
TDA594 / DIT593 Software engineering principles for com‐
plex systems
Jump to today  Edit

Course-PM
TDA594 / DIT593 TDA594 / DIT593 Software engineering principles
for complex systems lp2 HT22 (7.5 hp)
Click here for the detailed schedule, slides, and resources (Last
Updated: October 17)
Course is offered by the department of Computer Science and Engineering

Note: If there are issues with Canvas, course materials are backed-up (with some delay) at
https://greg4cr.github.io/courses/fall22tda594/index.html

Contact details
Examiner/Course Responsible
Greg Gay (ggay@chalmers.se)

Co-Teacher
Daniel Strüber (danstru@chalmers.se)

Teaching Assistants
Kevin Ayad ()
Ricardo Caldas (ricardo.caldas@chalmers.se)
Malik Hannan (gusmalikah@student.gu.se)
Wardah Mahmood (wardah@chalmers.se)
Mazen Mohamad (mazenm@chalmers.se)

Student Representatives

To Be Announced

Student Office
Contact student_office.cse@chalmers.se for questions related to the course administration (e.g., registration,
signup, grades in LADOK).

Communication and Course Feedback

We understand that it can be difficult to get answers to your questions. We recommend the following methods
for contacting the teaching staff:

Any questions related to the lectures or assignments can be asked in the Canvas discussion forum. This
forum will be monitored by the teachers and supervisors. You may also e-mail your supervisors directly

https://chalmers.instructure.com/courses/20944/pages/detailed-schedule
https://greg4cr.github.io/courses/fall22tda594/index.html
mailto:ggay@chalmers.se
mailto:danstru@chalmers.se
mailto:ricardo.caldas@chalmers.se
mailto:gusmalikah@student.gu.se
mailto:wardah@chalmers.se
mailto:mazenm@chalmers.se
mailto:student_office.cse@chalmers.se

about assignments and the teachers about lecture content. However, we recommend posting questions to
the forum to help other students who may be having similar issues.
Private or otherwise sensitive questions may be sent to the supervisors or teachers directly. You are
welcome to e-mail Greg Gay (course responsible) directly if the topic is of a highly sensitive nature.
Course feedback should be presented to the student representatives, who will pass it on to the teachers and
supervisors. Please offer feedback to the student representatives first. However, if you have any issues that
are time-sensitive or private, you may contact Greg Gay directly.

We welcome course feedback, and are happy to adjust the course to correct issues affecting a majority of the
students.

Course purpose

Real-world software systems are becoming increasingly complex and pervasive. Consider application domains
such as enterprise computing (e.g., data-processing/AI systems), business information systems (e.g., web
portals), cyber-physical systems (e.g., automotive software, home automation), systems software (e.g.,
operating system kernels), or mobile software and software ecosystems (e.g., Android apps). All of these
domains boast software systems of unprecedented complexity, many of which are long-living and exist in many
different variants. Dedicated planning, modeling, design, realization, and advanced analysis are needed to
deliver these systems in a safe, robust, and secure manner.

The goal of this course is to present advanced techniques aimed at creating complex systems with many
interacting features and variable configurations. We will examine the design, implementation, and verification of
complex systems, focusing on managing complexity at different stages of the system development life cycle.
We will also examine how the development process must be organized to deliver such systems. This class is
particularly focused on how to create systems that can change and evolve over time - systems that can be
customized for new customers or new market environments.

Much of this course will focus on software product lines (SPLs) - highly configurable families of systems built
around a set of common, modularized features. SPLs are developed from a common set of core assets in a

planned way, integrating assets into a shared architecture. By developing large software systems in this way,
companies can produce a set of products more economically, since the development effort put into the shared
assets does not need to be duplicated. SPLs can help companies to better address product customization tasks
to meet specific needs of individual customers. This allows sustaining a high rate of product innovation, while
keeping guaranteed levels of overall system performance and quality.

