
Lecture 2: Domain Engineering

Gregory Gay
TDA 594/DIT 593 - November 3, 2022



2

Software Product Lines (SPLs)
• Highly configurable 

families of systems.
• Built around common, 

modularized features.
• Common set of core assets.

• Allows efficient 
development, 
customization. 

Core Platform 



2018-08-27 Chalmers University of Technology 3

Today’s Goals
• Introduce Domain Engineering

• Domain and Application Engineering
• Platform vs Specific Product
• Design FOR and WITH reuse

• Principles of SPLE
• BAPO: Business, Architecture, Process, Organization

• Domain Modelling



4

Domain and Application Engineering



5

Core Development Activities

Requirements:
- Planned Behavior 

and Constraints

Design:
- System 

Architecture
- Classes
- Packages
- Communication 

Between 
Components

- Interfaces

Realization:
- Software 

Development
Testing:

- Observe the 
System to Ensure 
Requirements Met



Application Engineering

Domain Engineering

6

Domain and Application Engineering

Requirements
Design

Realization

Testing

Core Platform 

Requirements
Design
Realization
Testing

Requirements
Design
Realization
Testing



7

SPLE Principles
• Variability Management

• Variability must be planned for.

• Business-Centric Development
• Connect to long-term business strategy.

• Architecture-Centric Development
• Take advantage of system similarities.

• Two-Life-Cycles
• Domain Engineering, then Application Engineering.



8

• Commonality
• Shared between all products.
• Implemented in core platform.

• Variations
• Shared by subset of products.
• Implemented in core platform, enabled in subset.

• Product-specific 
• Unique to a single product.
• Platform must support unique adaptations.

Variability Management



9

Reasoning about Variability
• Variation Point

• Where one product can differ 
from another.

• Ex: Which features are supported by 
this security alarm?

• Feature 
• Options that can be chosen at each variation point.
• Ex: Motion detection, camera



10

Features and Products
• Any end-user-visible characteristic or behavior of a 

system is a feature.
• (often, functionality a user can directly interact with)

• A concrete product is a valid feature selection.
• Fulfills all variability and feature dependencies.



11

Constraints on Variability
• Variability Dependencies

• Dependencies between features at one variation point.
• How many features can we choose for this point?
• Which are mandatory? Optional?

• Feature Dependencies
• Dependencies among features at any variation point.
• Choosing one feature requires choosing or excluding 

another feature.



12

Fate of New Requirements
• Should requirements for a concrete application 

become part of the product line platform?
• If supported by the platform, add it to the platform.

• (can be added as an asset or tied to a variation point)
• Else: 

• 1) Drop it.
• 2) Add a new variation point to the platform.
• 3) Develop it as a unique part of one application.



13

Business-Centric Development
• Up-front planning and

investment required.
• Long-term return on 

investment?
• Implement requirement as part of platform or in a product?
• 3+ concrete products: make it part of platform.



14

Scoping
• Product Portfolio Planning

• Which products are we going to make?
• How do they differ?

• Domain Potential Analysis
• Will we get ROI on platform creation?
• How complex should the platform be?

• Asset Scoping
• Which specific components will be part of the platform?



15

Architecture-Centric Development
• Product lines use 

reference architectures.
• Common architecture for 

all products.
• Features follow the same 

interface standards to 
make them swappable.

• Used to create a specific 
product architecture.



16

Domain and Application Engineering
• Domain Engineering

• Enables reuse.
• Basis for creating 

individual products.
• Requirements, 

design, code, etc. all 
planned for variability.



17

Domain and Application Engineering
• Application 

Engineering
• Development based 

on reuse.
• Builds product on top 

of platform.
• <= 90% of product 

built from assets.



18

What is a Domain?
• An area of knowledge.

• Scoped to maximize requirement satisfaction.
• Encompases distinct concepts 
• Defines how to build systems in this area. 

• High-Level Domains: databases, social networks, 
supervised learning, …
• Social network subdomains: message board, text chat, 

voice chat, video streaming



19

Problem and Solution Space
Problem Space

• Stakeholder view
• Characterized by 

features

Solution Space
• Developer view
• Characterized by 

code structure
• Implementation of 

features.



20

Key Task Clusters
Requirements for the 
entire product line 
(scope, features)

Map requirements to feature 
selection, assess new 
requirements

Develop reusable assets.

Assets combined 
to form new 
concrete product.



21

Domain Analysis
• Domain Scoping

• Deciding on extent of product line
• Features to support.
• Trade-off between effort and customer range.

• Ex: Embedded Database Domain
• Definite Features: Transactions, Recovery, Encryption, 

Queries, Aggregation, Multi-OS (eCos, TinyOS, Linux),
• Out-of-Scope: Cloud Storage
• Consider: Multi-User Support



22

Example: Spreadsheets
• Look at existing 

products: Excel, 
Google Sheets, …

• What are some 
features a user would 
expect?



23

Example: Student Data Management (Ladok)

• Product Line: 
Student App, 
Teacher App



24

Domain Analysis
• Domain Modeling

• Document commonalities and
differences between products in
terms of features and dependencies.

• Ex: Embedded Database
• Features: Storage, Transactions, OS (Android, Linux), Encryption
• Storage, OS are mandatory.
• Only one OS selection supported per product.



25

Requirements Analysis
• Map customer requirements to 

domain requirements.
• If requirements do not map to 

existing features:
• 1) Out of scope
• 2) Do much as possible with 

features, customize rest
• 3) Extend platform with new 

features, variation points.



26

Domain Implementation
• Implement reusable

assets from domain
requirements.

• Strategy for combining modules.
• Compile-time: only include requested code
• Run-time: include all code, activate when executed

• Interfaces for “attaching” variable features.



