
DIT341 - Lecture 9: 
Mobile Development with Android

Gregory Gay
(Some slides by Grischa Liebel)



2018-08-27 Chalmers University of Technology 2

This Lecture
• Android OS, SDK, and Runtime
• Basics of native Android programming

• Basic App Components
• Activities and Intents

• Manifest and Resources
• Permissions
• Layouts and Responsive UI Design
• Making REST requests



3

Related Activities
• Activity 20: Recommended
• Practice Android with Codelabs for Android 

Developer Fundamentals (V2):
• https://developer.android.com/courses/fundamentals-train

ing/toc-v2 
• 1.2 Part A: Your first interactive UI
• 1.3: Text and scrolling views 
• 2.1: Activities and intents

https://developer.android.com/courses/fundamentals-training/toc-v2
https://developer.android.com/courses/fundamentals-training/toc-v2


4

What is a Mobile Application?
• "A mobile app or mobile application is a computer 

program designed to run on a mobile device such 
as a phone/tablet or watch." - Wikipedia

• Isn’t a mobile device just a smaller computer?
• Mobility imposes restrictions on program design.

• Computational Power (small devices, limited power)
• Battery (must last for as long as possible)
• Input Methods (may be touch only)
• Screen Size (watch, small screen)
• Unreliable Network Connection (can’t assume constant 

connection)



5

Differences from “Regular” Apps
• Not strictly defined, but…
• Mobile apps must adapt to multiple devices.

• Different layouts for different screen sizes. 
• Can enable/disable features based on hardware.
• Requires more thought about design and UX.



6

Differences from “Regular” Apps
• Apps are designed to form an ecosystem.

• Each app is a collection of components:
• Activities provide a user interface.

• The main activity starts when you tap the icon, but other apps can 
directly link to other “activities”.

• Broadcast receivers and Services perform background tasks.
• Apps often specialized for smaller tasks.

• Purpose-built apps link to other apps for common features.



7

Android
• Most popular mobile operating system

• 2.5 billion active devices
• Phones, tablets, watches, car displays, TVs, IoT devices, 

speakers, home automation, ...
• Apps written in Android SDK.

• Supports Java (this course), Kotlin, C++.
• Code, data, resources compiled into APK.

• Android Package
• Compiled into device-specific code and run in Android OS 

(Linux-based).



8

Android Fundamentals
• Each app operates in a sandbox.

• Each app is a “user”. 
• Only that app can access its files.
• Each app runs in its own virtual machine and process. 

• Android implements “principle of least privilege”.
• Each app can access only components it requires.
• Users must grant access to location, camera, bluetooth, 

files, etc.



9

Versioning
• Apps target a 

minimal “API 
level”. 
• Defines 

available 
features.

• Apps must update 
compatibility or be 
disabled.



10

Android Fundamentals



11

Android Apps - Structure
• Android Code

• All the logic
• Resources
• Manifest



12

App Components
• Core building blocks of an app.
• Entry points for an app.
• Activities are “screens” with a UI.
• Services run a task in the background.
• Broadcast receivers deliver events to apps 

outside of regular user flow.
• Content providers manage a pool of information.



13

Activities
• A single screen with a user interface.

• Most apps have multiple independent activities.
• E-mail: Show messages, compose, read.

• If allowed, other apps can start any activity.
• Camera app opens “Compose” activity to share photo.

• Activities control and link processes.
• Ensure the current process is not killed.
• Link to calling activities and maintain their process.
• Model state in case process is killed.
• Model flow between apps.



14

Services
• Entry point for running a background process.

• Playing music, sending files.
• Does not provide a direct UI.
• Can be started by an activity.

• Can maintain a notification to allow user interaction.
• Services without notifications can be killed if resources 

are needed by OS.
• Bound services offer an API to the calling app. 

• Maintained as long as needed, then killed.



15

Broadcast Receivers
• Allows OS to deliver events when the app is not 

running.
• Listen to system-wide broadcast announcements.

• Respond to events like a photo being taken.
• Often notify users that an event has occurred.
• Often minimal, used as a gateway to launch 

activities or services.



16

Content Providers
• Manages a shared set of app data.
• Other, allowed, apps can query or modify the data.

• Android has a Content Provider for contact data.
• An entry point into an app for publishing data items.

• Identified by a URI.
• Owning app wakes up when a URI is accessed.
• URIs provide a secure way to pass content.

• Content is locked and accessed through temporary permission.



17

Intents
• Asynchronous messages that bind components at 

runtime.
• Messengers that request actions from other components.
• Start an activity, start a service, deliver a broadcast.
• Can convey a result back to the caller.

• Explicit intents activate a specific component.
• Implicit intents activate types of components.



18

Explicit Intents
• Name a specific app (by package or component).
• Often used by one component to start another 

within the same app.



19

Implicit Intents
• Describe a type of 

action you want to 
perform.

• Allow the system to 
find components that 
can perform that 
action (selected by 
the user).
• Done using 

IntentFilters



20

Implicit Intents

This is a SEND action

It sends a text message

Android will search for all Activities that can 
handle a SEND action on plain text.



21

The Manifest
• Each android app needs an 

AndroidManifest.xml file
• Essential information

• App name
• Components
• SDK version
• Permissions
• ...



22

Declaring Components

Resource for an icon.
Class name of Activity

Label used to 
identify Activity

Declares an Activity



23

Declaring Component Capabilities

Intent Filters declare how app responds to Intents

This Activity is registered as an option for 
ACTION_SEND intents.



24

Declaring App Requirements

• App requires at least Android 2.1 and a camera.
• Setting “required” attribute to false indicates that 

the app uses the camera, but can function without.



