
Lecture 7: Modularity

Daniel Strüber
TDA 594/DIT 593 - November 22, 2022

How to implement variability?

2

Ap
pl

ic
at

io
n

En
g.

Feature selection

D
om

ai
n

En
g.

Feature model Reusable
implementation
artifacts

Generator Final program

3

Annotation-Based Representation
• Code in common code base.
• Code related to a feature is marked.

• Preprocessor annotations, if-statements.
• Code belonging to deselected features:

• ignored (load-time, run-time)
• removed (compile-time).

4

Composition-based Representation
• Feature code in dedicated location.

• Class, file, package, service
• Selected units combined to form product.
• Requires clear mapping between features and units

5

Today’s Goals
• Understand and apply techniques for implementing

variability in a modular way
• Frameworks: libraries of extendable base

implementations.
• Components/Services: standalone units with explicit

interfaces.
• Software architecture: building a larger software system

with its components and services.

6

Frameworks

7

Frameworks
• A collection of classes that represent solutions to

related problems.
• Base implementation that can be extended with

plug-ins, supporting new custom use cases.
• Provides extension points (“hot spots”)

• Framework is responsible for main control flow,
asks plug-ins for custom behavior.

8

Frameworks
• Used in web browsers,

graphics editing, media
players, IDEs.

• Product lines: features
developed as plug-ins.
• Select plug-ins based on

feature selection.

9

White-Box Frameworks
• Abstract class with concrete subclasses.

• Defines default behaviors (template methods).
• Extensions implemented as new concrete classes that

override these methods.
• Directly implemented in existing codebase.

• Requires access to source code.
• Free to interact with existing code, access base

implementation.

10

White-Box Frameworks
• Overriding existing behavior allows flexibility.

• … But requires detailed understanding of low-level
implementation.

• Fails to protect existing code from extensions.
• Often used for libraries

• GUI elements, data structures
• Features implemented as subclasses.

• Best for alternative features (choose-one).

Template

function()

Feature A

function()

Feature B

function()

11

Black-Box Frameworks
• Separate code and extensions through interfaces.

• Each feature is a separate plug-in.
• Plug-ins registered at hot spots.

• E.g., Observers, strategies.
• One or more plug-ins can be attached.

Hot Spot

register()

Feature A

callback()

Feature B

callback()

12

Black-Box Frameworks
• Developers only need to understand interfaces.

• Easier to understand framework.
• Internal functions, information protected.
• Can only extend designated hot-spots.

• Limits flexibility, but decouples
framework/extensions.
• Can independently develop/distribute extensions.

13

Implementation Example

14

White-Box
• Abstract class

implements base
behavior.
• Defines abstract

or default
methods that will
be extended.

• Subclasses
override those
methods.

15

Black-Box
• Extensions implement a

defined interface.
• Register with the

framework to provide
needed functionality.

• Can also use interface to
surface information from
framework in app
(InputProvider)

16

Black-Box
• Can register

multiple extensions
in a list.

• Can extend with
multiple types of
extensions at
same point.

17

Loading Plug-Ins
• Often loaded when

application is executed.
• Command-line parameter,

config file, directory.

• Sets up framework with
detected plug-ins.

• Can check whether plug-in implements correct interface,
check dependencies, check constraints between plug-ins.

• May use a built-in extension manager (Chrome)

Frameworks for product lines

18

Feature selection

Feature model

plug-in selection
(and possibly, generation
of launch configuration)

application =
framework with
desired plug-ins

Feature selection
as input

Mapping
features <-> plug-ins

D
om

ai
n

En
g.

Ap
pl

ic
at

io
n

En
g.

Framework + plug-ins

19

Discussion
• Composition-based, often load-time, approach.

• Uniform: Can be implemented similarly across many
languages, technologies.

• Traceable: Direct correspondence from feature to code
(one plug-in = one feature)

• Black-box frameworks can encode alternative and
optional features easily and systematically.

• White-box can encode alternative features, but
harder to blend features.

20

Discussion
• Separation of Concerns:

• Interfaces encapsulate framework from plug-ins.
• Plug-ins developed separately from framework, as long

as interface is followed.
• Information Hiding: Can understand feature by

only looking at plug-in code.
• Modularity: Independent developers can develop

their own extensions.

