
Lecture 14: Course Summary

Gregory Gay and Daniel Strüber
TDA 594/DIT 593 - December 15, 2022

2

SE Principles for Complex Systems

3

Complex???????????
• Variability

• The ability to change and customize software to deliver
variants to new users.

• Requires designing code to be reused and to work with
reused code.

• Changeability and Maintainability
• The ability to add new features and options while

ensuring that existing code still works.

4

Why Change?
• The Law of Continuing Change

• A program used in a real-world environment must
change, or become progressively less useful in that
environment.

• The Law of Increasing Complexity
• As a program evolves, it becomes more complex.
• Resources are needed to preserve and simplify structure

5

Software Product Lines (SPLs)
• Highly configurable

families of systems.
• Built around common,

modularized features.
• Common set of core assets.

• Allows efficient
development,
customization.

Core Platform

6

Why Software Product Lines?
• Designed FOR reuse of assets.
• Designed TO reuse assets.
• Successful SPLs are highly configurable, and

evolve easily over time.
• Most modern systems intend to achieve at least

one of these two tasks.
• SPLs achieve both.

Application Engineering

Domain Engineering

7

Domain and Application Engineering

Requirements
Design

Realization

Testing

Core Platform

Requirements
Design
Realization
Testing

Requirements
Design
Realization
Testing

8

• Commonality
• Shared between all products.
• Implemented in core platform.

• Variations
• Shared by subset of products.
• Implemented in core platform, enabled in subset.

• Product-specific
• Unique to a single product.
• Platform must support unique adaptations.

Variability Management

9

Reasoning about Variability
• Variation Point

• Where one product can differ
from another.

• Ex: Which features are supported by
this security alarm?

• Feature
• Options that can be chosen at each variation point.
• Ex: Motion detection, camera

10

Feature Diagrams

11

Feature Modeling
• A specification of variation points and features in a

hierarchical form.
• Represented visually using feature diagrams.
• Also represented as propositional logic for analysis.

• Enables understanding of dependencies and what
valid products can be built using a platform.

12

Feature Diagrams
Website

Configuration

Visual
Appearance

Layouts

DesktopTabletMobile

Content
Personalization

Dark
Mode

Mandatory Feature
VisualAppearance ⇔
WebsiteConfiguration

Optional Feature
ContentPersonalization
⇒ WebsiteConfiguration

Example - Website Configuration
Website

Configuration

Content
Personalization

CookiesAdvertising

AllNoneEssential

TargetedNoneStandard

Or: Choose at least one
((Essential ∨ None ∨ All) ⇔
Cookies)

Alternative: Choose only one
((Standard ∨ None ∨ Targeted) ⇔
Advertising) ∧ ￢(Standard ∧
None) ∧ ￢(Standard ∧ Targeted)
∧ ￢(Targeted ∧ None)

14

Implementation

How to implement variability?

15

A
pp

lic
at

io
n

En
g.

Feature selection

D
om

ai
n

En
g.

Feature model Reusable
implementation
artifacts

Generator Final program

16

Annotation-Based Representation
• Code in common code base.
• Code related to a feature is marked.

• Preprocessor annotations, if-statements.

• Code belonging to deselected features:
• ignored (load-time, run-time)
• removed (compile-time).

17

Composition-based Representation
• Feature code in dedicated location.

• Class, file, package, service

• Selected units combined to form product.
• Requires clear mapping between features and units

18

Variability with Preprocessors
• Selectively include or exclude

code before compilation
• Developer wraps conditional code

with preprocessor directives
• Preprocessor removes deselected

code before compilation
• Exist for many languages, most

famous: cpp (for C, C++)

19

Variability with Build Scripts
• Compiles code

conditionally
depending on
features selected.
• Feature selection read from file or

inferred from environment (language,
location, software).

• Features can control how files compiled.

20

Variability with Parameters
• Use conditional statements to alter control flow

based on features selected.
• Boolean variable based on feature, set globally or

passed directly to methods:
• From command line or config file (load-time binding)
• From GUI or API (run-time binding)
• Hard-coded in program (compile-time binding)

21

Design Patterns

Design Patterns
Don’t just describe classes, describe problems.

Patterns prescribe design
guidelines for common
problem types.

22

Principles of Design
1. Identify aspects that vary and encapsulate them

away from what doesn’t.
2. Program to interface rather than implementation.
3. Favor composition over inheritance.
4. Open for extension, but closed for modification.
5. Talk only to your immediate friends.

