CHALMERS

UNIVERSITY OF TECHNOLOGY

(&%) UNIVERSITY OF GOTHENBURG

Lecture 7: Modularity

Daniel Struber !
TDA 594/DIT 593 - November 22, 2022 *

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLODGY

How to implement variability?

] Feature model Reusable

=2 <hL implementation

w AN artifacts

c t/’—O—| { . |—o—|

a 0S5 | | Transactions | APL | Basis

E V4 \ / f

S 7N .

a

)

c

w :

c T

o]:|D|rectx ' “’.m. :.;..T‘Jnif‘"rwﬁ“—'Jm,,.

o DTransactlons :EEE:':E.;E.-E{T«. '%ﬁ 'E“':r’:;’:

[&] ! 7,003107 Byteers | T i I

o — &l 008 Datafene Tz [Eight EIE

= e
| 1,000 M ™ | B

o ; @ e g

< 1 . Rrcon) of 15

- [Basis

Feature selection Generator Final program

VERSITY OF GOTHENBURG

Annotation-Based Representation

e Code in common code base.

 Code related to a feature is marked.
* Preprocessor annotations, if-statements.

 Code belonging to deselected features:
e ignored (load-time, run-time)
 removed (compile-time).

%% CHALMERS (o) ERSITY OF GOTHENBURG
Gt UNIVERSITY OF TECHNOLOGY '._-_‘-'A_T.'_':"

Composition-based Representation

e [Feature code In dedicated location.
o Class, file, package, service

e Selected units combined to form product.
 Requires clear mapping between features and units

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Today’s Goals

e Understand and apply techniques for implementing
variability in a modular way

e Frameworks: libraries of extendable base
Implementations.

* Components/Services: standalone units with explicit
Interfaces.

* Software architecture: building a larger software system
with its components and services.

CHALMERS UNIVERSITY O 'HENBURG

UNIVERSITY OF TECHNOLODGY

Frameworks

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Frameworks

* A collection of classes that represent solutions to
related problems.

« Base implementation that can be extended with
plug-ins, supporting new custom use cases.

* Provides extension points (“*hot spots”)

 Framework is responsible for main control flow,
asks plug-ins for custom behavior.

CHALMERS

UNIVERS JTHENBURG

UNIVERSITY OF TECHNOLODGY

Frameworks

e Used in web browsers,
graphics editing, media
players, IDEs.

e Product lines: features
developed as plug-ins.

o Select plug-ins based on

feature selection.

= Extersions Q. 5

Load ungacked Pack sension Upsate

Adlock ~ best e blocker 4300 Clouty Caleluter 616
O e moitin i et et e e

Twnch, and your favorite websies [Formarty Ciwomey Calouator)

- gighmmpintittepjocnampkitagidsm 1 negmestacegosshimdpsbeadhs

Inapect vews Backround cag Ieapact views backgrousd b

e - PO — -

Addons Manager
Search
Detats *
All

Skins

Active Extensions Plugins

Advantage.VLC
theme by Spyme
Version 0.9.0

Alienware Darkstar

Playlist parsers
,' th

’ Service Discovery

* Interfaces

* Art and meta fetchers

BLUE STEEL
theme by RTUWILDE

Version 0.8.5

ZssamA 1571 downloads

theme by Ptitlu W

& devogella.ed first 32
Extensions
= Extensions

All Extensions

D Only installed

Define extensions For this plugrinin the folioy
section

| Add... l

= ¥ vogella {product) Remove
% Show extension poink description
<1 Open extension point schema

¥ ki i i i

Extension Points | Bulld MARIFEST.MF | pluginxml | build.properties
e

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

White-Box Frameworks

« Abstract class with concrete subclasses.
* Defines default behaviors (template methods).
« Extensions implemented as new concrete classes that

override these methods.
« Directly implemented in existing codebase.
* Requires access to source code.

* Free to interact with existing code, access base
Implementation.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

White-Box Frameworks

o Overriding existing behavior allows flexibility.

e ... Butrequires detailed understanding of low-level
Implementation.

