CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

DIT341 - Lecture 10:

Mobile Development with Android (2)

N

y

Gregory Gay
(Some slides by Grischa Liebel)

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

This Lecture

» Testing

 Profiling

* Processes and Threads

¢ Services

 Broadcast Receivers

» Content Providers (if we have time)

g6} CHALMERS | @8§) yNIVERSITY OF GOTHENBURG

Related Activities

e Activity 21: Optional
* Practice Android with Codelabs for Android

Developer Fundamentals (V2):
https://developer.android.com/courses/fundamentals-training/toc-v2

2.2 Activity lifecycle and state
4.1: Clickable images

4.2: Input controls

4.3: Menus and pickers

4.4: User navigation

4.5: RecyclerView

https://developer.android.com/courses/fundamentals-training/toc-v2

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Testing and Profiling

;{," 4 T & T “"’&
} CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Testing

« Unit tests verify behavior

of a single class.
« 70% of your tests. ity

 Integration tests verify Exeaiion time]
class interactions ina e
portion of the app.
« 20% of your tests. v ﬂ

Ul tests verify end-to-end - .

journey over the app. #oftests
* 10% of your tests.

\} CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Testing

e 70/20/10 recommended. .
 Unit tests execute
quickly, without emulator .,

or devices. aimenance :

* Ul tests must run in e
Android, are very slow.

- Well-tested units reduce v ﬂ

likelihood of integration - ~
|SSU€S, mak|ng h|gh # of tests

levels of testing easier.

)] CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Testing Lifecycle

 Create and test code in

iterative cycles. ,._.. .—’O ‘
I Feature

 Write test cases before Dev

you code!
* It will fail until you finish { railing ui

the feature (correctly). Test
 Development is a series

of nested cycles. L Refactor | <:J

 Features tested, and
integrated (tested via Ul)

Passing Ul |
Test

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Thinking in Terms of Modules

* Develop and test app as a set of modules.
« Clusters of classes centered around a task.
« Business logic, Ul elements, data.
« Ex: Task List App

Creating tasks, viewing stats, attaching photographs
* Allows iterative completion of app, independent
testing of features.
« Create consistent APls to allow modules to interact
« Set well-defined boundaries around modules.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Unit Testing

« Test each class (or smallest unit) in isolation.
« Test standard interactions, invalid inputs, resource
availability (network, files, database).

* Tests written in JUnit 4.
* AndroidX Test Library provides resources, allows tests to
run locally.

ensureTextViewIsCorrect()
MainActivity activity = .getActivity()
EditText textView = activity.findViewById(R.id.

assertEquals(textView.getText().toString())

1
J

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Testing in Isolation

Mock objects (AKA: test doubles) can be used to

replace dependencies.
« Simple replacements that offer static answers to method
calls and queries.

If you've already tested dependencies, use those!
 |If not, use mock objects.

Mock objects also good for long operations, hard to
create configurations.
Mockito library enables mocking.

{8%)) UNIVERSITY OF GOTHENBURG

Ul Testing

» Espresso library enables Ul testing through JUnit.

 Getviews - onView(withId(R.id.my view))

« Perform actions - View.perform(click())

« Check results -
View.check(matches(isDisplayed()))

@Test

public void greeterSaysHello() {
onView(withId(R.id.name_field)) .perform(typeText("Steve"));
onView(withId(R.id.greet_button)).perform(click());

onView(withText("Hello Steve!")).check(matches(isDisplayed()));

UNIVERSITY OF GOTHENBURG

U n it TeSt Exa m p I e Uses Espresso testing libraries to

interact with Views and Intents.
Part of AndroidX
@Test ()
public void successfullLogin() {

LoginActivity activity =

ActivityScenario.launch(LoginActivity.class);
onView(withId(R.id.user_name)).perform(typeText(“test_user”));
onView(withId(R.id.password))

.perform(typeText(“correct password”));
onView(withId(R.id.button)).perform(click());
assertThat(getIntents().first())

.hasComponentClass(HomeActivity.class);

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Smoke Testing

* Does it start smoking when

you turn it on?
« Extremely basic tests of
functionality.