23

Strategy Pattern Defines family of algorithms,
encapsulates them, makes
them interchangeable.

24

<<interface>>
MoveBehavior

move()

MoveWithWings
move() { .. }

MoveWithWheels
move() { .. }

Robot
MoveBehavior myMove
ShootBehavior myShoot

target()
shoot()
move()
display()
setMoveBehavior()
setShootBehavior()

<<interface>>
ShootBehavior

shoot()

GunShooting
shoot() { .. }

LaserShooting
shoot() { .. }

TankRobot

display() { .. }

DogRobot

display() { .. }

DroneRobot

display() { .. }

Identify aspects that vary and encapsulate them
away from what doesn’t

25

<<interface>>
MoveBehavior

move()

MoveWithWings
move() { .. }

MoveWithWheels
move() { .. }

Robot
MoveBehavior myMove
ShootBehavior myShoot

target()
shoot()
move()
display()
setMoveBehavior()
setShootBehavior()

<<interface>>
ShootBehavior

shoot()

GunShooting
shoot() { .. }

LaserShooting
shoot() { .. }

TankRobot

display() { .. }

DogRobot

display() { .. }

DroneRobot

display() { .. }

Implement common
behavior in parent.
Children implement
unique (single
product) behaviors.

Behaviors shared by some
children (variations)
implemented as classes
sharing a common interface.

Program to interface rather than implementation

Robot d = new DroneRobot();
d.move();
Behavior called in same way for
all robots. Only need to
implement behavior once.

<<interface>>
MoveBehavior

move()

MoveWithWings

move() { .. }

MoveWithWheels

move() { .. }

Robot
MoveBehavior myMove
ShootBehavior myShoot

target()
move()
shoot()
display()

move() {
myMove.move();

}
26

Favor composition over inheritance

<<interface>>
MoveBehavior

move()

MoveWithWings
move() { .. }

MoveWithWheels
move() { .. }

Robot
MoveBehavior myMove
ShootBehavior myShoot

target()
shoot()
move()
display()
setMoveBehavior()
setShootBehavior()

<<interface>>
ShootBehavior

shoot()

GunShooting
shoot() { .. }

LaserShooting
shoot() { .. }

27

A class can be composed of
building blocks of
encapsulated variable code.
Class calls into the block.

move() {
myMove.move();

}

The Decorator Pattern
Component

behavior()
// Other methods

ConcreteComponent

behavior()
// Other methods

Decorator

behavior()
// Other methods

ConcreteDecoratorA
Component wrapped
behavior()
newBehavior()
// Other methods

ConcreteDecoratorB
Component wrapped
Object newAttribute
behavior()
// Other methods

Decorators add new
behaviors to Components

Each Decorator offers
same methods the
Component offers.

Each concrete Decorator has
instance variable to store
wrapped component.
Decorators add behavior by
adding operations and
attributes. 28

Espresso

cost()

Ordering System - Decorator Pattern
Beverage

description

getDescription()
cost()

HouseBlend

cost()

CondimentDecorator

Milk

Beverage beverage

cost()
Decaf

cost()

DarkRoast

cost()

Mocha

Beverage beverage

cost()

Soy

Beverage beverage

cost()

double cost(){
 double total = beverage.cost();
 total+=10;
 return total;
}

The Open-Closed Principle
• Classes should be open for extension, closed

for modification.
• Add new behavior without changing existing code.
• Create class with new data and operators, attach class it

is intended to extend.
• Allow extension without direct modification.

• Do not try to apply this everywhere.
• Focus on areas likely to change.

30

The Facade Pattern
HomeTheater

Facade
startMovie()
endMovie()
startSpotify()
endSportify()
startRadio()
endRadio()

Amplifier BluRayPlayer

Tuner Stereo

Projector Screen PopcornMaker

Lights

● Create a new class that
exposes simple methods
(the facade).

● Facade calls on classes
to implement high-level
methods.

● Client calls facade
instead of classes.

● Classes still accessible.

31

The Principle of Least Knowledge
• Talk only to your immediate friends.
• Be careful of the number of classes your class

interacts with and how it interacts with them.
• Only invoke methods that belong to the object,

objects passed as parameters, objects created or
instantiated, and attached objects.

32

33

Let’s Take a Break

34

Modular implementation:
components and services

35

Frameworks
• A collection of classes that represent solutions to

related problems.
• Base implementation that can be extended with

plug-ins, supporting new custom use cases.
• Provides extension points (“hot spots”)

• Framework is responsible for main control flow,
asks plug-ins for custom behavior.

