CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Gregory Gay
TDA 594/DIT 593 - November 3, 2022

) CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Software Product Lines (SPLs)
* Highly configurable [J

families of systems.

e Built around common,
modularized features.
« Common set of core assets.

* Allows efficient
development,
customization.

,‘ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Today’s Goals

* Introduce Domain Engineering

« Domain and Application Engineering
« Platform vs Specific Product
* Design FOR and WITH reuse

* Principles of SPLE

« BAPO: Business, Architecture, Process, Organization
* Domain Modelling

2018-08-27 Chalmers University of Technology

{8%)) UNIVERSITY OF GOTHENBURG

Domain and Application Engineering

#8) CHALMERS |

UNIVERSITY OF GOTHENBURG

Core Development Activities

p

.

Requirements:

Planned Behavior
and Constraints

TR

System a

Architecture Realization:
Classes ealization.:
Packages - Software
Communication Development

Between

S

-
Components
Interfaces j

/
Testing:

- Observe the
System to Ensure
Requirements Met

(S

/

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Domain and Application Engineering

_Requirements
(Desian
REqUILSIICHID Realization @~ =
Design / f S
f ... Core Platform L Testing J
Realization } NC
\TQSti“QJ \ Reauirements
: . . Desian \ et
Domain Engineering Realization J S
Testlng |
Appllcatlon Engineering

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

SPLE Principles

Variability Management
 Variability must be planned for.

Business-Centric Development
« Connect to long-term business strategy.

Architecture-Centric Development
« Take advantage of system similarities.
Two-Life-Cycles

« Domain Engineering, then Application Engineering.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Variability Management
 Commonality _ veaons
* Shared between all products. £ —_—

* Implemented in core platform.

* Variations
« Shared by subset of products.
* Implemented in core platform, enabled in subset.

* Product-specific
* Unique to a single product.
« Platform must support unique adaptations.

Domain Engineering Application Engineering

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Reasoning about Variability

e Variation Point s
« Where one product can differ
from another. X >
« Ex: Which features are supported by . I
this security alarm? Is.ufe'i'.’.ifce ‘ Detecton
 Feature

« Options that can be chosen at each variation point.
 EXx: Motion detection, camera

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Features and Products

* Any end-user-visible characteristic or behavior of a
system is a feature.
 (often, functionality a user can directly interact with)

* A concrete product is a valid feature selection.
 Fulfills all variability and feature dependencies.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Constraints on Variability

e Variability Dependencies
« Dependencies between features at one variation point.
 How many features can we choose for this point?
« Which are mandatory? Optional?

 Feature Dependencies
« Dependencies among features at any variation point.

« Choosing one feature requires choosing or excluding
another feature.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Fate of New Requirements

« Should requirements for a concrete application
become part of the product line platform?
 If supported by the platform, add it to the platform.

* (can be added as an asset or tied to a variation point)
« Else:
1) Drop it.
« 2)Add a new variation point to the platform.
« 3) Develop it as a unique part of one application.

« Up-front planning and
Investment required.

* Long-term return on
investment?
* |Implement requirement as part of platform or in a product?
» 3+ concrete products: make it part of platform.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Scoping

* Product Portfolio Planning

* Which products are we going to make?
* How do they differ?

 Domain Potential Analysis
+ Will we get ROI on platform creation?
« How complex should the platform be?

* Asset Scoping

« Which specific components will be part of the platform?

* Product lines use

reference architectures.

e Common architecture for
all products.

 Features follow the same
interface standards to
make them swappable.

« Used to create a specific
product architecture.

[iraecteey | [gy] | namg| [

Vehicle platform abstraction

Trajectory execution

Platform stabilization

13| 21
= O a Propulsion/Steering/Braking >

llllll

nnnnnnnn

&) CHALMERS | (6l))) yNIVERSITY OF GOTHENBURG

Domain and Application Englneerlng

Product |
° D o m a I n E n g I n e e rl n g Managemem 2l Domain Domain Domain
_“ Finaimants }' Design }‘ Realusatnon 4‘ Testing
 Enables reuse.

« Basis for creating
individual products.

* Requirements,
design, code, etc. all
planned for variability.

Domain Engineering

A RApﬁi':::"::ts __ Application | Application | Application |
Eeggi neering Design Realisation Testing

3 3 J 4

&) CHALMERS | (6l))) yNIVERSITY OF GOTHENBURG

Domain and Application Englneerlng

* Application “a:::"u“?"“‘t oman | oan | ooman | poman }J
Engineering T R;:;,;;:g;;g} P -
* Development based

on reuse.
« Builds product on top
of platform.

