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Automating Test Creation
• Testing is invaluable, but 

expensive.
• We test for *many* purposes.
• Near-infinite number of 

possible tests we could try. 
• Hard to achieve meaningful 

volume.
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Automation of Test Creation
• Relieve cost by automating 

test creation.
• Repetitive tasks that do not 

need human attention.
• Generate test input.

• Need to add assertions.
• Or check for crashes, memory 

leaks, other problems that can 
be measured automatically.

Automation!

Tests are generating!
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Today’s Goals
• Introduce Search-Based Test Generation 

• (AKA: Fuzzing)
• Test Creation as a Search Problem

• Metaheuristic Search Algorithms
• Fitness Functions



5

Random Generation
● Randomly formulate test cases. 

○ Unit testing: choose a class in the 
system, choose random methods, call 
with random parameter values.

○ System-level testing: choose an 
interface, choose random functions 
from interface, call with random values.

● Keep trying until goal attained or you 
run out of time.
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Example - BMI Calculation

Age BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()



7

Example - BMI Calculation

BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

def test_bmi_value_valid(): 
    bmi_calc = BMICalc(150, 41, 18) 
    bmi_value = bmi_calc.bmi_value() 
    assert  bmi_value == 18.2 

def test_bmi_adult(): 
    bmi_calc = BMICalc(160, 65, 21) 
    bmi_class = bmi_calc.classify_bmi_adults() 
    assert bmi_class == "Overweight" 

def test_bmi_children_4y(): 
    bmi_calc = BMICalc(100, 13, 4) 
    bmi_class = bmi_calc.classify_bmi_teens_and_children()    
    assert bmi_class == "Underweight"
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Random Generation - BMI Example
BMICalc

height
weight
age

bmi_value()
classify_bmi_adults()
classify_bmi_teens_and_children()

• Create an empty test case:
def test_1():

• Instantiate the class-under-test with 
random values:
def test_1():
    cut = BMICalc(180, 50, 40) 

• Insert 1+ method calls or assignments to 
class variables.

• Number of calls is random
• Which method/variable is random
• Method parameters are random values

def test_1():
  cut = BMICalc(180, 50, 40)
  output = cut.bmi_value()
  cut.height = 15681

  output2 = cut.classify_bmi_adults() 
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Random Search
• Sometime viable:

• Extremely fast.
• Easy to implement, easy to understand.
• All inputs considered equal, so no designer bias.

• However…
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Test Creation as a Search Problem
• Do you have a goal in mind when testing?

• Make the program crash, achieve code coverage, cover 
all 2-way interactions, … 

• You are searching for a test suite that achieves 
that goal.

• Search-based test generation based on 
guess-and-check process.
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Test Creation as a Search Problem
• Many testing goals can be measured:

• How many exceptions were thrown?
• How many representative output values were returned?
• What percentage of lines of code were covered?
• How diverse is our input?

• If goal can be measured, search can be automated.
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Search-Based Test Generation
• Make one or more guesses.

• Generate one or more individual 
test cases or full test suites.

• Check whether goal is met.
• Score each guess.

• Try until time runs out.
• Alter the solution based on 

feedback and try again!
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Search Strategy
• The order that solutions are tried is the key to 

efficiently finding a solution.
• A search follows some defined strategy. 

• Called a “metaheuristic”.

• Metaheuristics are used to choose solutions and to 
ignore solutions known to be unviable.
• Smarter than pure random guessing!
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Heuristics - Graph Search
● Arrange nodes into a hierarchy.

○ Breadth-first search looks at all nodes on 
the same level.

○ Depth-first search drops down hierarchy 
until backtracking must occur.

● Attempt to estimate shortest path.
○ A* search examines distance traveled and estimates 

optimal next step.
○ Requires domain-specific scoring function.
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Search-Based Test Generation

The Metaheuristic
(Sampling Strategy)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals 
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure, 

Generate Covering Array,
(...)
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Solution Representation
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Solution Representation
• Must decide what a solution “looks like”. 
• For unit testing:

• A solution is a test suite.
• A test suite contains 1+ test cases.
• Each test case interacts with a class-under-test.
• Each test case initialized the class-under-test.
• Each test case contains one or more actions.

• An action is a method call or variable assignment. 
• Each action has parameters (method parameters or values to 

assign to variables).
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External vs Internal Representation
External (Phenotype) Representation
Executable, human-readable

Internal (Genotype) Representation
Can be easily manipulated by metaheuristic

Test Suite
Test Case

Actions, 
with ID 
(method or 
variable), 
parameters
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Fitness Functions
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Fitness Functions
• Domain-based scoring functions that determine 

how good a potential solution is.
• Should represent goals of tester.
• Must return a numeric score.