» Falls to protect existing code from extensions.

e Often used for libraries
e GUI elements, data structures

 Features implemented as subclasses.

Feature A Feature B

» Best for alternative features (choose-one). | tuneiono function()

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Black-Box Frameworks

e Separate code and extensions through interfaces.
« Each feature is a separate plug-in.

* Plug-ins registered at hot spots.
 E.g., Observers, strategies.

* One or more plug-ins can be attached.

Feature A

callback()

Feature B

callback()

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Black-Box Frameworks

* Developers only need to understand interfaces.
« Easier to understand framework.
* Internal functions, information protected.
« Can only extend designated hot-spots.

« Limits flexibility, but decouples
framework/extensions.

« Can independently develop/distribute extensions.

3 CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Implementation Example

1 class Calc extends JFrame {

2 private JTextField textfield;

3 public static void main(String[] args) { new Calc().setVisible(true); }
4 public Calc() { init(); }

5 protected void init() {

6 JPanel contentPane = new JPanel(new BorderLayout());

7

8

9

0

E My Great Calculator |

hos2+8 \Siictint contentPane.setBorder(new BevelBorder(BevelBorder.LOWERED)):
B ring L=/01>) button.setText("calculate");
127.0.01 | wing | 1 contentPane.add(button, BorderLayout.EAST);

11 textfield = new JTextField("");

12 | textfield.setText("10 / 2 + 6");

[| browse.. | upload 13 textfield.setPreferredSize(new Dimension(200, 20));
14 contentPane.add(textfield, BorderlLayout.WEST);
15 button.addActionListener(/* code to calculate %/);
16 this.setContentPane{contentPane);
17 this.pack();
18 this.setlLocation(100, 100);
19 this.setTitle("My Great Calculator");
20 /7 code Tor closing the window
21 }
22 }

CHALMERS

UNIVERSITY OF TECHNOLOGY

NIVERSITY OF GOTHENBURG

White-Box

e Abstract class
Implements base
behavior.

Defines abstract
or default
methods that will
be extended.

Subclasses
override those
methods.

| abstract class App extends JFrame {

protected abstract String
getApplicationTitle();

protected abstract String
getButtonText();

}

protected void buttonClicked() { }
private JlextField textiield;
public App() { init(); }
protected void init() {
JPanel contentPane =
new JPanel(new BorderLayout());
contentPane.setBorder(new
BevelBorder(BevelBorder.LOWERED));
JButton button = new JButton();
button.setText(getButtonText());
contentPane.add(button,
BorderLayout.EAST);
textfield = new JTextField("");
textfield.setText(getInititalText());
textfield.setPreferredSize(
new Dimension(200, 20));
contentPane.add(textfield,
BorderLayout .WEST);
button.addActionListener(

. buttonClicked(); ...);
this.setContentPane(contentPane);
this.pack();
this.setlocation(100, 100);
this.setTitle(getApplicationTitle());
// code for closing the window

}
protected String getInput() {
return textfield.getText();

protected String getInititalText() {
return ""; ‘/j:-?/

35 class Calculator extends App {

36
37
38

protected String getButtonText() {
return "calculate";
1

39

protected String getInititalText() {
return "(10 - 3) * 6";
}

protected void buttonClicked(] {
JOptionPane.showMessageDialog(this,
"The result of " + getInput() +
" is " + calculate(getInput()));

}

private String calculate(String input){

}

protected String getApplicationTitle(){
return "My Great Calculator";

53
54
55
56 }

public static void main(String[] args){
new Calculator().setVisible(true);

}

57 class Ping extends App {

58
59
60
61
62
63
64
65
66
67
68 }

protected String getButtonText() {
return "ping";

1

protected String getInititalText() {
return "127.0.0.1";

}

public static void main(String[] args){
new Ping().setVisible(true);