« <=90% of product
built from assets.

Domain Engineering

A RApﬁi':::"::ts __ Application | Application | Application |
Eeggi neering Design Realisation Testing

3 3 J 4

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

What is a Domain?

* An area of knowledge.
« Scoped to maximize requirement satisfaction.
 Encompases distinct concepts
« Defines how to build systems in this area.

* High-Level Domains: databases, social networks,
supervised learning, ...

« Social network subdomains: message board, text chat,
voice chat, video streaming

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Problem and Solution Space

Problem Space Solution Space

I
I
Problem S pace g Domain analysis E .R::Fain implementation
o 1
[}] void print(){
. o Domain 1 efines class Edge(
® Sta ke h (0) | d er view ‘D knowledge Maéping doi Nodo() hw"ww""w"’w' Node b
H - N | a0 m;:;;":ﬂ.»n.w print(); (ug."_‘m:N:d. *
« Characterized by 2 ! S
fe atu res g (incl. scoping, :
oo variability modeling) : (models,source code, ...)
" I
Solution Space w | | P—
————————————— oW o~ — -Foatures = == === ==l = s mm e mmmm -implementation — = - — - -
. o requirements | attifacts
* Developer view < — S 5 !
. equirements analysis P t ivati
« Characterized by 2 b | rocuc dertvetion
code structure £ Customer Fedure
. ol needs ;-;:g selection R Product
* Implementation of - — — —
O oo !
features. 2 ;
o i |
<°' : : (incl. validation and verification)
|

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Ke

in engine

Doma

Domain
knowledge
— -
MST => Weighted
Cycle => Diracted
(incl. scoping,
variability modeling)
A
New
e e T . ——t—---|-Features - - - -
requirements
Y
Requirements analysis
4 Grophlibrary linvokd, .. Sokutions)
Customer
needs

ion engineering

Applicat

Task Clusters

Problem Space

Domain analysis

Mapping

Solution Space

Domain implementation

—— e O — - ——— ——

Fedture
sele:ction

[tass weight
void print(}{
- ofines cle
) i Blgel kclass Edge(
—— Woightv = now Woights
void print){ Edge(Node _o,Node _b)
P | inid=o; Superprint{);w.print(); |
)) o b=_b;
void peint{}(
int(i void print(){
bt aprin); b i)

(models,source code, ...)

Common

e -implementation — -

artifacts

Product derivation

(incl. validation and verification)

Product
>

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Problem Space

Domain analysis

Domain Analysis

* Domain Scoping
« Deciding on extent of product line
* Features to support.
« Trade-off between effort and customer range.

 Ex: Embedded Database Domain

« Definite Features: Transactions, Recovery, Encryption,
Queries, Aggregation, Multi-OS (eCos, TinyOS, Linux),

« Out-of-Scope: Cloud Storage
« Consider: Multi-User Support

incl. sco
b“ym dl g)

Domain engineering

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: Spreadsheets

) LOOk a‘t eXIStIng COUNTIF ~ X v Kk =FORECAST.LINEAR(A12,5B52:5B511,5A52:5A511)

prOdUCtS EXCGI, ; Peri:d 1Sale§ — FORECAS(':I'.LINEAR B B R
Google Sheets, ... : 1 =
 What are some e
features a user woulcs o =
expeCt? E 12 . =FORECAST.LINEAR(A12,5B$2:9B$11,$A52:5A511))|

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: Student Data Management (Ladok)
| cormtsscaon

¢ P I'Od U Ct L | n e Current education
Stu d e nt Ap p , CURRENT UPCOMING

Self-contained courses

Te a C h e r Ap p There are no upcoming courses

Teaching and Learning in Higher Education 3:

Applied Analysis | 5.0 hp | HPE103 PLANNED STUDIES
2020-09-09 - 2020-12-10 | HO832 | 25 % |

Home page & Student & Course 8 Course packagin Activity o unities Output ~ Advanced ~ .
E packeging,)ity opport e e no study selections to do

A Welcome Gregory Gay

Social security number Surname First name Name Utb.kod Access code

search Apply for a course opportunity search
& To certify & My courses ¥ Notifications to me from Ladok & My errands % My course opportunities favorites

[J Also show not notified to me
To certify Refers to Date User Notified to me

No results are available to certify

I 0909090909090 =

,‘ y CHALMERS | (8} UNIVERSITY OF GOTHENBURG

Problem Space

Domain analysis

Domain Analysis

Domain

knowledge
e

* Domain Modeling

 Document commonalities and
differences between products in
terms of features and dependencies.