• % of a checklist
• raw number
• NOT Boolean (no feedback)

• Can be maximized or minimized.
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Fitness Functions
• Should offer feedback:

• Small change in solution should not lead to 
large change in score.

• Informative functions calculate distance to 
optimality. 

• Can optimize more than one at once.
• Independently optimize functions
• Combine into single score.
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Example - Code Coverage
• Goal: Attain Branch Coverage over the code.

• Tests must reach all branching points (i.e., if-statement) 
and execute all possible outcomes.

if(x < 10){ 

    // Do something.

}else if (x == 10){ 

    // Do something else.

}

In this code:
● Two Branches
● Each must evaluate 

to true and false.
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Example - Code Coverage
• Goal: Attain Branch Coverage over the code.
• Fitness function (Basic): 

• Measure coverage and try to maximize % covered.
• Good: Measurable indicator of progress. Can use 

standard tools (pytest-cov, Cobertura).
• Bad: No information on how to improve coverage.
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Example - Code Coverage
• Advanced: Distance-Based Function
• fitness = branch distance + approach level

• Approach level 
• Number of branching points we need to execute to get to the 

target branching point.
• Branch distance 

• If other outcome is taken, how “close” was the target outcome? 
• How much do we need to change program values to get the 

outcome we wanted?
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Example - Branch Coverage
if(x < 10){ // Branch 1

    // Do something.

}else if (x == 10){ // Branch 2

    // Do something else.

}

Approach Level
● If Branch 1 is true, approach 

level = 1
● If Branch 1 is false, approach 

level = 0

Branch Distance
● If x==10 evaluates to false, 

branch distance = 
(abs(x-10)+k).

● Closer x is to 10, closer the 
branch distance.

Goal: Branch 2, True Outcome



26

Other Common Fitness Functions
● Number of methods called by test suite
● Number of crashes or exceptions thrown
● Diversity of input or output
● Detection of planted faults
● Amount of energy consumed
● Amount of data downloaded/uploaded
● … (anything that reflects what a good test is)
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Bloat Penalty
• Small penalty subtracted from fitness.
• Limits number of tests and number of actions.

• Important not to penalize too heavily. 

ex. 10

ex. 30
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Let’s take a break.
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Metaheuristic Algorithms
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The Metaheuristic
• Decides how to select and 

revise solutions.
• Changes approach based on 

past guesses.
• Fitness functions give feedback.
• Population mechanisms choose 

new solutions and determine how 
solutions evolve.
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The Metaheuristic
• Decides how to select and revise solutions.

• Small changes to single solution (local search) 
or larger changes to multiple solutions (global 
search).

• Often based on natural phenomena (swarm 
behavior, evolution).

• Trade-off between speed, complexity, and 
understandability.
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How Long Do We Spend Searching?
• Exhaustive search not viable.
• Search can be bound by a search budget.

• Number of guesses.
• Time allotted to the search (number of minutes/seconds).

• Optimization problem:
• Best solution possible before running out of budget.
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Local Search
• Generate and score a single potential solution.
• Attempt to improve by looking at its neighborhood. 

• Make small, incremental improvements.

• Very fast, efficient if good initial guess. 
• Get “stuck” if bad guess.
• Often include reset strategies.
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Hill Climbing
● Generate a random initial solution.
● Each generation (while budget 

remains):
○ Attempt up to max_tries mutations to the solution.

■ If a mutation results in a better solution, set this as the new solution.
■ Keep track of the best mutation seen to date.

○ If we run out of tries, reset to a new random initial solution.



35

Mutation
• Small change to 

current solution.
• Impose one of 

these changes 
at a time: 
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Hill Climber
• User-Controlled Parameters:

• Maximum mutations before a restart (ex: 200)
• Maximum number of restarts (ex: 5)

• Easy to implement, faster than many other 
metaheuristics. 
• Reliant on initial guesses and restarts.



37

Global Search
● Generate multiple solutions. 
● Evolve by examining whole 

search space.
● Typically based on natural processes.

○ Swarm patterns, foraging behavior, evolution.
○ Models of how populations interact and change.
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Genetic Algorithm
● Over multiple generations, evolve a population.

○ Good solutions persist and reproduce.
○ Bad solutions are filtered out.

● Diversity is introduced by:
○ Selecting the best solutions.
○ Creating “offspring” through 

mutation and crossover.
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Genetic Algorithm
• Create a random initial population.
• Start a new generation (while budget remains):

• Create new empty population.
• While space remains:

• Select two “good” members of current population.
• At a small probability, replace these members with “children” 

combining genes of members (crossover).
• At a small probability, mutate each member.
• Add members to new population.