SPLs are seen in many domains, and are highly challenging to develop as they have technical, process,
organization, and business-related aspects. We focus on them, as they are designed to be highly evolvable -
designed both to reuse components and for individual components to be reused. Almost all modern systems are
designed for one of these two goals - a web app with a REST API is designed to be reused, while a complex
web app constructed using third-party libraries is designed to reuse assets. SPLs are designed to deliver
reusable components and to reuse those components to deliver a highly customizable experience that can
evolve over time to meet new customer needs. Design, implementation, and verification techniques for SPLs
are applicable to all evolvable, reuse-driven systems. We will also examine other forms of complex systems and
provide insight into how they are delivered.

Schedule
TimeEdit

Detailed Schedule and Resources

Course literature
There is no mandatory course literature.

Many materials have been used in the creation of slides and assignments. The following optional textbooks
were used to prepare lecture slides:

Apel, S., Batory, D., Kästner, C., & Saake, G.. Feature-oriented software product lines. (available online
via SpringerLink, use a Chalmers IP address to get it for free).
Van der Linden, F. J., Schmid, K., & Rommes, E.. Software product lines in action: the best industrial
practice in product line engineering. (available online via SpringerLink, use a Chalmers IP address to get
it for free).
Freeman, E., Robson, E., Bates, B., & Sierra, K.. Head First Design Patterns. (available online via
https://www.vlereader.com/Reader?ean=9780596800741 , use a Chalmers IP address to get it for free)
Pezze, M., Young, M. Software Testing and Analysis: Process, Principles, and Techniques. (available
for free from https://ix.cs.uoregon.edu/~michal/book/free.php)

These books were referenced during the creation of some of the slides, and provide theoretical material
relevant to many of the course concepts. In cases where the books are older, we make use of theoretical
content that is still relevant to modern systems, while discarding outdated theory and updating technological
concepts. Students are recommended to obtain a free copy for use when studying the material in the course.

Additional optional literature will be provided for individual topics.

Course Design
The teaching consists of lectures, group and individual assignments, as well as supervision in connection to the
group assignments. The course emphasizes problem-based learning. Basic concepts are presented in the
lecture, applied in in-class exercises, and then extended in the context of integrated, graded assignments. A

https://cloud.timeedit.net/chalmers/web/public/s.html?sid=3&object=course_TDA594&type=course&p=0.m%2C2.w
https://www.vlereader.com/Reader?ean=9780596800741
https://ix.cs.uoregon.edu/~michal/book/free.php

series of four group assignments will be developed in teams of six students. There will also be an individual
assignment due at the end of the course designed to assess critical thinking about the course content.

Language of instruction: English

Teaching and Learning Activities

Lectures: There will generally be two lectures per week (Tuesday and Thursday from 13:15 - 15:00) (see
Schedule). Attendance in lectures is highly recommended, but not mandatory. As the group project and
individual assignment will correspond to material taught in the lectures, it is recommended that you attend. Note
that any material covered in lectures can be referred to in the project and individual assignment (i.e., not just
material written in the slides). Lectures will only be conducted in-person, unless there is a change in the
Covid situation.

Supervision: Formal supervision sessions will be held weekly with your assigned supervisor. These sessions
give students the chance to apply class concepts, as well as to see demonstrations. Supervisors will be present
to answer questions, as will (at times) the teachers. Attendance in supervision sessions is mandatory. Your
assigned supervisor will work with you to schedule a time slot.

Forum: Any questions related to the lecture, exercises, or assignment can be asked in the Canvas discussion
forum. If you have any questions or doubts regarding the course material, this is a good place to express them.

Changes made since the last occasion
While the core focus of the course has been preserved, some aspects of the course have been redesigned:

Lectures topics have been revised. New lectures have been added, while others have been removed. While
many lecture topics are still present, the slides have been reorganized and changed from last year.
Assignment content (group and individual) has been revised. One group assignment has been removed to
allow more time for others. Content in each assignment has been clarified and revised.

Learning objectives and syllabus
Learning objectives:

Identify and reason about recurrent problems of engineering complex systems and being able to apply
appropriate solutions. The learning is driven by a concrete example of a software engineering or re-engineering
project that will be developed in group work.