 Ex: Embedded Database

« Features: Storage, Transactions, OS (Android, Linux), Encryption
« Storage, OS are mandatory.
« Only one OS selection supported per product.

(incl. scoping,
variability modeling)

Domain engineering

{81)) UNIVERSITY OF GOTHENBURG

Problem Space

Domain analysis

Requirements Analysis

Domain

knowledge i
— Dened | incvecsss] (575] [OFE] [Crome | BrcnssPan | [vsT] [ranspose

 Map customer requirements to
domain requirements.

* If requirements do not map to

————————————— - -t —— —|-Features - — — -

(incl. scoping,
variability modeling)

Domain engineering

A

existing features: 2 it I
-4 Requirements analysis
* 1) Out of scope £ e
e 2) Do much as possible with o e
features, customize rest i
» 3) Extend platform with new g

features, variation points.

{8%)) UNIVERSITY OF GOTHENBURG

Domain Implementation

Problem Space ! Solution Space

Domain analysis L Domain implementation
dows Weight{

* Implement reusable
assets from domain
requirements.

« Strategy for combining modules.

« Compile-time: only include requested code
* Run-time: include all code, activate when executed

 Interfaces for “attaching” variable features.

1)
Mu[}ping hiows Nodaf
1 tid = 0,

mmmmmmm
o oat

omain engineering

(incl. scoping,
variability modeling)

{81)) UNIVERSITY OF GOTHENBURG

Product Derivation

 Build the final concrete product from
reusable assets.
« Add any necessary customization.
 |deally, can be done automatically.

« Often requires some manual “glue” code.

Requirements analysis

Grophlibrary (invold, ... Sobtions]

L}
1
1
1
!
Fedture
selegtion
T

Domain implementation

Common
-implementation
artifacts

Product derivation

ooooo

uuuuuu
uuuuuuuuuu

(incl. validation and verification)

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s take a break!

{81)) UNIVERSITY OF GOTHENBURG

Two-Life-Cycle Approach

. . - Product | v i =
* Domain Engineering
it 330 o 200 2

* Develop reusable assets

» Designed for long-term,
complex development.

Domain Engineering

* Application Engineering

Engineering

Application s
9 . .. Application .
) | Requxrements} Design }»

Vv i
Application | Application | |

Realisation Testing

« Develop products.

« Designed for current
customer, rapid changes.

iy L o)
DS S
olication 1 - Artefacts

4 3

W;? CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Domain Engineering Activities

* Product Management | e T JJ
° PorthIIO plannlng, % EGr?gineering} Design }_ Realisation}‘ Testing
economic analysis. I
 Creates product roadmap. oo = p e ek
° . . . : r—’\/
Requirements Engineering [::*’g} g | peton |, e }J

« Requirements for the
platform, identification of _, B ,
variation points/features.

\:,? CHALMERS |) UNIVERSITY OF GOTHENBURG
%' UNIVERSITY OF TECHNOLOGY

Product [

Management
| 'R e?;;:::: sl Domain Domain . Domain
Engineering Design Realisation Testing

* Domain Design
 Create reference architecture.

 Domain Realization
* Implement reusable assets.

* Domain Testing [—y?ﬁv JJ
pp"cahons 5 Application | |

Domain Engineering

. Requirements | Application Application |

 Test assets in isolation, Eromone: ['Design [~ Realisation [~ Testing
generate test input for 4 0 4 3
concrete products. e —

AR
,;? CHALMERS | (&})) UNIVERSITY OF GOTHENBURG
BTt UNIVERSITY OF TECHNOLOGY ",,‘l”".:”

Application Engineering Activities

* Requirements Engineering
* Requirements for the
specific product, starting
from existing variabilities.

* Application Design
* |nstantiates reference

architecture, adds specific
adaptations.

Domain Engineering

Product [=N
Management
Eroman Domain J‘ Domain }‘ Domain \

‘L Requirements g S
En gl neering Design Realisation Testing

[} = e

. R:qpﬁi'i‘;z“'::ts __ Application ||. Application | Application |
Engineering Design Realisation Testing

,\;? CHALMERS | @8}) UNIVERSITY OF GOTHENBURG
W 4 UNIVERSITY OF TECHNOLOGY ",,‘l”".:”

Application Engineering Activities
* Application Realization i [= T
—l—J omain J‘ omain }_ omain p

° Reus e and Configure — R;g;::zr:::;s Design Realisation | Testing
existing assets, build new
components.