}

;%‘ CHALMERS 5 UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLODGY

interface Plugin { i= 43| elass CalcPlugin implements Plugin { |

|
2 String gethAppTitle(); + private TnpuiFrovider ip;
3 String getButtonText(); 45 public void register(InputProvider i} {
4 String getInititalText(}; A6 this.ip = 1;
B I a‘ k - B O X 5 woid buttonClicked(] ; 47
[| void register{InputProvider app); 48 public String getButtonText{) { return
71 “calculate”; }
interface InputProvider { 49 public String getInititalText() {
String getInput(); return "10 / 2 + @"; }
. . I} 50 public void buttonClicked() {
51 JoptionPane.showMessageDialog(null,
e Extensions implement a e
Il class App extends JFrame 53 ip.getInput() + * is " +
12 implements InputProvider { 54 calculate(ip.getInput({})}; }

55 public String getAppTitle() { return
"My Great Calculator™; }

12 private JTextField textfield;
I I - 14 private Plugin plugin;

I5 [public App(PLlugin p) { 56 private String calculate(String m) ...
. . 16 th.i.s.ﬂugin:pi . 57 }
* Register with the i | e
R 19 3 58 class CalcStarter {
framework to provide e ot = P St o
. . 22 new JPanel{new BorderlLayout{)); 6l setVisible(trua);
2 52
needed functionality. B T henlborier oersiberder, LINENED)13 }
25 JButton button = new JButton();
. il button,setText (plugin.getButtonText(});
e Can also use interface to 7 =it
. . 28 textfield = new JTextField{"");
1
surface information from & ‘i
il textfield.setPreferredsize(

framework in app B cnmamminetion

BorderLayout WEST);

° 34 button.addActionListener(
(Inputpr‘OV]_der‘) 35 ... plugin.buttonClicked(); ...):
36 this.setContentPane(contentPane);
37 A
38 ¥

39 public String getInput(} {
40 return textfield. getText();

%% CHALMERS INIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLOGY

1 public class App {
BI k B 2 |private List<EncoderPlugin> encoders;
aC - OX 3 |private List<FilterPlugin> filters;
4 public App(List<EncoderPlugin> encoders,

List<FilterPlugin> filters) {
this.encoders=encoders;

e Can register 5

. . 6 for (EncoderPlugin plugin: encoders)
multiple extensions olugin. register (this);

8

9

this.filters=filters;

In a list.)
; 10 public Message processMsg (Message msg) {
® Can eXtend W|th 11 for (EncoderPlugin plugin: encoders)
. 12 if (plugin.canProcess(msg))
mU|t|p|e ’[ypeS Of 13 msg = plugin.encode(msqg);

- 14 boolean isVeto = false;
extensions at 5 for (FilterPlugin plugin: filters)
same [)()if]t. ;? -.%sVetn = isVeto || plugin.veto(msg);

18 return msg;
19 }
20 }

%% CHALMERS NIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Loading Plug-Ins

1 public class Starter {
public static void main(String[] args) {
if (args.length != 1)

° Often Ioaded When E System.out.println("Plugin name not specified");
application is executed. 5L usimene - arosior,

. try {
° Command_“ne parameter Class<?> pluginClass = Class.forName(pluginName);
. . . ! Plugin plugin = (Plugin) pluginClass.newInstance();
10 new App(plugin).setVisible(true);
config file, directory. 0 new Aep(plugin) . setv]
12 System.out.println("Cannot load plugin " + pluginName + ", reason: " + e);
1 13 }
o Sets up framework with &

detected plug-ins. o)

e Can check whether plug-in implements correct interface,
check dependencies, check constraints between plug-ins.

 May use a built-in extension manager (Chrome)

3} CHALMERS INIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLODGY

Frameworks for product lines

Mapping
features <-=Dplug-ins

Feature model

SPL
// 1

A

T
o
OS Transactions API Basls

Application Eng. Domain Eng.

eEa
S os Feature selection
-~ :
. Unix
] birecty
EI Transactions
= . APT p
EI et 3 Ay ~ : !
Qe =
EI Delete e s
-] Basis
Feature selection plug-in selection application =
(and possibly, generation framework with
of launch configuration) desired plug-ins

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Discussion

« Composition-based, often load-time, approach.
 Uniform: Can be implemented similarly across many

languages, technologies.
 Traceable: Direct correspondence from feature to code

(one plug-in = one feature)
o Black-box frameworks can encode alternative and
optional features easily and systematically.

