
Lecture 5: Implementing Variability:
Preprocessors, Build Systems, Parameters

Daniel Strüber
TDA 594/DIT 593 - November 15, 2022

2

Variability
• The ability to derive different products from a

common set of assets.
• Implementation: How do we build a custom product

from a feature selection?

How to implement variability?

3

Ap
pl

ic
at

io
n

En
g.

Feature selection

D
om

ai
n

En
g.

Feature model Reusable
implementation
artifacts

Generator Final program

4

Today’s Goals
• Basic implementation concepts
• Tool-based Implementation

• Preprocessors, Build Systems
• Introduce language-based implementation

• Parameters

5

Binding Time
• Compile-time Binding

• Decisions made before/during compilation.
• #IFDEF preprocessor in C/C++.

• Load-time Binding
• Decisions made when program starts.
• Configuration file or command-line flags.

• Run-time Binding
• Decisions made while program runs.
• Method or API call.

6

Binding Time
• Compile-time binding improves performance.

• … but executable cannot be reconfigured.
• Load-time binding configured at execution.
• Run-time binding can be configured any time.

• … but reduced performance/security, increased
complexity.

7

Technology
• Language-based Implementation

• Use programming language mechanisms to implement
features and derive product.

• Pass parameters at run-time.
• Tool-based Implementation

• Use external tools to derive a product.
• Use preprocessor to compile only the requested features.

8

Technology
• Language-Based Implementation

• Feature implementation and management in code.
• Easy to understand.
• Feature management/boundaries easily vanishes.

• Tool-Based Implementation
• Separate implementation and management.
• Simplifies code.
• Must reason about multiple artifacts.

9

Annotation-Based Representation
• Code in common code base.
• Code related to a feature is marked.

• e.g.: preprocessor annotations, if-statements.
• Code belonging to deselected features:

• ignored (load-time, run-time)
• removed (compile-time).

• Simple, but reduces modularity/readability.

10

Composition-based Representation
• Feature code in dedicated location.

• Class, file, package, service
• Selected units combined to form product.
• Requires clear mapping between features and units
• Requires developers to understand composition

mechanism, can be complex

11

Some Examples
Preprocessors Compile-Time Tool-Based Annotation-Based

Build Systems Compile-Time Tool-Based Composition-Based

Parameters Load or Run-Time Language-Based Annotation-Based

Design Patterns Load or Run-Time Language-Based Composition-Based

Frameworks Load or Run-Time Language-Based Composition-Based

Components Any Any Composition-Based

12

Quality Criteria
• We want a SPL to have:

• Low preplanning effort
• Feature traceability
• Separation of concerns
• Information hiding
• Granularity
• Uniformity

• These often conflict!

13

Preplanning Effort
• Preplanning is required to

enable code reuse.
• Implementation techniques

• Can minimize the need for
extensive preplanning.

• Can support change and
addition of features.

Without Preplanning

With Preplanning

14

Feature Traceability
• Ability to link a feature

from the problem space
(e.g., feature model) to
the solution space (code)
• Very important to ensuring correct implementation.
• Preprocessor directives are easier to detect than run-

time parameters (if-statements).
• Easiest to trace if feature code is contained to a single

unit, harder if code is spread across units.

15

Separation of Concerns
• Development should be structured into concerns

(focuses) that are implemented separately.
• Ignoring irrelevant details.
• In a SPL, features are the concerns.

• Features separated into distinct artifacts are easier
to debug and maintain.
• Code structures with high cohesion only contain highly

related code.

16

Cross-Cutting Concerns
• May be difficult to separate features.

• Cross-cutting concerns are features that
span multiple units (classes).

• Code Scattering - feature code appears
across multiple other concerns.

• Code Tangling - code of two features
directly mixed.

17

Cross-Cutting Concerns

18

Cross-Cutting Concerns

19

Cross-Cutting Concerns

20

Cross-Cutting Concerns
• Scattering leads to hidden concerns.

• Hard to find all feature code.
• Hard to coordinate developers.
• Hard to evolve code.

• Some cross-cutting concerns are required.
• Important to minimize number, track ones that exist.

21

Information Hiding
• Divide each module into internal and external parts:

• Internal (Secret): Bulk of code
• External: Interface that surfaces accessible functions

• A module can be understood by examining its
contents and only the interfaces of other modules.
• Simplifies and un-biases development.
• Allows independent teams to develop features.

22

Information Hiding
• Key challenge is to design small, clear interfaces.

• Makes communication explicit.
• Enables more hiding of information.

• Enables separation of concerns.
• Good separation of concerns enables information hiding.
• Requires both… which requires pre-planning.

