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This Lecture
• Android OS, SDK, and Runtime
• Basics of native Android programming

• Basic App Components
• Activities and Intents

• Manifest and Resources
• Permissions
• Layouts and Responsive UI Design
• Making REST requests
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Related Activities
• Activity 20: Recommended
• Practice Android with Codelabs for Android 

Developer Fundamentals (V2):
• https://developer.android.com/courses/fundamentals-train

ing/toc-v2 
• 1.2 Part A: Your first interactive UI
• 1.3: Text and scrolling views 
• 2.1: Activities and intents

https://developer.android.com/courses/fundamentals-training/toc-v2
https://developer.android.com/courses/fundamentals-training/toc-v2
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What is a Mobile Application?
• "A mobile app or mobile application is a computer 

program designed to run on a mobile device such 
as a phone/tablet or watch." - Wikipedia

• Isn’t a mobile device just a smaller computer?
• Mobility imposes restrictions on program design.

• Computational Power (small devices, limited power)
• Battery (must last for as long as possible)
• Input Methods (may be touch only)
• Screen Size (watch, small screen)
• Unreliable Network Connection (can’t assume constant 

connection)
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Differences from “Regular” Apps
• Not strictly defined, but…
• Mobile apps must adapt to multiple devices.

• Different layouts for different screen sizes. 
• Can enable/disable features based on hardware.
• Requires more thought about design and UX.
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Differences from “Regular” Apps
• Apps are designed to form an ecosystem.

• Each app is a collection of components:
• Activities provide a user interface.

• The main activity starts when you tap the icon, but other apps can 
directly link to other “activities”.

• Broadcast receivers and Services perform background tasks.
• Apps often specialized for smaller tasks.

• Purpose-built apps link to other apps for common features.



7

Android
• Most popular mobile operating system

• 2.5 billion active devices
• Phones, tablets, watches, car displays, TVs, IoT devices, 

speakers, home automation, ...
• Apps written in Android SDK.

• Supports Java (this course), Kotlin, C++.
• Code, data, resources compiled into APK.

• Android Package
• Compiled into device-specific code and run in Android OS 

(Linux-based).



8

Android Fundamentals
• Each app operates in a sandbox.

• Each app is a “user”. 
• Only that app can access its files.
• Each app runs in its own virtual machine and process. 

• Android implements “principle of least privilege”.
• Each app can access only components it requires.
• Users must grant access to location, camera, bluetooth, 

files, etc.
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Versioning
• Apps target a 

minimal “API 
level”. 
• Defines 

available 
features.

• Apps must update 
compatibility or be 
disabled.



10

Android Fundamentals
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Android Apps - Structure
• Android Code

• All the logic
• Resources
• Manifest
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App Components
• Core building blocks of an app.
• Entry points for an app.
• Activities are “screens” with a UI.
• Services run a task in the background.
• Broadcast receivers deliver events to apps 

outside of regular user flow.
• Content providers manage a pool of information.
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Activities
• A single screen with a user interface.

• Most apps have multiple independent activities.
• E-mail: Show messages, compose, read.

• If allowed, other apps can start any activity.
• Camera app opens “Compose” activity to share photo.

• Activities control and link processes.
• Ensure the current process is not killed.
• Link to calling activities and maintain their process.
• Model state in case process is killed.
• Model flow between apps.
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Services
• Entry point for running a background process.

• Playing music, sending files.
• Does not provide a direct UI.
• Can be started by an activity.

• Can maintain a notification to allow user interaction.
• Services without notifications can be killed if resources 

are needed by OS.
• Bound services offer an API to the calling app. 

• Maintained as long as needed, then killed.
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Broadcast Receivers
• Allows OS to deliver events when the app is not 

running.
• Listen to system-wide broadcast announcements.

• Respond to events like a photo being taken.
• Often notify users that an event has occurred.
• Often minimal, used as a gateway to launch 

activities or services.



16

Content Providers
• Manages a shared set of app data.
• Other, allowed, apps can query or modify the data.

• Android has a Content Provider for contact data.
• An entry point into an app for publishing data items.

• Identified by a URI.
• Owning app wakes up when a URI is accessed.
• URIs provide a secure way to pass content.

• Content is locked and accessed through temporary permission.
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Intents
• Asynchronous messages that bind components at 

runtime.
• Messengers that request actions from other components.
• Start an activity, start a service, deliver a broadcast.
• Can convey a result back to the caller.

• Explicit intents activate a specific component.
• Implicit intents activate types of components.
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Explicit Intents
• Name a specific app (by package or component).
• Often used by one component to start another 

within the same app.
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Implicit Intents
• Describe a type of 

action you want to 
perform.

• Allow the system to 
find components that 
can perform that 
action (selected by 
the user).
• Done using 

IntentFilters
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Implicit Intents

This is a SEND action

It sends a text message

Android will search for all Activities that can 
handle a SEND action on plain text.



21

The Manifest
• Each android app needs an 

AndroidManifest.xml file
• Essential information

• App name
• Components
• SDK version
• Permissions
• ...
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Declaring Components

Resource for an icon.
Class name of Activity

Label used to 
identify Activity

Declares an Activity
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Declaring Component Capabilities

Intent Filters declare how app responds to Intents

This Activity is registered as an option for 
ACTION_SEND intents.
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Declaring App Requirements

• App requires at least Android 2.1 and a camera.
• Setting “required” attribute to false indicates that 

the app uses the camera, but can function without.
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App Resources

• Bitmaps/Pictures
• UI definitions in XML
• Launcher icons
• Text strings (incl. translations)
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App Resources
• Each resource is assigned a unique ID.