 White-box can encode alternative features, but
harder to blend features.

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Discussion

e Separation of Concerns:
* Interfaces encapsulate framework from plug-ins.
* Plug-ins developed separately from framework, as long
as interface is followed.

e Information Hiding: Can understand feature by
only looking at plug-in code.

 Modularity: Independent developers can develop
their own extensions.

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Discussion

 Pre-planning Effort: Must anticipate hot-spots and
design interfaces and templates.

* |If needed information not exposed to extensions,
framework must be refactored.

* Interfaces cannot change without changing all plug-ins.

 Changing a framework can be inflexible.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Discussion

* Plug-ins can be reused in versions of the same
framework, but not in other frameworks.

» Tied closely to implementation.

e Introduce development and run-time overhead.
« Must write additional code.
 Can lead to over-complex design.
 More code must be executed, slowing the system.
 Limit to few well-defined extension points in code.

%% CHALMERS NIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Components and Services

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Components

« A component is a standalone unit with specified
Interfaces and explicit dependencies.
e Can be deployed independently.
e Can be reused in many systems.
e Can vary from one class to many.

 Developers can choose to implement their own
components or work with existing ones.

* Requires compatible interfaces and data.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Services

« A form of component focused on standardization,
Interoperabllity, and distribution.
 Reachable over standard protocols.
« HTTP

e Can often look up services from a registry.
 NPM for JavaScript
« Communication standardized so underlying language
does not matter.
e REST AP

UNIVERSITY OF TECHNOLOGY

%% CHALMERS UNIVERSITY OF GOTHENBURG

Simple Example

package modules.colorModule;

* Define public interface —
//public interface

(CIaSS COlOfMOdUle, public class ColorModule {

1
2
3
4
interf Color 5| public Color createColor(int r, int g, int b) { /* ... */ }
terface) 6| public void printColor(Color color) { /+ ... %=/ }
7
3
9

* Hide implementation
(private/package-level K

VISIbIlIty) 11 //just one module instance
12 public static ColorModule getInstance() { return module; }

« Can integrate into code 13| private static ColorModule module = new ColorModule();

public void mapColor(Object elem, Color col) { /* ... */ }
public Color getColor(Object elem) { /* ... =/ }

or as JAR f”e 14 private ColorModule() { super(); }
’ 15|}

16 |public interface Color { /* ... %/ }
17
18| //hidden implementation
19| class ColorImpl implements Color { /+ ... */ }
20| class ColorPrinter { /#+ ... =#/ }
21| class ColorMapping { /#* ... #/ }

%% CHALMERS)) UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY

Components vs Plug-Ins

* Both result in encapsulated modules.
« Enabling traceability, information hiding.

« Difference in automation potential and reuse.

* Plug-ins tailored to one framework.
* Product can be generated by loading only the needed plug-ins.
* Plug-ins designed for that framework.
 Hard to reuse.
« Components can be reused.
« But require glue code to integrate.

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Components vs Plug-Ins

Components can be encoded in many languages.
Both allow compile-time product derivation.

Interfaces for both are difficult to evolve once
designed.

« Others may depend on current interface definition.
Both add overhead from interfacing/communication.

,i}ég CHALMERS

{IVERSITY OF GOTHENBURG

Sizing Components

A component can contain a lot of functionality or
only offer a single, small function.

A complex component is easier to use in the project it
was developed for, but hard to reuse elsewhere.

Small components are easy to reuse in many projects,
but add communication overhead and glue code.

 Trade-off between use and reuse.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Sizing Components

 Non-trivial to size components.

* In SPL development: domain analysis helps.
* Which functionality will be reused in different products?

« |f functions are always used together, package them
together as a component.

« If a function is only used in a subset of products, it can be
packages as a separate component.