1. Knowledge and understanding

Explain the challenges of engineering complex software systems
Explain industrial practice and examples of complex software systems engineering
Explain processes and concepts for engineering complex and variant-rich software systems
Explain business-, architecture-, process-, and organization-related aspects of engineering complex
software systems

2. Skills and abilities

Model a software system from different perspectives (e.g., using feature models, UML diagrams,
architecture description languages)
Engineer a variant-rich software system (e.g., variant-rich software system, software product line, software
ecosystem)

Analyze and re-engineer a complex software system
Use and reason about modularization techniques
Use modern component or service frameworks

3. Judgement and approach

Analyze existing software systems and discuss potentials for improvement or re-engineering
Reason about characteristics software modularity concepts
Recognize in which situations which principles for handling of complex software systems are appropriate
Read and analyze scientific literature

Syllabus: Chalmers (TDA 594), University of Gothenburg (DIT 593)

Examination form
Sub-Courses
1. Project (Group Assignments) (projekt), 6.0 higher education credits

Grading scale: 3-5 and Fail (U)
2. Written (Individual) Assignments (Inlämningsuppgifter), 1.5 higher education credits

Grading scale: 3-5 and Fail (U)

Assessment

The course is examined by an individual written assignment and a project (a series of semi-linked assignments)
carried out in groups of six students.

The project is examined on the basis of solutions to compulsory problems handed in during the course and on
the basis of individual contribution to the group work. Each student will be responsible for contributing to each
assignment. The project will consist of approximately four assignments. Each assignment is equally weighted.
Specific requirements for the assignments will be provided on Canvas. The assignments will correspond to the
order of topics in the lectures, covering case studies, domain analysis, modelling, implementation, and testing of
complex SPLs.

To give a common SPL platform, we will focus several of the group assignments on Robocode. Robocode is a
programming game, where the goal is to develop a robot battle tank to battle against other tanks in Java or
.NET. The robot battles are running in real-time and on-screen. A focus in the project will be on re-engineering
variants of Robocode bots, which are highly interesting systems, covering different architectural styles and
levels of intelligence (for instance, incorporating AI to learn the best strategy to succeed in the Robocode
simulator).

For information about Robocode, see its home page (https://robocode.sourceforge.io/) and the RoboWiki
(https://robowiki.net/wiki/Main_Page).

Students are required to complete written self- and peer-assessment forms during the course which will be part
of the assessment of the student's individual contribution to the project.

The written assignment portion of the course will consist of an individual assignment at the end of the course,
designed to assess the student’s understanding of the core topics of the course. The timing and form of this
assignment will be further elaborated on soon.

Grading Scale

https://student.portal.chalmers.se/en/chalmersstudies/courseinformation/Pages/SearchCourse.aspx?course_id=32807&parsergrp=3
https://kursplaner.gu.se/pdf/kurs/en/DIT593
https://robocode.sourceforge.io/
https://robowiki.net/wiki/Main_Page

The two sub-courses (written assignments and project) are graded individually, both of which comprising the
grading scale: 3, 4, 5, and Fail (U).

The final grade of the course is calculated using the average grade for the project and the grade for the written
assignment: GROUP AVERAGE *0.7 + IND *0.3 = COURSE GRADE

You must receive a passing grade in both the group assignments and individual assignment in order to
pass the whole course.

All group and individual assignments must be submitted. The final grade for the project part of the course
will be an average of the grade for each of the group assignments. If the average grade across the group
assignments is passing, the students will receive a passing grade for the project part of the course. Failing one
of the group assignments does not necessarily mean there will be a failing grade for the project part of the
course.

Note that although the project grade is given for a group assignment, this grade is assigned individually to
students, and may be adjusted depending on the results of peer evaluation forms. Thus, not all students in the
same group are guaranteed to get the same grade.