21

Discussion
• Pre-planning Effort: Must anticipate hot-spots and

design interfaces and templates.
• If needed information not exposed to extensions,

framework must be refactored.
• Interfaces cannot change without changing all plug-ins.

• Changing a framework can be inflexible.

22

Discussion
• Plug-ins can be reused in versions of the same

framework, but not in other frameworks.
• Tied closely to implementation.

• Introduce development and run-time overhead.
• Must write additional code.
• Can lead to over-complex design.
• More code must be executed, slowing the system.
• Limit to few well-defined extension points in code.

23

Components and Services

24

Components
• A component is a standalone unit with specified

interfaces and explicit dependencies.
• Can be deployed independently.
• Can be reused in many systems.
• Can vary from one class to many.

• Developers can choose to implement their own
components or work with existing ones.
• Requires compatible interfaces and data.

25

Services
• A form of component focused on standardization,

interoperability, and distribution.
• Reachable over standard protocols.

• HTTP
• Can often look up services from a registry.

• NPM for JavaScript
• Communication standardized so underlying language

does not matter.
• REST API

26

Simple Example
• Define public interface

(class ColorModule,
interface Color)

• Hide implementation
(private/package-level
visibility)

• Can integrate into code
or as JAR file.

27

Components vs Plug-Ins
• Both result in encapsulated modules.

• Enabling traceability, information hiding.
• Difference in automation potential and reuse.

• Plug-ins tailored to one framework.
• Product can be generated by loading only the needed plug-ins.
• Plug-ins designed for that framework.
• Hard to reuse.

• Components can be reused.
• But require glue code to integrate.

28

Components vs Plug-Ins
• Components can be encoded in many languages.
• Both allow compile-time product derivation.
• Interfaces for both are difficult to evolve once

designed.
• Others may depend on current interface definition.

• Both add overhead from interfacing/communication.

29

Sizing Components
• A component can contain a lot of functionality or

only offer a single, small function.
• A complex component is easier to use in the project it

was developed for, but hard to reuse elsewhere.
• Small components are easy to reuse in many projects,

but add communication overhead and glue code.
• Trade-off between use and reuse.

30

Sizing Components
• Non-trivial to size components.
• In SPL development: domain analysis helps.

• Which functionality will be reused in different products?
• If functions are always used together, package them

together as a component.
• If a function is only used in a subset of products, it can be

packages as a separate component.

Product lines from components

31

Component1

Component2

Component3

Component4

Component5

Component6

Component7

Component8

Component9

Component10

Component11

Component12

Feature selection

Feature model
Component repository

Component selection
Final program

Feature selection
as input

Mapping
features <-> components

Developer writes
glue code to connect components

Component2
Component6

Component8

Component9

Component set

32

Composing Components into a
Software Architecture

Static Structures
• Static structures define system’s internal

components and their arrangement.
• Software: services, classes, packages.
• Data: Database entries/tables, data files.
• Hardware: Servers, CPUs, disks, networking.

• Static arrangement defines associations,
relationships, or connectivity between components.

33

Static Structure Arrangement
• Software:

• Relationships define hierarchy (inheritance) or
dependency (use of variables or methods).

• Data:
• Relationships define how data items are linked.

• Hardware:
• Relationships define physical interconnections between

hardware components.

34

Dynamic Structures
• Dynamic structures define system’s runtime

elements and their interactions.
• Flow of information

• A sends messages to B
• Flow of control

• A.action() invokes B.action()
• Effect an action has on data.

• Entry E is created, updated, and destroyed.
35

Airline Reservation System
• Allows seat booking, updating,

cancellation, upgrading, transferring.
• Externally visible behavior:

• How it responds to submitted
transactions.

• Quality properties of interest:
• Average response time, max

throughput, availability

36

Option 1: Client/Server Architecture
• Clients communicate with a

central server (with a database)
over a network.

• Static Structure: Client
programs, broken into layered
elements, a server, and
connections.

• Dynamic Structure:
Request/response model.

37

Option 2: “Thin Client” Architecture
• Clients communicate with a central

server (with a database) over a
network.

• Static Structure: Client only perform
presentation. Server performs logic
computation.