« Simple starting point for testing.
* Quick check that all functions work at a basic level.

* Avoid running Ul tests every time, just some of the

most important at critical points.
* i.e., login, logout, creating a new account, page loads

* |f smoke tests fail, run deeper tests.

oo

JANY R
6] CHALMERS | @@%)) UNIVERSITY OF GOTHENBURG

Canary Testing

* Push changes to a small subset of users.
« Users do not volunteer.

* Ensures code changes work in a real environment.
 If there is a problem, you can revert changes quickly.

» Only small subset of users impacted.
e Can be automated.

oo

,‘ CHALMERS | @1 UNIVERSITY OF GOTHENBURG

Monkey Testing

« Automatically stress test an app by

attacking with random input.
« Ul tests not exhaustive.
* Monkey good for “filling in some gaps”.
* Tool included in Android SDK.
« Generates random keystrokes, touches,
and gestures.
* Run through command line.

CHALMERS g‘!}; UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Demonstration - Monkey Testing

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Profiling

« Used to investigate performance of your app.
« Tool included in Android Studio.

La

* Find expensive computations.
« Shows how app uses CPU, memory, network, battery

* Important to understand how to optimize the UX.

{8)) UNIVERSITY OF GOTHENBURG

MainActivity

MEMORY

Live Allocation | | app heap v | Arrange by class
Class Name
app heap
int[]
char([]
String
Class

MainActivity

CPU
MEMORY
64 MB
NETWORK
48/s

ENERGY

Medium

* Detailed views on
- CPU
« Memory allocation
* Network traffic
 Energy consumption

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Backend Processing

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Processes and Threads

* |Independent sequences of execution.

* Arunning program is a process.
« Allocated memory, executable code,
connections to OS.
« A process has one or more threads.

« Each process has a “main/primary”
thread.

* Processes are isolated from each other.

« Communication between processes is
expensive.

2018-08-27

Chalmers University of Technology

code data files

registers stack

thread — ;

single-threaded process

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Threads

* Entity within a process
« Can be scheduled for execution
« Units of execution (“workers”)

* Threads share a memory space.
« Has own registers and stack. ; ; ;_ .

code data files

registers ||| registers ||| registers

stack stack stack

« Shares code, data, files.
* Much easier communication, parallel
execution.

« But... Concurrency issues.
 Race conditions, deadlock, ...

multithreaded process

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Processes and Threads in Android

« Each app is (by default) started in a single process

* On startup, a main thread is created ("Ul thread")
« Each component is instantiated within this thread
» Reacts to user events (input)
« Freezes if you do long-running operations in it!

 Rule: Never block the Ul thread!

« (After 5s, Android asks if you want to close the app)
* Long-running operations should be done on background

threads.
« Accessing disk, performing network requests.

&) CHALMERS |) UNIVERSITY OF GOTHENBURG

Specifying Code for a Thread

 Create a class
implementing Runnable

* Implement run()
« Can’t directly modify View
objects.
« Set thread priority.
« Default: background
(prevents competition with
Ul thread)
« Store reference to the
connected thread.

ndroid.os.Process.THREAD_PRIORITY_BACKGROUND) ;

photoTask.setImageDecodeThread(Thread.currentThread());

&) CHALMERS | (8})) UNIVERSITY OF GOTHENBURG

Communicating with Ul Thread

 AFTER performing work, move results of background
processing to Ul elements.

. Use Handler running on Ul thread.

Handlers receive messages
and run associated code.
 Connect to threads and run

code on that thread. G0veride
« Qverride handleMessage(), public void handleMessage(Message inputMessage) {
* Invoked when message
sent to the managed
thread.

PhotoTask photoTask = (PhotoTask) inputMessage.obj;

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Support for Background Processing
* WorkManager

 Library that runs background tasks when conditions
(network availability, battery) are satisfied.
« For work that can be put off until later.