Variability with frameworks
• Composition-based, load-time.
• White Box: Subclass an abstract parent, override

template methods to implement features.
• Black Box: Register plug-in objects that provide

specific features.
• Provides clear modularity, but requires extensive

up-front design effort.

36

37

Components
• A component is a standalone unit with specified

interfaces and explicit dependencies.
• Can be deployed independently.
• Can be reused in many systems.
• Can vary from one class to many.

• Developers can choose to implement their own
components or work with existing ones.
• Requires compatible interfaces and data.

38

Variability with components
• For features that offer standalone functionality with

explicit interface and dependencies.
• Interfaces often standardized (REST), leading to

services.
• Can be reused in many projects.
• Integrated as part of a broader architectural design.

39

Feature- and Aspect-Oriented
Programming

Feature orientation

40

• Language-based approach for feature traceability
• Implement each feature in a feature module

• Perfect feature traceability
• Feature modularity

• Feature-based
program generation
• Programs generated

via feature composition

Aspect orientation
• Modularize a cross-cutting concern into an aspect
• Aspect describes effects on rest of software
• How interpreted? Multiple options:

• as a program transformation
• as a metaobject protocol
• some sort of feature module

41

Graph Edge Node Weighted

AOP vs. FOP

42

Collaboration

AOP vs. FOP

43

Aspect

44

limited support –
possible, but object-oriented structure gets
lost and aspects can get huge

good support –
refinements and collaborations

hetero-
geneous

good support –
wildcards and logical quantification over
pointcuts

no support –
one refinement per join point
(might lead to code replication)

homo-
geneous

good support –
advanced extensions, thanks to language
support for dealing with execution context

bad support –
only simple extensions (method
refinement)

dynamic

limited support –
fields, methods, static inner classes

good support –
fields, method, classes

static
AOPFOP

45

Wrap up: implementation techniques
Preprocessors Compile-Time Tool-Based Annotation-Based

Build Systems Compile-Time Tool-Based Composition-Based

Parameters Load or Run-Time Language-Based Annotation-Based

Design Patterns Load or Run-Time Language-Based Composition-Based

Frameworks Load or Run-Time Language-Based Composition-Based

Components Any Any Composition-Based

FOP Compile-Time Language-Based Composition-Based

AOP Any Language-Based Composition-Based

46

Designing Test Cases

Software Testing
• An investigation into system quality.
• Based on sequences of stimuli and

observations.
• Stimuli that the system must react to.
• Observations of system reactions.
• Verdicts on correctness.

47

SUT

Test Input

Output

Test Oracle
(Expected Output)

Verdict (Pass/Fail)

Creating System-Level Tests
Identify an Independently

Testable Function

Identify Choices

Identify Representative
Input Values

Generate Test Case
Specifications

Generate Test
Cases

Identify a function that can be tested in (relative) isolation.

Identify controllable aspects of the input and environment
that determine the outcome of the function.

Identify types of values for each choice
that lead to different function outcomes.

Combine values to form “recipes”
for test cases.

Replace
representative

values with
concrete values.

48

49

Example - Register for a Class
Test Choices
• Parameter: studentID

• Validity of Student ID
• Courses Student Has Taken Previously

• Parameter: courseID
• Validity of Course ID
• Prerequisites of Course ID

Identify Choices

Choosing Input Partitions
• Equivalent output events.
• Ranges of numbers or values.
• Membership in a logical group.
• Time-dependent equivalence classes.
• Equivalent operating environments.
• Data structures.
• Partition boundary conditions.

50

Identify Representative
Input Values

51

Example - Register for a Class
Parameter: studentID
• Validity of Student ID

• Active Student
• Inactive Student
• Non-Existent Student

• Courses Student Has
Taken Previously
• Matches Prerequisites
• Does Not Match

Prerequisites

Identify Representative
Input Values

Parameter: courseID
• Validity of Course ID

• Existing Course
• Non-Existent Course

• Prerequisites of Course ID
• Only Courses Taken By Student
• Only Courses Not Taken By

Student
• Some Courses Taken by Student

52

Forming Specification
Test Specifications:

• Active, Matches, Existing, Only Taken
• Active, Does Not Match, Existing, Only Not Taken
• Active, Does Not Match, Existing, Some Taken
• Active, - , Non-Existing, -
• Inactive, Matches, Existing, Only Taken
• Inactive, Does Not Match, Existing, Only Not Taken
• Inactive, Does Not Match, Existing Some Taken
• Inactive, - , Non-Existing, -
• Non-Existing, -, Existing, -
• Non-Existing, -, Non-Existing, -
• …