23

Granularity
• Implementing a feature may require code changes

• Coarse-grained: A new Java class
• Fine-grained: Adding statements to an existing function.

• Implementation mechanisms define how code can
be easily changed.
• Annotation-based mechanisms usually better for

supporting fine-grained extensions

24

Uniformity
• Software systems, including their features, can be

implemented in different languages or formats.
• Product line implementation techniques should

encode and process artifacts in a uniform manner.
• It should not matter if code was written in C++ or Java,

we should be able to work with it in the same way.

25

Tool-Based Implementation

26

Preprocessors
• Optimize code before compilation.

• Often used by compilers to produce
faster executable.

• Can selectively include or exclude
code.

• Most famous - cpp
• “The C Preprocessor” (C, C++)

• Exist for many languages.

27

Implementation with cpp
• #include enables import from another file.

• #include <string.h>

• #define used to substitute value for reference.
• Reserve one per feature.
• #define FEATURE_NAME TRUE

• (if the feature is selected, don’t use #define if not selected)

• #ifdef/#endif used to conditionally include code.
• #ifdef FEATURE_NAME

28

Implementation with cpp
● #ifdef
● #if defined(MACRO)

○ Check if a macro is
defined. If true, code is
included.

○ Define macro for
included features.

● #if (...) can check a
user-defined condition.

29

Implementation with cpp
• #ifndef

• “if not defined”
• #else
• Note nesting of

directives.
• Line 17 ends line 5

directive.

30

Implementation with Antenna (Java)
• Similar to cpp

• Annotations written as comments.
• Comments out code that is not selected and

uncomments code that is selected.
• Available from http://antenna.sourceforge.net/

• Part of FeatureIDE
• Alternatively, can be used from command line.

http://antenna.sourceforge.net/

31

Implementation with Antenna (Java)
• Annotate code using comments:

• //#if FEATURE_NAME
• If FEATURE_NAME is chosen, include this code.

• //#elif OTHER_FEATURE
• else if OTHER_FEATURE chosen, include this code.

• //#else
• //#endif

• Instead of removing lines, Antenna comments out
lines, inserting //@

32

Examples
(Hello, Beautiful, World) (Hello, Wonderful, World)

Live demo in FeatureIDE

33

34

Disciplined Use of Preprocessors
• Should wrap around an entire function, declaration, or expression.

• Wrapping partial
expressions: can
be confusing

Overview: preprocessors

35

D
om

ai
n

En
g.

Ap
pl

ic
at

io
n

En
g.

feature selection

feature model program with
preprocessor directives

preprocessor complete program

36

Benefits of Preprocessors
• Easy to learn (annotate and remove code).
• Can be applied to code and other artifacts.
• Allow changes at any level of granularity.
• Easy to map features and code.
• Can be added to a non-product line to transform it

into one over time.

37

Drawbacks of Preprocessors
• Feature code scattered across codebase and

mixed with other features.
• Encourage developers to patch and add to code

instead of refactoring.
• Can make it hard to understand control flow in code
• Can introduce errors, especially when used on

partial statements.

38

Build Systems
• Schedules and executes

build-related tasks.
• Compilation, testing,

packaging, etc.
• Ex: Make, Maven, Gradle

• Can be used to manage
compile-time variability.

<?xml version = "1.0"?>
<project name = "Hello World
Project" default = "info">

<target name = "info">
<echo>Hello World - Welcome
to Apache Ant!</echo>

</target>
</project>

39

Variability in Build Scripts
• Compiles code

conditionally
depending on
features selected.
• Feature selection read from file or

inferred from environment (language,
location, software).

• Features can control how files compiled.

40

Example - Linux Kernal
• Kbuild decides which files to

compile based on feature
selections.
• obj-y += foo.o

• Compile and link foo.c.

• obj-m += foo.o
• Build foo.c as loadable module.

• lib-y += foo.o
• Include foo.c as a library.

• obj-(COFIG_FOO) += foo.o
• (CONFIG_FOO) is a feature. Set to (y, m, n)

for compile, module, skip.

Overview: build systems

41

D
om

ai
n

En
g.

Ap
pl

ic
at

io
n

En
g.

Build script per variant
+ specific files

Feature model
Base implementation

Standard build
(make, ant, …)

Complete program

□Sensor-DB (Car)
Sensor-DB (Habitat

Monitoring)□Sensor-DB (Earth
quake%)□SmartCard-DB□GPS-DB

42

Discussion
• Build systems are language agnostic (uniform).
• Does not require extensive preplanning.

• But no notion of consistency or modularity.

• Good if features can be mapped to files.
• Must replace entire file, so best if feature code mapped to

single class placed in its own file.