* Foreground Services
» Background process without Ul.
* Work that must run immediately and be completed.
* Prevents OS from killing process.

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Support for Background Processing

« AlarmManager
 Launches a process at a scheduled time.
 WorkManager better balances system resources, but

AlarmManager is needed for specific timed processes.
« Use WorkManager for tasks that execute every hour. Use
AlarmManager for tasks executing at 6:38 AM.

 DownloadManager
« Performs background downloading tasks.
* Provide URI, library handles HTTP interactions, retries,
connectivity changes.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

 Can the work be deferred, or

does it need to happen now?
 |f not, Foreground Service
 |s the work dependent on system
conditions?
 If yes, WorkManager
* Does the job need to run at a
precise time?
 If yes, AlarmManager. If no,
WorkManager Workttanager

DownloadManager

Foreground service

WorkManager

AlarmManager

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Let’s Take a Break

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

<service

Services el
:exported=
 Component in the background, no Ul
« Often used for long-running operations
* Play music
 Process data
* Send/receive data over the internet

« Will continue to run even if user
switches to another app.
« Started with an Intent

,‘ CHALMERS | (&) UNIVERSITY OF GOTHENBURG

Services

* Foreground Services

« Perform an operation that users notice.
* Play music
« Must display naotification.
« Keep running even if user isn’t interacting with them.

« Background Services

« Perform operation not noticeable to user.
 Compress files

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Bound Services

« Service bound to component using bindService()
« Offers a client-server interface allowing

components to interact with the service.
« Send requests/receive results
« Across processes (allowing process communication)

* Multiple components can be bound to one service.
« Service destroyed when all unbind.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Services vs Threads
 Rule of thumb:

« Operation should run, even if user doesn't interact with
the app (or closes it): Service
* Long-running operation, while the user is active: Thread
 Example: Alarm clock
« Alarm should go off, even if you close the clock app.
« Service!
« Example: Buffer video

* Video should stop if the app is closed.
* Thread!

,‘ CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Service Basics

 Create subclass of Service

* Implement lifecycle methods:

e onStartCommand()
* |Invoked when another component requests the Service.
« Service is started and will run until stopService() called.

e onBind()
 Provides interface used to communicate with the Service.

e onCreate()
« Setup when Service created.

e onDestroy()
« Cleanup when Service is complete.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Service Basics

 |If created by call to startService(), Service will
run until stopService() is called.
 If created by call to bindService(), will run only as

long as component is bound to it.
* Once all components unbound, system will Kill.
* OS kills Services only if memory is low.

* Foreground services rarely killed.
« Services must be designed to gracefully restart if killed

before finished with task.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Service Lifecycle e in

onCreate() onCreate()

 Lifetime occurs between call , '

onStartCommand() onBind()
to onCreate() and return e =
from onDestroy() = o
* Active litetime begins with el M oo

call to onStartCommand() or { y

OnBlnd() onUnfind()

 |ntent handed to service and onoeivovo onoeitrovo
acted on. e P eemmmm—
shut down shut down

e Started services can be
bound. Unbounded Bounded

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Services vs IntentServices

« Services are multi-threaded and handle requests
from multiple components simultaneously.

* Most Services are extensions of IntentServices
« Creates a worker thread that executes all Intents
delivered to onStartCommand().
* Creates a work queue to perform requests.
« Stops service once all requests are handled.
* Provides default implementations of onBind() and
onStartCommand().

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

IntentServices

e onHandlelIntent()
 Performs tasks
 Returns result
« Stops the service

ed void onHandleIntent(Intent intent) ({

ry {
Thread.sleep(56000) ;
1 (InterruptedException e) {

Thread.currentThread().interrupt();

&%) CHALMERS | (8§} UNIVERSITY OF GOTHENBURG

Word of Warning

« Services are difficult to get right!

* Much more to cover than fit the
slides/time

 |If you want to implement a service,
read up on what you need to know:

https://developer.android.com/guide/components/services

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Broadcast Recelvers

Apps may send or receive broadcasts from the OS
or other apps.
Sent when events of interest occur.