Generate Test Case
Specifications

Parameter: courseID
• Validity of Course ID

• Existing Course
• Non-Existent Course

• Prerequisites of Course ID
• Only Courses Taken By Student
• Only Courses Not Taken By Student
• Some Courses Taken by Student

Parameter: studentID
• Validity of Student ID

• Active Student
• Inactive Student
• Non-Existent Student

• Courses Student Has Taken
Previously

• Matches Prerequisites
• Does Not Match Prerequisites

Specifications: 3 * 2 * 2 * 3 = 36 - Illegal Combinations

Generate Test Cases
@Test

public void testRegistration() {

 // Set Up

 setupStudentRecord(ggay, active, [TDA050, TDA360]);

 setupCourse(TDA594, [TDA360]),

 // Attempt to register for a course

 Boolean outcome = registerForCourse(ggay, TDA594);

 Boolean expected = true;

 // Check the result of registration

 assertEquals(expected, outcome);

}

53

Generate Test
Cases

Specification:
Active, Matches, Existing, Only Taken

● Fill in concrete values that
match the representative
values classes.

● Can create MANY concrete
tests for each specification.

54

Example - Set Functions
void insert(Set set,
Object obj)

• (4 * 2 * 2) = 16 specifications
• Each can become 1+ tests.
• Use constraints to remove

impossible combinations.

Generate Test Case
Specifications

Set Size Obj in Set Obj Status Outcome

Empty Yes Valid No change

Empty Yes Null Error

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item Yes Null Error

1 item No Valid Obj added to Set

1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set

10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)

10000 Yes Null Error

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error (may be slowdown)

Constraints Between Values
• IF-CONSTRAINT

• This value only needs to be used under certain conditions
(if X is true, use value Y)

• ERROR
• Value causes error regardless of values of other choices.

• SINGLE
• Only a single test with this value is needed.
• Corner cases that should give “good” outcome.

55

56

Example - Set Functions
void insert(Set set, Object obj)

Parameter: set

• Choice: How many items are in the set?
• Representative Values:

• Empty Set
• Set with 1 item
• Set with 10 items
• Set with 10000 items

Identify Constraints

Parameter: obj

• Choice: Is the object already in the set?

• Representative Values:

• obj already in set

• obj not in set

• Choice: Is the object valid?

• Representative Values:

• Valid obj

• Null obj

property empty if !empty

error

single
single

57

Example - Set Functions
void insert(Set set,
Object obj)

Apply Constraints
Set Size Obj in Set Obj Status Outcome

Empty Yes Valid No change

Empty Yes Null Error

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item Yes Null Error

1 item No Valid Obj added to Set

1 item No Null Error

10 items Yes Valid No change

10 items Yes Null Error

10 items No Valid Obj added to Set

10 items No Null Error

Set Size Obj in Set Obj Status Outcome

10000 Yes Valid No change (may be slowdown)

10000 Yes Null Error (may be slowdown)

10000 No Valid Obj added to Set(may be slowdown)

10000 No Null Error (may be slowdown)

(4 * 2 * 2) = 16 specifications
Can’t already be in empty set, - 2
error (null), - 6 single (10, 10000), - 2

58

Example - Set Functions

void insert(Set set,
Object obj)

• From 16 -> 6 specifications
• Each can become 1+ tests.
• Can further constrain if

needed.

Apply Constraints

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Empty No Null Error

1 item Yes Valid No change

1 item No Valid Obj added to Set

10 items No Valid Obj added to Set

10000 No Valid Obj added to Set(may be slowdown)

59

Example - Set Functions
void insert(Set set, Object obj) Create Test Cases

@Test
public void testInsertEmptyValid() {
 // Set up the existing set
 Set target = new Set();
 // Insert an object
 String obj = “Test”;
 insert(target, obj);
 // Check the result
 assertTrue(find(target,obj));
}

Set Size Obj in Set Obj Status Outcome

Empty No Valid Obj added to Set

Set Size Obj in Set Obj Status Outcome

Empty No Null Error

@Test
public void testInsertemptyNull() {
 // Set up the existing set
 Set target = new Set();
 // Insert null object and check exception
 Throwable exc = assertThrows(
 SetException.class, () -> {
 insert(target, null); });
 assertEquals("Null Object", exc.getMessage());
}

60

Wrap-Up
• Thank you for making this a great course!
• Any remaining questions?