• If no better solution is found for N generations, terminate 
early (stagnation).
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Selection
• Rather than searching 

for best population 
member:

• Select a random subset. 
• Calculate fitness for each.
• Return best.
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Crossover
• Creates two “child” 

solutions by 
combining tests
from each parent 
solution. 
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Crossover
● Single-Point Crossover

○ Splice at crossover point.
● Uniform Crossover

○ Flip coin at each test, second 
child gets other option.

● Discrete Recombination
○ Flip coin at each test for both 

children.

A B C D

1 2 3 4

A B 3 4

1 2 C D

A B C D

1 2 3 4

A B C D

1 2 3 4

A

1 B

2 3

C

D

4

A

A B

2

3

C 4

4
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Genetic Algorithm Parameters
• All parameters affect solution quality. Usually some 

experimentation required.
• Population Size (default: 20)
• Tournament Size (# population members compared 

during selection, default: 6)
• Crossover Probability (default: 0.7)
• Mutation Probability (default: 0.7)
• Stagnation Threshold (# generations without 

improvement before ending, default: 30)
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Examining the Resulting Test Suites
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1000 Generations of Evolution
• Genetic Algorithm run 

for 1000 generations 
for BMICalc.

• Stagnation turned off.
• Highly variable until ~ 

200 generations, then 
small changes 
afterwards. 
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Examples of Generated Test Cases
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What Do I Do With These Inputs?
• If looking for crashes, just run 

generated input.
• If you need to judge correctness, 

add assertions.
• General properties, not specific 

output.
• No: assertEquals(output, 2)
• Yes: assertTrue(output % 2 == 0)
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Additional Concepts
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Not Just Test Generation...
Can be applied to any problem with:
• Large search space.
• Fitness function and solution generation with low 

computational complexity.
• Approximate continuity in fitness function scoring.
• No known optimal solution.



Automated Program Repair
• Produce patches for common bug types. 
• Many bugs can be fixed with just a few changes to 

the source code - inserting new code, and deleting 
or moving existing code. 
• Add null values check.
• Change conditional expression.
• Move a line within a try-catch block.
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Generate and Validate
• Genetic programming - solutions represent 

sequences of edits to the source code. 
• Generate and validate approach:

• Fitness function: how many tests pass?
• Patches that pass more tests create new population:

• Mutation: Change one edit into another.
• Crossover: Merge edits from two parent patches.
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GenProg Results
• Repaired 55/105 bugs at average $8 per bug.

• Projects with over 5 million lines of code
• Supported by 10000 test cases.

• Patch infinite loops, segmentation faults, buffer 
overflows, denial of service vulnerabilities, “wrong 
output” faults, and more.
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Risks of Automation
• Structural coverage is important.

• Unless we execute a statement, we’re unlikely to detect a 
fault in that statement.

• More important: how we execute the code.
• Humans incorporate context from a project.
• “Context” is difficult for automation to derive.
• One-size-fits-all approaches.
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Limitations of Automation
• Automation produces different tests than humans.

• “shortest-path” approach to attaining coverage.

• Apply input different from what humans would try.

• Execute sequences of calls that a human might not try.
• Automation can be very effective, but more work is 

needed to improve it.
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I Want to Try This Out!
• Fuzzing often based on metaheuristic search.

• AFL (American Fuzzy Lop), Google OSS-Fuzz use 
genetic algorithms, fitness = code coverage.

• http://lcamtuf.coredump.cx/afl/
• https://google.github.io/oss-fuz 
• system-level tests

• The Fuzzing Book has tutorials and code for many 
specialized approaches:

• https://www.fuzzingbook.org/ 

http://lcamtuf.coredump.cx/afl/
https://google.github.io/oss-fuz
https://www.fuzzingbook.org/
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I Want to Try This Out!
• Python: 

• Tutorial for beginners: 
https://greg4cr.github.io/pdf/21ai4se.pdf

• https://github.com/Greg4cr/PythonUnitTestGeneration 

• EvoSuite for Java: http://www.evosuite.org/ 
• Sapienz (Facebook) tests Android/iOS apps

• Will be open-source in end of 2020 2022?.
• Older version available

• https://github.com/Rhapsod/sapienz/ 

https://greg4cr.github.io/pdf/21ai4se.pdf
https://github.com/Greg4cr/PythonUnitTestGeneration
http://www.evosuite.org/
https://github.com/Rhapsod/sapienz/blob/master/README.md
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Summary

The Metaheuristic
(Algorithm)

Genetic Algorithm
Simulated Annealing

Hill Climber
(...)

+

The Fitness Functions
(Feedback Strategies)

Distance to Coverage Goals 
Count of Executions Thrown

Input or Output Diversity
(...)

=

(Goals)

Cause Crashes
Cover Code Structure, 
Maximize Battery Use,

(...)



Next Time
• Research in Software Product Lines

• Assignment 4 - Any questions?
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