* Phone plugged into power outlet.

Apps can register to receive specific broadcasts.
* OS routes broadcasts to registered apps.

Messaging system across apps.
« Allows starting and stopping of Services.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Broadcasts

« Sent to all apps registered to receive the event.

 Message wrapped in Intent object.

* Action string identifies the event.
« android.intent.action.AIRPLANE_MODE
« May include additional contextual information.
Boolean indicating whether or not airplane mode is on.
« Complete list of broadcast actions in Android SDK

- BROADCAST_ACTIONS.TXT

CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Manifest-Declared Receivers

« System launches app when broadcast is sent.
. SpeC|fy <receiver> element in manifest.

. Subclass BroadcastRecelver and |mplement onReceive(Context, Intent).

4 context Intent intent) {
gBuilder sb = new StringBuilder();
sb append(tion: " + intent. getActlon() +"\n")

ob append("UR I + intent.toUri(Intent.URI_INTENT_SCHEME).toString() + "\n");
string log = sb.toString();

(TAG, log);
Toast.makeText(context, log, Toast.LENGTH_LONG).show();

41

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Context-Registered Receivers

* Receive broadcasts as long as the context is valid.
* Receive broadcasts as long as Activity is not destroyed,
or as long as the app is running, or ...

 Within the context:

 Create an instance of BroadcastReceiver
* Create an IntentFilter and register the receiver
BroadcastReceiver br = new MyBroadcastReceiver();

IntentFilter filter = new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION);
filter.addAction(Intent.ACTION_AIRPLANE_MODE_CHANGED) ;
this.registerReceiver(br, filter);

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Sending Broadcasts

e sendOrderedBroadcast(Intent, String)
* Sends broadcasts to one receiver at a time.
 Each receiver can build on the result or abort the
broadcast.
e sendBroadcast(Intent)
 Sends broadcasts to all receivers in undefined order.
 “Normal” mode.
 Efficient, but can’t be filtered, aborted, or modified by
Intermediate receivers.

&%) CHALMERS) UNIVERSITY OF GOTHENBURG

Sending Broadcasts

e sendBroadcast(Intent)

Intent intent = new Intent();
intent.setAction("com.example.
intent.putExtra("data”, "N

sendBroadcast(intent) ;

e LocalBroadcastManager.sendBroadcast(Intent)
« Sends broadcasts in the same app as sender.
« Much more efficient, no security issues.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Broadcast Best Practices

» Use local broadcasts as general purpose
publisher/subscriber method in app.
 |If many apps subscribe to a broadcast in manifest,

they will all launch when broadcast is sent.
« Use context-registered receivers to add restrictions.
« Android forces the use of context in some cases.

* Do not broadcast sensitive information with implicit
iIntents. Specify permissions, packages, or use local
broadcasts.

#) CHALMERS | @88} yNIVERSITY OF GOTHENBURG

Broadcast Best Practices

Apps can send malicious broadcasts.
« Use permissions to block broadcasts, declare
“android:exported” false in manifest, use local broadcasts
Broadcasts use global namespace.
» Be careful not to conflict when naming.

onReceive(..) runs on main thread.
« Should execute and return quickly.

Do not start activities from broadcast receivers.
* Notifications are more common.

CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Content Providers

;2 CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Content Providers

* Provides an interface to a
protected data resource.

* Primarily used to share data
with other apps in a secure

Mmanner.
« Offer a standard interface for
Interprocess data sharing.
» Used when you want to access
data stored by another app or
share data from your app.

Your application

Your content
provider -« Other applications
|mplementat|on ‘

v

Your data
storage

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Content Provider Advantages

 QOffer control over permissions for accessing data.
« Can restrict access from within your application, grant
access to other applications.
« Control reading and writing of data.

 Abstracts details of how data is accessed.
« Data storage type does not matter.