Late Assignments

Up to One day late: - 20% reduction of final mark or a reduction of one grade level (e.g., 5 -> 4)

Up to Two days late: - 40% reduction of final mark or a reduction of as additional grade level (e.g., 5 -> 3)

Two or more days late: 0% on assignment

Failing Assignments

If the final average grade of all group assignments is a failing grade, all group assignments must be redone and
resubmitted. The redone group assignments are handed in again at a date after course completion. Redone
group assignments can be done in groups or individually.

Assignment Re-submission

If a group or individual assignment is failed, students have up to two chances to resubmit an improved version.
Re-submissions of group or individual assignments will only be accepted until one month after the end of the
course. The re-submission must fulfill the original requirements and (for fairness reasons) provide a detailed
changelog with an explanation of how/why the first attempt was not sufficient or did not work, and how/why the
re-submission works.

If a student, who has failed the same examined component twice, wishes to change examiner before the next
examination, a written application shall be sent to the department responsible for the course and shall be
granted unless there are special reasons to the contrary (Chapter 6, Section 22 of Higher Education
Ordinance).

In cases where a course has been discontinued or has undergone major changes, the student shall normally be
guaranteed at least three examination occasions (including the ordinary examination) during a period of at least
one year from the last time the course was given.

Additional Information

Course summary:
Date Details Due

Tue, 1 Nov 2022  Lecture 1 0:00

Thu, 3 Nov 2022  Lecture 2 0:00

Tue, 8 Nov 2022  Lecture 3 0:00

Thu, 10 Nov 2022  Lecture 4 0:00

Tue, 15 Nov 2022  Lecture 5 0:00

Thu, 17 Nov 2022  Lecture 6 0:00

This section contains some general rules that will be enforced during this course. Please review these
guidelines carefully. Violations of conduct guidelines will be taken seriously and will lead to disciplinary action.

Integrity and Ethics

The homework and programs you submit for this class must be entirely your own. If this policy is not absolutely
clear, then please contact me. Any other collaboration of any type on any assignment is not permitted. It is also
your responsibility to protect your work from unauthorized access. Any violation of this policy will result - at
minimum - in a failing grade on the assignment. Further infractions will result in a failing grade in the course and
further disciplinary action. More information on plagiarism will be provided on the Canvas page. We recommend
referring to this material for more information.

Classroom Climate

All students are expected to behave as scholars at a leading institute of technology. This includes arriving on
time, not talking during lecture (unless addressing the instructor), and not causing disruption in the classroom
chat (try to restrict chat to asking and answering questions). Disruptive students will be warned and potentially
dismissed from lectures.

Special Needs

It is university policy to provide, on a flexible and individual basis, reasonable accommodations to students that
have disabilities that may affect their ability to participate in course activities or to meet course requirements.
Students with disabilities are encouraged to contact their instructor early in the semester to discuss their
individual needs for accommodations.

Diversity

Someday you will graduate, and in the real world, you will have to work with a wide variety of people. Now is the
time to abandon preconceived prejudices about others. Students in this class are expected to respectfully work
with all other students, regardless of gender, race, sexuality, religion, or any other protected criteria. There is a
zero-tolerance policy for any student that discriminates against other students for any reason.

https://chalmers.instructure.com/calendar?event_id=143382&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143389&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143383&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143390&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143384&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143391&include_contexts=course_20944

Date Details Due

Tue, 22 Nov 2022  Lecture 7 0:00

Thu, 24 Nov 2022  Lecture 8 0:00

Tue, 29 Nov 2022  Lecture 9 0:00

Thu, 1 Dec 2022  Lecture 10 0:00

Tue, 6 Dec 2022  Lecture 11 0:00

Thu, 8 Dec 2022  Lecture 12 0:00

Tue, 13 Dec 2022  Lecture 13 0:00

Thu, 15 Dec 2022  Lecture 14 0:00

https://chalmers.instructure.com/calendar?event_id=143385&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143392&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143386&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143393&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143387&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143395&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143388&include_contexts=course_20944
https://chalmers.instructure.com/calendar?event_id=143396&include_contexts=course_20944