3} CHALMERS INIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLODGY

Product lines from components

Mapping
features <-> components

&~ Component repository

Feature model

SPL
_.-//"-\“\‘t:x

=T — o \;HH“
/:G< A
/ N -~
/ \ |

Developer writes
glue code to connect components

N_ C t6
N\ omponen
I
—
""" Direct .
..... Transactions S, | Component9
El"' AP L, A:’ L]
- D Get ~ \
..... D Put /8 Component8
el Delete ¢

----- s — Final program
Feature selection Component selection ~ Component set

%% CHALMERS (88 UNIVERSITY OF GOTHENBURG
dth UNIVERSITY OF TECHNOLOGY R

Composing Components into a
Software Architecture

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Static Structures

o Static structures define system’s internal
components and their arrangement.
» Software: services, classes, packages.
« Data: Database entries/tables, data files.
 Hardware: Servers, CPUs, disks, networking.

o Static arrangement defines associations,
relationships, or connectivity between components.

%% CHALMERS NIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Static Structure Arrangement

e Software:

* Relationships define hierarchy (inheritance) or
dependency (use of variables or methods).

e Data:
» Relationships define how data items are linked.
 Hardware:

« Relationships define physical interconnections between
hardware components.

%% CHALMERS UNIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Dynamic Structures

« Dynamic structures define system’s runtime
elements and their interactions.

 Flow of information
« A sends messagesto B

e Flow of control
« A.action() invokes B.action()

o Effect an action has on data.
 Entry E iIs created, updated, and destroyed.

,i}ég CHALMERS

NIVERSITY OF GOTHENBURG

Airline Reservation System

» Allows seat booking, updating,
cancellation, upgrading, transferring. e oyt
 Externally visible behavior: \‘

 How it responds to submitted %7 e R oo
transactions. Customers .
* Quality properties of interest:
e Average response time, max Systom uner |

throughput, availability

,i}ég CHALMERS

NIVERSITY OF GOTHENBURG

Option 1: Client/Server Architecture

Clients communicate with a
central server (with a database)
over a network.

Static Structure: Client
programs, broken into layered
elements, a server, and
connections.

Dynamic Structure:
Request/response model.

Clients

Presentation

Business

Logic

Database

Network

Presentation

Business

Logic

Database

Network

!

}

WAN

Presentation

Business

Logic

Database

Network

Database
Server

%% CHALMERS) UNIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Option 2: “Thin Client” Architecture

Clients

 Clients communicate with a central
server (with a database) over a

Presentation
Network

network.
. . Application Database
e Static Structure: Client only perform - Server Server
. . 2 Business Logic ‘
presentation. Server performs logic £ 3 . e
COmpUtathﬂ ;_é 2 Network Storage
 Dynamic Structure:
Request/response model. Requests

Presentation
Network

submitted to application server, then
database server.

i3 CHALMERS e VERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY :'

Which Would You Choose?

o Same external behavior, may differ in performance.
e Firstis simpler.
e Second might be more scalable and more secure.

e Must select a candidate architecture that satisfies
all requirements and meets quality goals.

e Extent that a architecture exhibits behaviors and
performance must be studied further.

%%} C":‘?\'-'\T’E'E '?5 5)) UNIVERSITY OF GOTHENBURG

Static Structuring

« Decompose the system into components.
* Visualized as structured blocks.

e | S8
e

%% CHALMERS (o) ERSITY OF GOTHENBURG
Gt UNIVERSITY OF TECHNOLOGY '._-_‘-'A_T.'_':"

Basic Architectural Styles
« Common styles: layered, shared repository,
client/server, pipe & filter

e The style used affects performance, robustness,
maintainability, etc.

o« Complex systems might not follow a single model -
mix and match for subsystems.

{%{5) CHALMERS () yNIVERSITY OF GOTHENBURG

Layered Model

e Components organized into layers
o Each layer only dependent on
the previous layer.
o May be multiple components in
a single layer.
e Allows components to change
independently.
e Supports incremental
development.