• Executes other variability mechanisms
• Run pre-processors, select branch from version control,

create configuration file.

43

Parameter-Based Implementation

44

Language-Based Variability
• Programming languages offer means to implement

variability in different ways.
• if-statement offers a choice between two options.

• Common approaches:
• Parameters
• Design Patterns
• Frameworks and Libraries
• Components and Services

45

Parameter-based Implementation
• Use conditional statements to alter control flow

based on features selected.
• Boolean variable based on feature, set globally or

passed directly to methods:
• From command line or config file (load-time binding)
• From GUI or API (run-time binding)
• Hard-coded in program (compile-time binding)

46

• Choices read from
command line and
stored in Conf.

• Other classes check
variables and invoke
code appropriately.

Live demo in FeatureIDE

47

Overview: runtime parameters

48

Do
m

ai
n

En
g.

Ap
pl

ic
at

io
n

En
g.

parameter selection
(feature selection)

parameter list
(feature model)

program with
runtime parameters

setting of parameters program execution
with desired behavior

49

Discussion
• Variation is evaluated at run-time.
• All functionality is included,

even if never used.
• More memory required.
• If-statements add computational

overhead.
• Security risks: larger attack surface,

e.g., buffer overflow attacks

50

Discussion
• Can alter feature selection at

run-time.
• However, code may depend

on initialization steps.
• May be easier to restart.

• Can pass to methods
instead of setting globally.
• Allows different configurations

throughout program.

51

Discussion
• Conditional statements are a form of annotation.

• Mark boundaries between features.
• Global variables reduce independence of modules.

• However, passing many arguments reduces
understandability/requires repetition.

• Pass a “configuration object” containing settings.
• Feature code mixed and scattered across project.

• Hard to understand and change.

52

Benefits and Drawbacks
• Benefits

• Easy to understand and use.
• Flexible
• Allows different configurations in same program.

• Drawbacks
• All code in executable.
• Feature code and configuration knowledge scattered

across program.
• Difficult to link feature model and implementation.

Interactive part: quiz
Which mechanism seen so far is/are best for
supporting the following quality concerns?
• Feature traceability
• Granularity
• Uniformity
• Separation of concerns

53

https://forms.gle/UQDSKyVxGRizoGdh6

https://forms.gle/UQDSKyVxGRizoGdh6

We Have Learned
• How do we build a custom product from a feature

selection?
• Binding Time

• Compile, load, run-time
• Technology

• Language vs Tool-Based Implementation
• Representation

• Annotation vs Composition

54

55

We Have Learned
• Preprocessors

• Mark code to include in compiled executable.
• Omit code that we do not select entirely.
• Compile-Time, Tool-Based, Annotation-Based

• Build Systems
• Replace files based on feature selection.
• Compiler options set using features.
• Compile-Time, Tool-Based, Composition-Based

56

We Have Learned
• Parameters

• Set Boolean variables via command-line, config file, GUI,
API, etc. globally or pass to methods.

• Use if-statements to execute correct code.
• Load or Run-Time, Language-Based, Annotation-Based

Next Time
• Modularity and design patterns

• General software engineering concept
• In particular, useful for implementing variability

• Assignment 2 - any questions?
• Due November 20
• Feature modelling and analysis for mobile robots

57

	Slide Number 1
	Variability
	How to implement variability?�
	Today’s Goals
	Binding Time
	Binding Time
	Technology
	Technology
	Annotation-Based Representation
	Composition-based Representation
	Some Examples
	Quality Criteria
	Preplanning Effort
	Feature Traceability
	Separation of Concerns
	Cross-Cutting Concerns
	Cross-Cutting Concerns
	Cross-Cutting Concerns
	Cross-Cutting Concerns
	Cross-Cutting Concerns
	Information Hiding
	Information Hiding
	Granularity
	Uniformity
	

Tool-Based Implementation
	Preprocessors
	Implementation with cpp
	Implementation with cpp
	Implementation with cpp
	Implementation with Antenna (Java)
	Implementation with Antenna (Java)
	Examples
	Live demo in FeatureIDE
	Disciplined Use of Preprocessors
	Overview: preprocessors
	Benefits of Preprocessors
	Drawbacks of Preprocessors
	Build Systems
	Variability in Build Scripts
	Example - Linux Kernal
	Overview: build systems
	Discussion
	

Parameter-Based Implementation
	Language-Based Variability
	Parameter-based Implementation
	Slide Number 46
	Live demo in FeatureIDE
	Overview: runtime parameters
	Discussion
	Discussion
	Discussion
	Benefits and Drawbacks
	Interactive part: quiz
	We Have Learned
	We Have Learned
	We Have Learned
	Next Time
	Slide Number 58