27

Product Derivation
• Build the final concrete product from

reusable assets.
• Add any necessary customization.
• Ideally, can be done automatically.
• Often requires some manual “glue” code.



28

Let’s take a break!



29

Two-Life-Cycle Approach
• Domain Engineering

• Develop reusable assets
• Designed for long-term, 

complex development.

• Application Engineering
• Develop products.
• Designed for current 

customer, rapid changes.



30

Domain Engineering Activities
• Product Management

• Portfolio planning, 
economic analysis.

• Creates product roadmap.

• Requirements Engineering
• Requirements for the 

platform, identification of 
variation points/features.



31

Domain Engineering Activities
• Domain Design

• Create reference architecture.

• Domain Realization
• Implement reusable assets. 

• Domain Testing
• Test assets in isolation, 

generate test input for 
concrete products.



32

Application Engineering Activities
• Requirements Engineering

• Requirements for the 
specific product, starting 
from existing variabilities.

• Application Design
• Instantiates reference 

architecture, adds specific 
adaptations.



33

Application Engineering Activities
• Application Realization

• Reuse and configure 
existing assets, build new 
components.

• Application Testing
• Test new components and 

integration of reused 
assets.



34

Feature Diagrams



35

Features and Feature Dependencies
• Generally a functionality of the software.
• Can be mandatory or optional.
• Features are connected by their relationships.

• Selecting A allows B to be selected.
• Selecting A requires B to be selected.

• Variation Point: Selecting A requires selecting one of (B, C, D). 

• A feature model describes these relationships.



36

Identifying Features
• Aspects of the domain reflected in the software.

• Externally-visible functions of software.
• Aspects of non-functional behavior that can be controlled.

• (energy consumption) “Precision” vs “Battery-Preserving”
• (disk usage, memory) How often data is saved

• Must represent a distinct and well-understood 
aspect of the system.



37

Understanding a Feature
• To model a feature, consider:

• Description and requirements
• Relationship to other features 

• (hierarchy, ordering, grouping)
• External dependencies (hardware, software)
• Configuration knowledge (activated by default?)
• Constraints (requires feature X, excludes Y)
• Effect on non-functional properties
• Attributes (number, parameters)
• Potential feature interactions.



38

Feature Diagrams

Mandatory 
Feature

Optional 
Feature

• Tree where nodes represent features.
• Shows parent-child relationship.

• F can only be selected when P is 
selected.

• Parent tends to be more general, 
child is more specific.

• Parent - Sensor, Child - RADAR



39

Feature Diagrams

Mandatory 
Feature

Optional 
Feature

Alternative (mutually 
exclusive choice): Choose 
exactly one 

Or: Choose at least one 



40

Cross-Tree Constraints
• Cross-tree Constraints are predicates imposing 

constraints between features.
• DataDictionary ⇒ String

• (Storing a data dictionary requires support for strings)
• MinimumSpanningTree ⇒ Undirected ∧ Weighted

• (Computing a Minimum Spanning Tree requires support for 
undirected and weighted edges)

• Constraints over Boolean variables and subexpressions.
• (i.e., (NumProcesses >= 5))



41

Example - Data Management
Data Management 

System

OS Storage Access

Top node represents the 
system itself.

Hierarchy goes from 
general/abstract to specific.

First layer represents 
“types” of functionality.



42

Example - Data Management
Data Management 

System

OS Storage Access

Transaction 
LogAPI SQL 

Engine

put get deletepost relational 
queries

stream 
queries



43

Example - Data Management
Data Management 

System

OS Storage Access

Data 
Dictionary Indexing

Tables Columns List B+-Tree

add search remove update



44

Example - Data Management
Data Management 

System

OS Storage Access

LinuxWindows MacOS



45

Example - Website Configuration
• SPL that provides website 

functionality.
• One feature - adjusts layout 

based on the device.
• What other aspect of the site 

could be features?
• Consider visual appearance and 

personalized content.

Website 
Configuration

Visual 
Appearance

Layouts

DesktopTabletMobile



46

Example - Website Configuration
Website 

Configuration

Visual 
Appearance

Layouts

DesktopTabletMobile

Content 
Personalization

Dark 
Mode



Example - Website Configuration
Website 

Configuration

Visual 
Appearance

Content 
Personalization

CookiesAdvertisingLanguages
Account 
Features

AllNoneEssential

TargetedNoneStandard

EnglishSwedish

Personalized 
Content

Edit 
Account 
Details

Change 
Password



We Have Learned
• Domain Engineering

• Development FOR reuse. Creates asset portfolio.
• Provides basis for creating individual products.
• Requirements, design, code, etc. planned for variability.

• Application Engineering
• Development WITH reuse.

• Builds product on top of asset infrastructure.
• Up to 90% of new product may be built from assets.

48



49

We Have Learned
• A product is a valid selection of features.
• Feature models capture the constraints that define 

whether a selection is valid.
• Feature diagrams represent feature relationships visually.
• Propositional logic represents feature relationships as 

formulae that can be used in analyses.



Next Time
• Feature Modelling and Analysis
• Team Selection Due Tonight!

• 6-7 people, one email per team to ggay@chalmers.se 
• Complete assignment in Canvas 

• (include either team number given to you, or if you want to be 
assigned to a team)

• Assignment 1 out now! 

50

mailto:ggay@chalmers.se


51

Assignment 1 - Case Study
• Due November 13, 11:59 PM
• Case study examining development of a SPL or 

other reuse-driven system.
• Choose a system from case studies on Canvas



52

Assignment 1 - Case Study
• Document: 

• Context: What kind of organization/market?
• Motivation: Why a SPL or reuse-driven approach?
• Type of System
• Approach: What engineering practices?
• Challenges: Key technical and process challenges.
• Results: What happened?
• Conclusions: What did they learn?