INIVERSITY OF GOTHENBURG

Robot Example

F 3

B sl Video or | Robot Health Sensor D
i or Image . ea nsor Data
:IC:' Interface Display | Tele-operation Display Display |
Layer : { /
(7] ; &
=| Algorithm Obstacle Mapping
g g Path Planning S i o Task Definition
5 Layer
| —
] [S S S I S — e e e e s —Ty——— — BN T S——— =
5
©
@
o Platform Steering Sensor Fusion Image Processing Kinematics
ol Layer
o
L e e e S S
w
Driver e Actuator
¢ Layer Interface

%% CHALMERS)) UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY

Layered Model Characteristics

Advantages Disadvantages
« Allows replacement of entire e Clean separation between
layers as long as interface is layers is difficult.
maintained. e Performance can be a

problem because of multiple
layers of processing between
call and return.

« Changes only impact the
adjacent layer.

 Redundant features
(authentication) in each layer
can enhance security and
dependability.

%% CHALMERS (o) ERSITY OF GOTHENBURG
Gt UNIVERSITY OF TECHNOLOGY '._-_‘-'A_T.'_':"

The Repository Model

Components often exchange and work with the same
data. This can be done in two ways:

 Each component maintains its own data and
passes it to other components.

« Shared data held in central repository and
accessed by all components.

Repository model is structured around the latter.

(%% q}:ALMEBS NIVERSITY OF GOTHENBURG
L 3‘_:. .. 4 UNIVERSITY D CHNOLOGY

IDE Example

st

Project Information and
Code Repository

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Repository Model Characteristics

Advantages Disadvantages
« Efficient way to share e Single point of failure.
data. e Components must agree

on data model

 Components can be o (inevitably a compromise).

independent. e Data evolution difficult.
- May be more secure. e Communication may be
« All data can be managed inefficient.

consistently (centralized
backup, security, etc)

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Client-Server Model

Functionality organized into distributed services:

o Servers that offer services.
* Print server, file server, code compilation server, etc..

 Clients that call on these services.
« Through locally-installed front-end.

 Network allows clients to access services.
» Distributed systems connected across the internet.

INIVERSITY OF GOTHENBURG

Film Library Example

%% CHALMERS UNIVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Client-Server Model Characteristics

Advantages Disadvantages
« Distributed architecture. e Performance unpredictable
« Failure in one server does not o (depends on system/network)
impact others. e Each service is a point of failure.
» Effective use of networked e Data exchange may be
: inefficient

systems and their CPUs. May o (server -> client -> server)

« Easy to add new servers or servers owned by others.

upgrade existing servers.

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Pipe and Filter Model

Input is taken in by one component, processed, and
the output serves as input to the next component.

e Each processing step transforms data.

« Transformations execute sequentially or in parallel.
 Data processed as items or batches.

e Similar to Unix command line:
e cat file.txt | cut -d, -f 2 | sort -n | uniq -c

{é‘% 4 E,}:%LM,EBS' NIVERSITY OF GOTHENBURG

Customer Invoicing Example

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Pipe and Filter Characteristics

Advantages Disadvantages
e Easy to understand e Communication format
communication. must be agreed on.
o Each transformation
* Supports reuse. needs to accept and
 Add features by output right format.

e Increases overhead.

adding new .

e Can hurt reuse If code
components to doesn’t accept structure.
sequence.

%% CHALMERS)) UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY

Dynamic Structuring

 Model control relationships between components.

e During execution, how do components work
together to respond to requests?
e Centralized Control:
* One component has overall responsibility and stops/starts others.

e Event-Based Control:

 Each component can respond to events generated by others or
the environment.

o S,
i) CHALMERS INIVERSITY OF GOTHENBURG
LD UNIVERSITY OF TECHNOLOGY

Centralized Control: Call-Return

Central controller takes responsibility for managing
the execution of other subsystems.

Call-Return Model

e Applicable to sequential
systems.

e Top-down model: control
starts at the top of
hierarchy and moves
downwards.