• Used to reference the resource from code or layout XML.
• File res/drawable/logo.png -> ID R.drawable.logo

• Can provide alternate resources for configurations.
• UI strings can be used to swap one language for another
• Qualifier appended to directory (res/values-fr/)
• Many default qualifiers supported for different screen 

sizes, device types, orientations (layout vs portrait).
• Allows automated responsiveness.
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Permissions
• By default, apps are not allowed to use hardware, 

access data, access network.
• Permissions must be explicitly asked for in manifest

• Users must grant permission for dangerous 
requests (like the ones above).
• Formerly, user had to agree to all requests to install app 

(< API 6.0 (23)).
• Now, permissions granted individually.



28

Let’s Take a Break
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Demonstration - “My First App”
Want to work along? This demonstration follows:
https://developer.android.com/training/basics/firstapp

You will need to install Android Studio, at least one 
emulator, and download the sample project.

This demonstration follows sections:
● Create an Android project
● Run your app

https://developer.android.com/training/basics/firstapp
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Designing Activities
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The Concept of Activities
• Rather than interacting with apps as atomic units, 

Activities interact directly with Activities.
• Any Activity can serve as an entry point to app interaction

• An Activity has a UI, and is usually a single screen.
• An app may have a Settings Activity, a Select Photo 

Activity, ...
• One Activity is the “main activity”.

• Launches when you click the icon.
• Activities must have minimal dependencies on 

other Activities.
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Activity Lifecycle

Activity dismissed, 
configuration change (e.g., 

rotation)

Activity no longer visible 
(e.g., new activity started)

Other Activity in 
foreground, incoming 

phone call, ...
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App Architecture
Activity code manages 
state, captures user input

Creates and presents the 
on-screen layout.

Models process, load, and 
store app data locally. Data can also be loaded, 

stored, and processed 
from remote sources.
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Navigation
• All apps have a fixed

start location. 
• A stack of Activities

is maintained. When
you press back, you
pop from the stack.

• Also provide “up navigation”.
• (exit a chain to a set location)
• Define a parent activity in the manifest.
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Activity Best Practices
• Activities should coordinate with Data Models to 

retrieve a minimal amount of relevant data.
• Create independent, well-defined code modules.
• Make each module testable in isolation.
• Do not write code if an existing Activity does it.
• Use Models to persist fresh, relevant data.
• Assign one data source as the source of truth.
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Designing User Interfaces
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UI Design - Views and Layouts
• A layout (ViewGroup) defines 

the structure of the UI.
• Containers that group one 

or more widgets (View).
• A button, a text box.

• Many pre-defined types of 
layouts (LinearLayout, 
Constraint Layout).

• UI elements can be declared 
in XML or in code.
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UI Design - XML

Layout has two widgets, 
which have no constraints on 
each other’s size or location

Text box containing 
a set string

Button with a set string.
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UI Design - Attributes
• All View objects have a unique identifier.

• Integer assigned at compile time, mapped to a 
user-specified variable: android:id=”@+id/my_button”
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UI Design - Attributes
• LayoutParameters

• Inherited by Views contained
in that layout.

• Define how Views appear.
• All ViewGroups have a width and height. 

• Each view must define width and height relative to this.
• wrap_content sizes view to its content.
• match_parent makes view as big as its parent 

ViewGroup allows.
• Specify in dp (density-independent pixel units)
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UI Design - Layouts
• Views are rectangles with left and top coordinates.

• Can get location with getLeft() and getTop()
• Defined relative to the parent.

• Size is defined in width and height.
• Measured width/height are how big the view wants to be.
• Drawing width/height are the actual size of the view on 

screen, after layout constraints.
• These can differ.
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UI Design - Common Layouts

Built from data using an Adapter
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UI Design - Responsive Design
• Android defines two characteristics for each screen:

• Screen Size (physical size)
• Small, Normal, Large, XLarge

• Screen Density (density of pixels on screen)
• MDPI (~160dpi), HDPI (~240dpi), XHDPI (~320dpi), XXHDPI 

(~480dpi), XXXHDPI (~640dpi)
• Apps are compatible with all screen sizes and 

densities automatically, but this may not create a 
good UX.
• Create specialized layouts, optimize images for density.
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Creating a Flexible Layout
• ConstraintLayout allows position/size 

specification based on spatial relationships 
between views.
• All views move together as screen size changes.
• Easiest to create in Android Studio Layout Editor.

• Avoid hard-coded layout sizes.
• Use wrap_content, match_parent.
• Automatically adjusts based on size and orientation of 

screen.
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Create Stretchable Images
• Bitmaps stretch to the screen 

size and density.
• This can cause blurring and 

scaling artifacts.
• Nine-patch bitmaps add a 1px 

border that indicates which 
pixels can be stretched.
• Intersection between left/top 

lines indicates the area that 
can be stretched.
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Demonstration - UI Design
Want to work along? This demonstration follows:
https://developer.android.com/training/basics/firstapp

You will need to install Android Studio, at least one 
emulator, and download the sample project.

This demonstration follows sections:
● Build a simple user interface
● Start another activity

https://developer.android.com/training/basics/firstapp
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HTTP Requests - Volley Library
• Create a RequestQueue 

and pass Request 
objects.

• Thread safe
• Requires INTERNET 

permission in manifest.

https://developer.android.com/training/volley/simple#java
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What’s Next?
• Wednesday: Android Supervision
• Thursday: More Android!

• Testing
• Profiling
• Processes and Threads
• Services
• Broadcast Receivers
• Content Providers