Domain Engineering

* Application Testing [_.vh;ﬁv_ -1
« Test new components and §“p:?.’:gi~ ""SL':;‘;”} 22:!::1:3:}—‘- “‘%"'stg}'

integration of reused
assets.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Feature Diagrams

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Features and Feature Dependencies

Generally a functionality of the software.
Can be mandatory or optional.

Features are connected by their relationships.
« Selecting A allows B to be selected.

« Selecting A requires B to be selected.
« Variation Point: Selecting A requires selecting one of (B, C, D).

A feature model describes these relationships.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Identifying Features

* Aspects of the domain reflected in the software.
« Externally-visible functions of software.

« Aspects of non-functional behavior that can be controlled.
* (energy consumption) “Precision” vs “Battery-Preserving”
« (disk usage, memory) How often data is saved

 Must represent a distinct and well-understood
aspect of the system.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Understanding a Feature

« To model a feature, consider:
« Description and requirements

« Relationship to other features
(hierarchy, ordering, grouping)

« External dependencies (hardware, software)

« Configuration knowledge (activated by default?)
» Constraints (requires feature X, excludes Y)

« Effect on non-functional properties

» Attributes (number, parameters)

» Potential feature interactions.

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Feature Diagrams

Mandatory Optional * Tree where nodes represent features.
Feature Feature . . .
« Shows parent-child relationship.
" ; F can only be selected when P is
selected.

« Parent tends to be more general,
child is more specific.
 Parent - Sensor, Child - RADAR

—

b
-

N
—

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Cross-Tree Constraints

 Cross-tree Constraints are predicates imposing
constraints between features.
e DataDictionary = String
« (Storing a data dictionary requires support for strings)

e MinimumSpanningTree = Undirected A Weighted

* (Computing a Minimum Spanning Tree requires support for
undirected and weighted edges)

« Constraints over Boolean variables and subexpressions.
* (i.e., (NumProcesses >= 5))

) CHALMERS | UNIVERSITY OF GOTHENBURG

Example - Data Management

oS

Data Management
System

Storage

Top node represents the
system itself.

Access

Hierarchy goes from
general/abstract to specific.

First layer represents
“types” of functionality.

)} CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example - Data Management

{#6) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Example - Data Management

\} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Example - Data Management

(&%) UNIVERSITY OF GOTHENBURG

Example - Website Configuration

« SPL that provides website
functionality.

* One feature - adjusts layout
based on the device.

« What other aspect of the site

could be features?

« Consider visual appearance and -

personalized content.

"} CHALMERS | (8)) UNIVERSITY OF GOTHENBURG

4" UNIVERSITY OF TECHNOLOGY
et

Example - Website Configuration

CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG

Example - Website Configuration

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

We Have Learned

 Domain Engineering

« Development FOR reuse. Creates asset portfolio.
« Provides basis for creating individual products.
« Requirements, design, code, etc. planned for variability.

* Application Engineering
 Development WITH reuse.

« Builds product on top of asset infrastructure.
« Up to 90% of new product may be built from assets.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

We Have Learned

* A product is a valid selection of features.

« Feature models capture the constraints that define
whether a selection is valid.

« Feature diagrams represent feature relationships visually.

* Propositional logic represents feature relationships as
formulae that can be used in analyses.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Next Time

* Feature Modelling and Analysis

« Team Selection Due Tonight!
* 6-7 people, one email per team to ggay@chalmers.se

« Complete assignment in Canvas

* (include either team number given to you, or if you want to be
assigned to a team)

« Assignment 1 out now!

mailto:ggay@chalmers.se

@ {
- f
B ‘7‘
y A%
g

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Assignment 1 - Case Study
e Due November 13, 11:59 PM

« Case study examining development of a SPL or
other reuse-driven system.
e Choose a system from case studies on Canvas

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

@ {
- f
B ‘7‘
y A%
g

Assignment 1 - Case Study

* Document:
« Context: What kind of organization/market?
« Motivation: Why a SPL or reuse-driven approach?
e Type of System
« Approach: What engineering practices?
« Challenges: Key technical and process challenges.
* Results: What happened?
« Conclusions: What did they learn?

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