25

App Resources

• Bitmaps/Pictures
• UI definitions in XML
• Launcher icons
• Text strings (incl. translations)



26

App Resources
• Each resource is assigned a unique ID.

• Used to reference the resource from code or layout XML.
• File res/drawable/logo.png -> ID R.drawable.logo

• Can provide alternate resources for configurations.
• UI strings can be used to swap one language for another
• Qualifier appended to directory (res/values-fr/)
• Many default qualifiers supported for different screen 

sizes, device types, orientations (layout vs portrait).
• Allows automated responsiveness.



27

Permissions
• By default, apps are not allowed to use hardware, 

access data, access network.
• Permissions must be explicitly asked for in manifest

• Users must grant permission for dangerous 
requests (like the ones above).
• Formerly, user had to agree to all requests to install app 

(< API 6.0 (23)).
• Now, permissions granted individually.



28

Let’s Take a Break



29

Demonstration - “My First App”
Want to work along? This demonstration follows:
https://developer.android.com/training/basics/firstapp

You will need to install Android Studio, at least one 
emulator, and download the sample project.

This demonstration follows sections:
● Create an Android project
● Run your app

https://developer.android.com/training/basics/firstapp


30

Designing Activities



31

The Concept of Activities
• Rather than interacting with apps as atomic units, 

Activities interact directly with Activities.
• Any Activity can serve as an entry point to app interaction

• An Activity has a UI, and is usually a single screen.
• An app may have a Settings Activity, a Select Photo 

Activity, ...
• One Activity is the “main activity”.

• Launches when you click the icon.
• Activities must have minimal dependencies on 

other Activities.



32

Activity Lifecycle

Activity dismissed, 
configuration change (e.g., 

rotation)

Activity no longer visible 
(e.g., new activity started)

Other Activity in 
foreground, incoming 

phone call, ...



33

App Architecture
Activity code manages 
state, captures user input

Creates and presents the 
on-screen layout.

Models process, load, and 
store app data locally. Data can also be loaded, 

stored, and processed 
from remote sources.



34

Navigation
• All apps have a fixed

start location. 
• A stack of Activities

is maintained. When
you press back, you
pop from the stack.

• Also provide “up navigation”.
• (exit a chain to a set location)
• Define a parent activity in the manifest.



35

Activity Best Practices
• Activities should coordinate with Data Models to 

retrieve a minimal amount of relevant data.
• Create independent, well-defined code modules.
• Make each module testable in isolation.
• Do not write code if an existing Activity does it.
• Use Models to persist fresh, relevant data.
• Assign one data source as the source of truth.



36

Designing User Interfaces



37

UI Design - Views and Layouts
• A layout (ViewGroup) defines 

the structure of the UI.
• Containers that group one 

or more widgets (View).
• A button, a text box.

• Many pre-defined types of 
layouts (LinearLayout, 
Constraint Layout).

• UI elements can be declared 
in XML or in code.



38

UI Design - XML

Layout has two widgets, 
which have no constraints on 
each other’s size or location

Text box containing 
a set string

Button with a set string.



39

UI Design - Attributes
• All View objects have a unique identifier.

• Integer assigned at compile time, mapped to a 
user-specified variable: android:id=”@+id/my_button”



40

UI Design - Attributes
• LayoutParameters

• Inherited by Views contained
in that layout.

• Define how Views appear.
• All ViewGroups have a width and height. 

• Each view must define width and height relative to this.
• wrap_content sizes view to its content.
• match_parent makes view as big as its parent 

ViewGroup allows.
• Specify in dp (density-independent pixel units)



41

UI Design - Layouts
• Views are rectangles with left and top coordinates.

• Can get location with getLeft() and getTop()
• Defined relative to the parent.

• Size is defined in width and height.
• Measured width/height are how big the view wants to be.
• Drawing width/height are the actual size of the view on 

screen, after layout constraints.
• These can differ.



42

UI Design - Common Layouts

Built from data using an Adapter



43

UI Design - Responsive Design
• Android defines two characteristics for each screen:

• Screen Size (physical size)
• Small, Normal, Large, XLarge

• Screen Density (density of pixels on screen)
• MDPI (~160dpi), HDPI (~240dpi), XHDPI (~320dpi), XXHDPI 

(~480dpi), XXXHDPI (~640dpi)
• Apps are compatible with all screen sizes and 

densities automatically, but this may not create a 
good UX.
• Create specialized layouts, optimize images for density.



44

Creating a Flexible Layout
• ConstraintLayout allows position/size 

specification based on spatial relationships 
between views.
• All views move together as screen size changes.
• Easiest to create in Android Studio Layout Editor.

• Avoid hard-coded layout sizes.
• Use wrap_content, match_parent.
• Automatically adjusts based on size and orientation of 

screen.



45

Create Stretchable Images
• Bitmaps stretch to the screen 

size and density.
• This can cause blurring and 

scaling artifacts.
• Nine-patch bitmaps add a 1px 

border that indicates which 
pixels can be stretched.
• Intersection between left/top 

lines indicates the area that 
can be stretched.



46

Demonstration - UI Design
Want to work along? This demonstration follows:
https://developer.android.com/training/basics/firstapp

You will need to install Android Studio, at least one 
emulator, and download the sample project.

This demonstration follows sections:
● Build a simple user interface
● Start another activity

https://developer.android.com/training/basics/firstapp


47

HTTP Requests - Volley Library
• Create a RequestQueue 

and pass Request 
objects.

• Thread safe
• Requires INTERNET 

permission in manifest.

https://developer.android.com/training/volley/simple#java



48

What’s Next?
• Wednesday: Android Supervision
• Thursday: More Android!

• Testing
• Profiling
• Processes and Threads
• Services
• Broadcast Receivers
• Content Providers