%% CHALMERS ERSITY OF GOTHENBURG
WS ord UNIVERSITY OF TECHNOLDGY

Centralized Control: Manager Model

e Applicable to
concurrent systems.

e One process controls
stopping, starting, and
coordination of other
processes.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Decentralized Control: Event-Driven

Control driven by external events where timing Is out
of control of components that process the event.

« Broadcast Model
 An event is broadcast to all components.
* Any that needs to respond to the event does so.

e Interrupt-Driven Model

* Events processed by interrupt handler and passed to
proper component for processing.

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Broadcast Model

Event broadcast to all components, any that can
handle it respond.

« Components register interest in specific events.

 When these occur, control is transferred to registered
components.

o Effective for distributed systems.
 When component fails, others can potentially respond.
« Components don’t know when or if event will be handled.

H.‘-»“ﬁn UNIVERSITY OF GOTHENBURG

,i}ég CHALMERS

Interrupt-Driven Model

Events processed by interrupt handler and passed to
components for processing.

* For each type of interrupt, handler listens for the
event and coordinates response.

« Each interrupt type associated with a memory
location. Handlers watch that address.

 Ensures fast response to event.
e Complex to program, hard to validate.

{%é@ C':‘?‘L“T’EIERS (&%) UNIVERSITY OF GOTHENBURG

Nuclear Plant Interrupt Example
1 1 1 1

Interrupt
Array

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

We Have Learned

 Frameworks
 Composition-based, load-time.

 White Box: Subclass an abstract parent, override
template methods with specific functionality.

 Black Box: Register plug-in objects that provide specific
functionality.

* Provides clear modularity, but requires extensive up-front
design effort.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

We Have Learned

« Components

« Standalone functionality with explicit interface and
dependencies.

* Interfaces often standardized (REST).
 Can be reused in many projects.
* Integrated as part of a broader architectural design.

%% CHALMERS [IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

We Have Learned

e The architecture must consider static structure,
dynamic structure, externally-visible behaviors, and
performance.

« Architectural models help organize a system.

o Layered, repository, client-server, and pipe and filter
models - also many others.

e Control models include centralized control and
event-driven models.

%% CHALMERS {IVERSITY OF GOTHENBURG
dt UNIVERSITY OF TECHNOLODGY

Next Time

* Flexible, more fine-grained modularity
* Feature-oriented programming

* Aspect-oriented programming

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

	Slide Number 1
	How to implement variability?�
	Annotation-Based Representation
	Composition-based Representation
	Today’s Goals
	

Frameworks
	Frameworks
	Frameworks
	White-Box Frameworks
	White-Box Frameworks
	Black-Box Frameworks
	Black-Box Frameworks
	Implementation Example
	White-Box
	Black-Box
	Black-Box
	Loading Plug-Ins
	Frameworks for product lines
	Discussion
	Discussion
	Discussion
	Discussion
	

Components and Services
	Components
	Services
	Simple Example
	Components vs Plug-Ins
	Components vs Plug-Ins
	Sizing Components
	Sizing Components
	Product lines from components
	

Composing Components into a Software Architecture
	Static Structures
	Static Structure Arrangement
	Dynamic Structures
	Airline Reservation System
	Option 1: Client/Server Architecture
	Option 2: “Thin Client” Architecture
	Which Would You Choose?
	Static Structuring
	Basic Architectural Styles
	Layered Model
	Robot Example
	Layered Model Characteristics
	The Repository Model
	IDE Example
	Repository Model Characteristics
	Client-Server Model
	Film Library Example
	Client-Server Model Characteristics
	Pipe and Filter Model
	Customer Invoicing Example
	Pipe and Filter Characteristics
	Dynamic Structuring
	Centralized Control: Call-Return
	Centralized Control: Manager Model
	Decentralized Control: Event-Driven
	Broadcast Model
	Interrupt-Driven Model
	Nuclear Plant Interrupt Example
	We Have Learned
	We Have Learned
	We Have Learned
	Next Time
	Slide Number 65

