you need to judge correctness,

add assertions.

« General properties, not specific
output.
 No: assertEquals(output, 2)
* Yes: assertTrue(output % 2 == 0)
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Additional Concepts




#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Not Just Test Generation...

Can be applied to any problem with:

» Large search space.

 Fitness function and solution generation with low
computational complexity.

« Approximate continuity in fitness function scoring.
* No known optimal solution.
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Automated Program Repair

* Produce patches for common bug types.

« Many bugs can be fixed with just a few changes to
the source code - inserting new code, and deleting
or moving existing code.

« Add null values check.
« Change conditional expression.
* Move a line within a try-catch block.
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Generate and Validate

* Genetic programming - solutions represent
sequences of edits to the source code.

 Generate and validate approach:
« Fitness function: how many tests pass?

« Patches that pass more tests create new population:
« Mutation: Change one edit into another.
« Crossover: Merge edits from two parent patches.
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GenProg Results

« Repaired 55/105 bugs at average $8 per bug.
* Projects with over 5 million lines of code
« Supported by 10000 test cases.

« Patch infinite loops, segmentation faults, buffer
overflows, denial of service vulnerabilities, “wrong
output” faults, and more.
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Risks of Automation

« Structural coverage is important.

* Unless we execute a statement, we're unlikely to detect a
fault in that statement.

« More important. how we execute the code.
 Humans incorporate context from a project.
« “Context” is difficult for automation to derive.
* One-size-fits-all approaches.
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Limitations of Automation

* Automation produces different tests than humans.
* “shortest-path” approach to attaining coverage.
* Apply input different from what humans would try.

* Execute sequences of calls that a human might not try.
« Automation can be very effective, but more work is
needed to improve it.
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| Want to Try This Out!

* Fuzzing often based on metaheuristic search.

* AFL (American Fuzzy Lop), Google OSS-Fuzz use
genetic algorithms, fitness = code coverage.
 http://Icamtuf.coredump.cx/afl/
« https://google.qgithub.io/oss-fuz
« system-level tests
« The Fuzzing Book has tutorials and code for many
specialized approaches:
« https://www.fuzzingbook.ora/



http://lcamtuf.coredump.cx/afl/
https://google.github.io/oss-fuz
https://www.fuzzingbook.org/
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| Want to Try This Out!
* Python:

 Tutorial for beginners:
https://greg4cr.qgithub.io/pdf/21ai4se.pdf

e https://github.com/Greg4cr/PythonUnitTestGeneration
« EvoSuite for Java: hitp://www.evosuite.org/

« Sapienz (Facebook) tests Android/iOS apps
* Will be open-source in erd-ef2628 20227,
« Older version available
https://github.com/Rhapsod/sapienz/



https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/
https://github.com/Rhapsod/sapienz/blob/master/README.md
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INPUT x
v

"Z!_\ —
- -+ FUNCTION f: —
—
*
U OUTPUT f(x)
The Metaheuristic The Fitness Functions
(Algorithm) (Feedback Strategies) (Goals)
Genetic Algorithm Distance to Coverage Goals Cause Crashes
Simulated Annealing Count of Executions Thrown Cover Code Structure,

Hill Climber Input or Output Diversity Maximize Battery Use,
(...) (...) (...)
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Next Time

« Research in Software Product Lines

« Assignment 4 - Any questions?
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