* CursorlLoader objects offer seamless way to query
Content Providers to fill Ul elements.

y CHALMERS | UNIVERSITY OF GOTHENBURG

Accessing Content Providers

* You use a ContentResolver to communicate
with the other app’s ContentProvider. Fragment

 ContentProvider receives data requests
and returns results.
* ContentResolver provides CRUD functions.
« Commonly, a CursorLoader runs a query in

A

Your App

the background. v
Activity calls CursorLoader,
 CursorlLoader delegates to :
ContentResolver. |
e ContentResolver works with
. ContentProvider Sossmmmnd Data storage
ContentProvider.

« This is performed in the background.

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Accessing Content Providers

* Android has several built-in Content Providers.
* One example: user dictionary
 Rows = words not in a standard dictionary
« Columns = data attributes associated with the word
Includes primary key ID
« To access, call ContentResolver.query().
« Calls ContentProvider.query() defined by the app
surfacing the provider.

CHALMERS UNIVERSITY OF GOTHENBURG

NIVERSITY OF TECHNOLOGY

Access Example

Where is the content stored?

" Queries the user dictionary and

cursor = getContentResolver().query(
UserDictionary.Words.CONTENT_URI,
projection,

selectionClause,
selectionArgs;
sortOrder) ;

Array of columns. , : " :
What format do you Predicate to filter data. Additional opt|<_)nal How should
, What rows are selected? arguments to filter | ts b
want the result in? e elements be
data (handle missing ordered?
data, etc.)

#¢) CHALMERS | () UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Access Example

String[] mProjection =

{ The fields that
UserDictionary.Words._ID, 1trac la:] | | 13 we want in the

UserDictionary.Words.WORD, 1tra las stan |) nn nam reant(Fhe
UserDictionary.Words.LOCALE 1itract class : e local Lu prOJectlon)
I

String[] selectionArgs = {""};

searchString = searchWord.getText().toString();

Does the entry match the
first element of the
argument array?

selectionClause = UserDictionary.Words.WORD + "

selectionArgs[0] = searchString;

Al e -3 N TR I T VNG -
A ST y a 4 48 \,,"/\ : S -
% CHALMERS | @8§) UNIVERSITY OF GOTHENBURG f \ > ﬁ\ / Vivan oo

UNIVERSITY OF TECHNOLOGY < % b | 7)

Inserting Data

ContentValues newValues = new ContentValues();

newValues.put(UserDictionary.Words.APP_ID, "example.user");

newValues.put(UserDictionary.Words.WORD, "insert");

(
newValues.put(UserDictionary.Words.LOCALE, "en_US");

(
newValues.put(UserDictionary.Words.FREQUENCY, "100");

newUri = getContentResolver().insert(
UserDictionary.Words.CONTENT_URI,
newValues

)

UNIVERSITY OF TECHNOLOGY

{(#8) CHALMERS | (B} UNIVERSITY OF GOTHENBURG

Updating Data

ContentValues updateValues = new ContentValues();

Combines |
updated Values String selectiéhClause UserDictionary.Words.LOCALE + " LIKE ?";
(like insertion)

String[] selectionArgs = {"en_%"};

With SeleCtion int ronUpdated = @,
criteria (like a
q Uery) . updateValues.putNull(UserDictionary.Words.LOCALE) ;

rowsUpdated = getContentResolver().update(
UserDictionary.Words.CONTENT_URI,
updateValues,
selectionClause,
selectionArgs

UserDictionary.Words.APP_ID + " LIKE ?";
String[] selectionArgs {"user"};

int rowsDeleted = 0;

rowsDeleted = getContentResolver().delete(
UserDictionary.Words.CONTENT_URI,
selectionClause,
selectionArgs

)i

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

Not Covered

So much more!

Creating ContentProviders
Notifications

Security
Packaging/Signing/Publishing Apps
App Versions

i\)llore resources: https://developer.android.com/

#k) CHALMERS | (&) yNIVERSITY OF GOTHENBURG

What’s Next?

* Friday: Project Follow-Up
 Monday: Cloud Deployment
* Milestone 3

 Android + Presentation

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

