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Software Product Lines (SPLs)
• Highly configurable 

families of systems.
• Built around common, 

modularized features.
• Common set of core assets.

• Allows efficient 
development, 
customization. 

Core Platform 
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Today’s Goals
• Introduce Domain Engineering

• Domain and Application Engineering
• Platform vs Specific Product
• Design FOR and WITH reuse

• Principles of SPLE
• BAPO: Business, Architecture, Process, Organization

• Domain Modelling
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Domain and Application Engineering
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Core Development Activities

Requirements:
- Planned Behavior 

and Constraints

Design:
- System 

Architecture
- Classes
- Packages
- Communication 

Between 
Components

- Interfaces

Realization:
- Software 

Development
Testing:

- Observe the 
System to Ensure 
Requirements Met



Application Engineering

Domain Engineering
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Domain and Application Engineering

Requirements
Design

Realization

Testing

Core Platform 

Requirements
Design
Realization
Testing

Requirements
Design
Realization
Testing
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SPLE Principles
• Variability Management

• Variability must be planned for.

• Business-Centric Development
• Connect to long-term business strategy.

• Architecture-Centric Development
• Take advantage of system similarities.

• Two-Life-Cycles
• Domain Engineering, then Application Engineering.
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• Commonality
• Shared between all products.
• Implemented in core platform.

• Variations
• Shared by subset of products.
• Implemented in core platform, enabled in subset.

• Product-specific 
• Unique to a single product.
• Platform must support unique adaptations.

Variability Management
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Reasoning about Variability
• Variation Point

• Where one product can differ 
from another.

• Ex: Which features are supported by 
this security alarm?

• Feature 
• Options that can be chosen at each variation point.
• Ex: Motion detection, camera
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Features and Products
• Any end-user-visible characteristic or behavior of a 

system is a feature.
• (often, functionality a user can directly interact with)

• A concrete product is a valid feature selection.
• Fulfills all variability and feature dependencies.
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Constraints on Variability
• Variability Dependencies

• Dependencies between features at one variation point.
• How many features can we choose for this point?
• Which are mandatory? Optional?

• Feature Dependencies
• Dependencies among features at any variation point.
• Choosing one feature requires choosing or excluding 

another feature.
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Fate of New Requirements
• Should requirements for a concrete application 

become part of the product line platform?
• If supported by the platform, add it to the platform.

• (can be added as an asset or tied to a variation point)
• Else: 

• 1) Drop it.
• 2) Add a new variation point to the platform.
• 3) Develop it as a unique part of one application.
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Business-Centric Development
• Up-front planning and

investment required.
• Long-term return on 

investment?
• Implement requirement as part of platform or in a product?
• 3+ concrete products: make it part of platform.
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Scoping
• Product Portfolio Planning

• Which products are we going to make?
• How do they differ?

• Domain Potential Analysis
• Will we get ROI on platform creation?
• How complex should the platform be?

• Asset Scoping
• Which specific components will be part of the platform?
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Architecture-Centric Development
• Product lines use 

reference architectures.
• Common architecture for 

all products.
• Features follow the same 

interface standards to 
make them swappable.

• Used to create a specific 
product architecture.
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Domain and Application Engineering
• Domain Engineering

• Enables reuse.
• Basis for creating 

individual products.
• Requirements, 

design, code, etc. all 
planned for variability.
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Domain and Application Engineering
• Application 

Engineering
• Development based 

on reuse.
• Builds product on top 

of platform.
• <= 90% of product 

built from assets.
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What is a Domain?
• An area of knowledge.

• Scoped to maximize requirement satisfaction.
• Encompases distinct concepts 
• Defines how to build systems in this area. 

• High-Level Domains: databases, social networks, 
supervised learning, …
• Social network subdomains: message board, text chat, 

voice chat, video streaming



19

Problem and Solution Space
Problem Space

• Stakeholder view
• Characterized by 

features

Solution Space
• Developer view
• Characterized by 

code structure
• Implementation of 

features.
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Key Task Clusters
Requirements for the 
entire product line 
(scope, features)

Map requirements to feature 
selection, assess new 
requirements

Develop reusable assets.

Assets combined 
to form new 
concrete product.
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Domain Analysis
• Domain Scoping

• Deciding on extent of product line
• Features to support.
• Trade-off between effort and customer range.

• Ex: Embedded Database Domain
• Definite Features: Transactions, Recovery, Encryption, 

Queries, Aggregation, Multi-OS (eCos, TinyOS, Linux),
• Out-of-Scope: Cloud Storage
• Consider: Multi-User Support
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Example: Spreadsheets
• Look at existing 

products: Excel, 
Google Sheets, …

• What are some 
features a user would 
expect?
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Example: Student Data Management (Ladok)

• Product Line: 
Student App, 
Teacher App
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Domain Analysis
• Domain Modeling

• Document commonalities and
differences between products in
terms of features and dependencies.

• Ex: Embedded Database
• Features: Storage, Transactions, OS (Android, Linux), Encryption
• Storage, OS are mandatory.
• Only one OS selection supported per product.
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Requirements Analysis
• Map customer requirements to 

domain requirements.
• If requirements do not map to 

existing features:
• 1) Out of scope
• 2) Do much as possible with 

features, customize rest
• 3) Extend platform with new 

features, variation points.
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Domain Implementation
• Implement reusable

assets from domain
requirements.

• Strategy for combining modules.
• Compile-time: only include requested code
• Run-time: include all code, activate when executed

• Interfaces for “attaching” variable features.
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Product Derivation
• Build the final concrete product from

reusable assets.
• Add any necessary customization.
• Ideally, can be done automatically.
• Often requires some manual “glue” code.
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Let’s take a break!
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Two-Life-Cycle Approach
• Domain Engineering

• Develop reusable assets
• Designed for long-term, 

complex development.