• Dynamic Structure:
Request/response model. Requests
submitted to application server, then
database server.

38

Which Would You Choose?
• Same external behavior, may differ in performance.

• First is simpler.
• Second might be more scalable and more secure.

• Must select a candidate architecture that satisfies
all requirements and meets quality goals.

• Extent that a architecture exhibits behaviors and
performance must be studied further.

39

Static Structuring
• Decompose the system into components.
• Visualized as structured blocks.

Vision
System

Object ID
System

Arm
Controller

Gripper
Controller

Packaging
Selection
System
Packing
System

Conveyor
Controller

40

Object
Database

Basic Architectural Styles
• Common styles: layered, shared repository,

client/server, pipe & filter
• The style used affects performance, robustness,

maintainability, etc.
• Complex systems might not follow a single model -

mix and match for subsystems.

41

Layered Model
● Components organized into layers

○ Each layer only dependent on
the previous layer.

○ May be multiple components in
a single layer.

● Allows components to change
independently.

● Supports incremental
development.

User Interface

Interface Management,
Authentication, Authorization

Core Business Logic
(Functionality)

System Support (OS interface,
Databases, etc.)

42

Robot Example

43

Layered Model Characteristics
Disadvantages
● Clean separation between

layers is difficult.
● Performance can be a

problem because of multiple
layers of processing between
call and return.

Advantages
• Allows replacement of entire

layers as long as interface is
maintained.

• Changes only impact the
adjacent layer.

• Redundant features
(authentication) in each layer
can enhance security and
dependability.

44

The Repository Model
Components often exchange and work with the same
data. This can be done in two ways:
• Each component maintains its own data and

passes it to other components.
• Shared data held in central repository and

accessed by all components.
Repository model is structured around the latter.

45

IDE Example

Project Information and
Code Repository

Model
Editor

Code
Generator

Java Editor

Python
Editor

Report
Generator

Design
Analyzer

Suggested
Refactorings

46

Repository Model Characteristics
Disadvantages
● Single point of failure.
● Components must agree

on data model
○ (inevitably a compromise).

● Data evolution difficult.
● Communication may be

inefficient.

Advantages
• Efficient way to share

data.
• Components can be

independent.
• May be more secure.

• All data can be managed
consistently (centralized
backup, security, etc)

47

Client-Server Model
Functionality organized into distributed services:
• Servers that offer services.

• Print server, file server, code compilation server, etc..
• Clients that call on these services.

• Through locally-installed front-end.
• Network allows clients to access services.

• Distributed systems connected across the internet.

48

Film Library Example
...

Catalog
Server

Video
Server

Search
Server

HTML
Server

49

iOS
Android

Browser

Client-Server Model Characteristics
Disadvantages
● Performance unpredictable

○ (depends on system/network)
● Each service is a point of failure.
● Data exchange may be

inefficient
○ (server -> client -> server)

● Management problems if
servers owned by others.

Advantages
• Distributed architecture.

• Failure in one server does not
impact others.

• Effective use of networked
systems and their CPUs. May
allow cheaper hardware.

• Easy to add new servers or
upgrade existing servers.

50

Pipe and Filter Model
Input is taken in by one component, processed, and
the output serves as input to the next component.
• Each processing step transforms data.
• Transformations execute sequentially or in parallel.
• Data processed as items or batches.
• Similar to Unix command line:

• cat file.txt | cut -d, -f 2 | sort -n | uniq -c

51

Customer Invoicing Example

Invoice
Processing

Payment
Identification

Receipt
Generation

Payment
Management

Payment
Reminders

Invoices Payments

Receipts

Reminders

52

Pipe and Filter Characteristics
Disadvantages
● Communication format

must be agreed on.
○ Each transformation

needs to accept and
output right format.

● Increases overhead.
● Can hurt reuse if code

doesn’t accept structure.

Advantages
• Easy to understand

communication.
• Supports reuse.
• Add features by

adding new
components to
sequence.

53

Dynamic Structuring
• Model control relationships between components.
• During execution, how do components work

together to respond to requests?
• Centralized Control:

• One component has overall responsibility and stops/starts others.
• Event-Based Control:

• Each component can respond to events generated by others or
the environment.

54

Centralized Control: Call-Return
Central controller takes responsibility for managing
the execution of other subsystems.

Call-Return Model
● Applicable to sequential

systems.
● Top-down model: control

starts at the top of
hierarchy and moves
downwards.

Controller

Component 1 Component 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

55

Centralized Control: Manager Model

System
Controller
Process

Sensor
Processes

Actuator
Processes

● Applicable to
concurrent systems.

● One process controls
stopping, starting, and
coordination of other
processes.

Sensor
Processes

Sensor
Processes

Actuator
Processes
Actuator

Processes

Control
Processes

Control
Processes
Computation

Processes

User Interface
Process

Fault HandlerFault Handler
Fault Handler

Processes

56

Decentralized Control: Event-Driven
Control driven by external events where timing is out
of control of components that process the event.
• Broadcast Model

• An event is broadcast to all components.
• Any that needs to respond to the event does so.

• Interrupt-Driven Model
• Events processed by interrupt handler and passed to

proper component for processing.

57

Broadcast Model
Event broadcast to all components, any that can
handle it respond.
• Components register interest in specific events.

• When these occur, control is transferred to registered
components.

• Effective for distributed systems.
• When component fails, others can potentially respond.
• Components don’t know when or if event will be handled.

58

Interrupt-Driven Model
Events processed by interrupt handler and passed to
components for processing.
• For each type of interrupt, handler listens for the

event and coordinates response.
• Each interrupt type associated with a memory

location. Handlers watch that address.
• Ensures fast response to event.

• Complex to program, hard to validate.
59

Nuclear Plant Interrupt Example

Interrupt
Array

Temperature
Event Handler

Radiation
Event Handler

Fire Alarm
Event Handler

Fuel Event
Handler

Process 1 Process 2 Process 3 Process 4

60

We Have Learned
• Frameworks

• Composition-based, load-time.
• White Box: Subclass an abstract parent, override

template methods with specific functionality.
• Black Box: Register plug-in objects that provide specific

functionality.
• Provides clear modularity, but requires extensive up-front

design effort.

61

62

We Have Learned
• Components

• Standalone functionality with explicit interface and
dependencies.

• Interfaces often standardized (REST).
• Can be reused in many projects.
• Integrated as part of a broader architectural design.

We Have Learned
• The architecture must consider static structure,

dynamic structure, externally-visible behaviors, and
performance.

• Architectural models help organize a system.
• Layered, repository, client-server, and pipe and filter

models - also many others.
• Control models include centralized control and

event-driven models.

63

Next Time
• Flexible, more fine-grained modularity

• Feature-oriented programming
• Aspect-oriented programming

64

	Slide Number 1
	How to implement variability?�
	Annotation-Based Representation
	Composition-based Representation
	Today’s Goals
	Frameworks
	Frameworks
	Frameworks
	White-Box Frameworks
	White-Box Frameworks
	Black-Box Frameworks
	Black-Box Frameworks
	Implementation Example
	White-Box
	Black-Box
	Black-Box
	Loading Plug-Ins
	Frameworks for product lines
	Discussion
	Discussion
	Discussion
	Discussion
	Components and Services
	Components
	Services
	Simple Example
	Components vs Plug-Ins
	Components vs Plug-Ins
	Sizing Components
	Sizing Components
	Product lines from components
	Composing Components into a Software Architecture
	Static Structures
	Static Structure Arrangement
	Dynamic Structures
	Airline Reservation System
	Option 1: Client/Server Architecture
	Option 2: “Thin Client” Architecture
	Which Would You Choose?
	Static Structuring
	Basic Architectural Styles
	Layered Model
	Robot Example
	Layered Model Characteristics
	The Repository Model
	IDE Example
	Repository Model Characteristics
	Client-Server Model
	Film Library Example
	Client-Server Model Characteristics
	Pipe and Filter Model
	Customer Invoicing Example
	Pipe and Filter Characteristics
	Dynamic Structuring
	Centralized Control: Call-Return
	Centralized Control: Manager Model
	Decentralized Control: Event-Driven
	Broadcast Model
	Interrupt-Driven Model
	Nuclear Plant Interrupt Example
	We Have Learned
	We Have Learned
	We Have Learned
	Next Time
	Slide Number 65