• Application Engineering
• Develop products.
• Designed for current 

customer, rapid changes.
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Domain Engineering Activities
• Product Management

• Portfolio planning, 
economic analysis.

• Creates product roadmap.

• Requirements Engineering
• Requirements for the 

platform, identification of 
variation points/features.
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Domain Engineering Activities
• Domain Design

• Create reference architecture.

• Domain Realization
• Implement reusable assets. 

• Domain Testing
• Test assets in isolation, 

generate test input for 
concrete products.
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Application Engineering Activities
• Requirements Engineering

• Requirements for the 
specific product, starting 
from existing variabilities.

• Application Design
• Instantiates reference 

architecture, adds specific 
adaptations.
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Application Engineering Activities
• Application Realization

• Reuse and configure 
existing assets, build new 
components.

• Application Testing
• Test new components and 

integration of reused 
assets.
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Feature Diagrams
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Features and Feature Dependencies
• Generally a functionality of the software.
• Can be mandatory or optional.
• Features are connected by their relationships.

• Selecting A allows B to be selected.
• Selecting A requires B to be selected.

• Variation Point: Selecting A requires selecting one of (B, C, D). 

• A feature model describes these relationships.
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Identifying Features
• Aspects of the domain reflected in the software.

• Externally-visible functions of software.
• Aspects of non-functional behavior that can be controlled.

• (energy consumption) “Precision” vs “Battery-Preserving”
• (disk usage, memory) How often data is saved

• Must represent a distinct and well-understood 
aspect of the system.
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Understanding a Feature
• To model a feature, consider:

• Description and requirements
• Relationship to other features 

• (hierarchy, ordering, grouping)
• External dependencies (hardware, software)
• Configuration knowledge (activated by default?)
• Constraints (requires feature X, excludes Y)
• Effect on non-functional properties
• Attributes (number, parameters)
• Potential feature interactions.
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Feature Diagrams

Mandatory 
Feature

Optional 
Feature

• Tree where nodes represent features.
• Shows parent-child relationship.

• F can only be selected when P is 
selected.

• Parent tends to be more general, 
child is more specific.

• Parent - Sensor, Child - RADAR
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Feature Diagrams

Mandatory 
Feature

Optional 
Feature

Alternative (mutually 
exclusive choice): Choose 
exactly one 

Or: Choose at least one 
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Cross-Tree Constraints
• Cross-tree Constraints are predicates imposing 

constraints between features.
• DataDictionary ⇒ String

• (Storing a data dictionary requires support for strings)
• MinimumSpanningTree ⇒ Undirected ∧ Weighted

• (Computing a Minimum Spanning Tree requires support for 
undirected and weighted edges)

• Constraints over Boolean variables and subexpressions.
• (i.e., (NumProcesses >= 5))
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Example - Data Management
Data Management 

System

OS Storage Access

Top node represents the 
system itself.

Hierarchy goes from 
general/abstract to specific.

First layer represents 
“types” of functionality.
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Example - Data Management
Data Management 

System

OS Storage Access

Transaction 
LogAPI SQL 

Engine

put get deletepost relational 
queries

stream 
queries
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Example - Data Management
Data Management 

System

OS Storage Access

Data 
Dictionary Indexing

Tables Columns List B+-Tree

add search remove update
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Example - Data Management
Data Management 

System

OS Storage Access

LinuxWindows MacOS
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Example - Website Configuration
• SPL that provides website 

functionality.
• One feature - adjusts layout 

based on the device.
• What other aspect of the site 

could be features?
• Consider visual appearance and 

personalized content.

Website 
Configuration

Visual 
Appearance

Layouts

DesktopTabletMobile
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Example - Website Configuration
Website 

Configuration

Visual 
Appearance

Layouts

DesktopTabletMobile

Content 
Personalization

Dark 
Mode



Example - Website Configuration
Website 

Configuration

Visual 
Appearance

Content 
Personalization

CookiesAdvertisingLanguages
Account 
Features

AllNoneEssential

TargetedNoneStandard

EnglishSwedish

Personalized 
Content

Edit 
Account 
Details

Change 
Password



We Have Learned
• Domain Engineering

• Development FOR reuse. Creates asset portfolio.
• Provides basis for creating individual products.
• Requirements, design, code, etc. planned for variability.

• Application Engineering
• Development WITH reuse.

• Builds product on top of asset infrastructure.
• Up to 90% of new product may be built from assets.
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We Have Learned
• A product is a valid selection of features.
• Feature models capture the constraints that define 

whether a selection is valid.
• Feature diagrams represent feature relationships visually.
• Propositional logic represents feature relationships as 

formulae that can be used in analyses.



Next Time
• Feature Modelling and Analysis
• Team Selection Due Tonight!

• 6-7 people, one email per team to ggay@chalmers.se 
• Complete assignment in Canvas 

• (include either team number given to you, or if you want to be 
assigned to a team)

• Assignment 1 out now! 
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mailto:ggay@chalmers.se
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Assignment 1 - Case Study
• Due November 13, 11:59 PM
• Case study examining development of a SPL or 

other reuse-driven system.
• Choose a system from case studies on Canvas
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Assignment 1 - Case Study
• Document: 

• Context: What kind of organization/market?
• Motivation: Why a SPL or reuse-driven approach?
• Type of System
• Approach: What engineering practices?
• Challenges: Key technical and process challenges.
• Results: What happened?
• Conclusions: What did they learn?




