
Test Oracles
CSCE 747 - Lecture 11 - 02/16/2016

Software Testing - Back to the
Basics

Tests are sequences of stimuli and
observations. We care about input and output.

(I1 O1) (I2 O2) (I3 O3)

Gregory Gay CSCE 747 - Spring 2016 2

What Do We Need For Testing?

(I1 O1) (I2 O2) (I3 O3)

Test Inputs
How we “stimulate” the system.Test Oracle

How we check the correctness of the
resulting observation.

if On = Expected(On)
then… Pass
else… Fail

Gregory Gay CSCE 747 - Spring 2016 3

We Will Cover

Software Test Oracles
● Where do they come from?
● How do we create them?
● Why are they important for testing?

Gregory Gay CSCE 747 - Spring 2016 4

Test Oracle - Definition

If a software test is a sequence of activities
(stimuli and observations), an oracle is a
predicate that determines whether a given
sequence is acceptable or not.

An oracle will respond with a pass or a fail
verdict on the acceptability of any test
sequence for which it is defined.

Gregory Gay CSCE 747 - Spring 2016 5

Test Oracles and Specifications

● In verification, an implementation is checked
for conformance to a specification.

● When executing a test case, the correctness
of the implementation is checked by an
oracle.

● Testing is a form of verification.
● Is an oracle a specification?

○ Is a specification an oracle?

Gregory Gay CSCE 747 - Spring 2016 6

Test Oracle Components

An oracle is an implementation of a specification.
● Oracle Information

○ The information used by the oracle to judge the
correctness of the implementation, given the inputs.

○ A specification, in a form that can be used directly by
the testing code.

● Oracle Procedure
○ Code that uses that information to arrive at a verdict.
○ A form of automated verification.
○ Commonly as simple as...

(value(system output) == value(expected output))

Gregory Gay CSCE 747 - Spring 2016 7

Oracles are Code

● Oracles must be developed.
○ Like the project, an oracle is built from the

requirement specification.
■ … and is subject to interpretation by the

developer
■ … and may contain faults

● A faulty oracle can be trouble.
○ May result in false positives - “pass” when there was

a fault in the system.
○ May result in false negatives - “fail” when there was

not a fault in the system.

Gregory Gay CSCE 747 - Spring 2016 8

Oracle Verification

● Verification can be performed on oracles.
○ Does the oracle conform to the specification it was

built from?
○ i.e., we could write tests for the oracle.

● Circularity problem.
○ Build code to judge the system, then build code to

judge the judge, then what?
● The oracle should be subjected to a

lightweight verification process.
○ At least a code review.

Gregory Gay CSCE 747 - Spring 2016 9

Where Do We Get Test Oracles?

Most commonly:
Developers write oracles
by hand, tied to a
particular test case.

● Large amount of manual effort and time
required to create tests

● Will not be able to run many tests. Did you
choose the right inputs?

Gregory Gay CSCE 747 - Spring 2016 10

The “Test Oracle Problem”

We are good at
coming up with new
input...

But, it is much harder
to automatically check
results for multiple
tests.

f(int)

f(0) f(6) f(1123)

f(0) = ?
f(6) = ?
f(1123) = ?

Gregory Gay CSCE 747 - Spring 2016 11

Oracle Trade-Offs

● We can specify the exact output behavior
expected from the system.
○ This is very hard to do for more than one test at a

time.
● Or, trade precision for generality.

○ Specify properties that should be obeyed by a
function.

○ Build a model of a function.
○ Check for types of anomalies that all programs can

suffer from.

Gregory Gay CSCE 747 - Spring 2016 12

Test Oracle

● A test oracle is complete if it can offer a
verdict for any set of test input.

● A test oracle is sound if it offers the right
verdict for any test case that it can offer a
verdict for.

● A test oracle is correct if it is both sound
and complete.
○ It is partially correct if it is sound, but not complete.

Gregory Gay CSCE 747 - Spring 2016 13

Judging the Judge

What properties do we seek in an oracle?
● Cost to Build (Per Test and Overall)

○ How much effort goes into building it?
○ Want low cost.

● Accuracy of Verdicts
○ Can it give the wrong answer?
○ Want high accuracy.

● Completeness
○ Can it offer verdicts for multiple test cases?
○ What kind of situations is it useful for?
○ Want high completeness.

Gregory Gay CSCE 747 - Spring 2016 14

Types of Oracles

● Specified Oracles
○ Developers, using the requirements, formally specify

properties that correct behavior should follow.
● Derived Oracles

○ An oracle is derived from development artifacts or
system executions.

● Implicit Oracles
○ An oracle judges correctness using properties

expected of many programs.
● Human Oracles

○ How do you handle the lack of an oracle?
Gregory Gay CSCE 747 - Spring 2016 15

Specified Oracles

Specified Oracles

Specified Oracles judge behavior using a
human-created specification of correctness.

Any manually-created test case has a specified
oracle (expected-value oracle: what is the
expected value given this input?)
How can we extend this to multiple tests?

Gregory Gay CSCE 747 - Spring 2016 17

Self-Checks as Oracles

Rather than comparing
actual values, use
properties about results to
judge sequences.

Take the form of assertions,
contracts, and other logical
properties.

@Test

public void multiplicationOfZeroIntegersShouldReturnZero() {

 // Tests

 assertEquals("10 x 0 must be 0", 0, tester.multiply(10, 0));

 assertEquals("0 x 10 must be 0", 0, tester.multiply(0, 10));

 assertEquals("0 x 0 must be 0", 0, tester.multiply(0, 0));

 }

@Test

public void propertiesOfSort (String[] input) {

 // Tests

String[] sorted = quickSort(input);

assert(sorted.size >= 1, "This array can’t be empty.")

 }

Gregory Gay CSCE 747 - Spring 2016 18

● Usually written at the function level.
○ For one method or one high-level “feature”.
○ Properties based on behavior of that function.

● Work for any input to that function.
● Only accurate for those properties.

○ Faults may be missed if the specified properties are
obeyed.

○ More properties = more expensive to write.

Self-Checks

Gregory Gay CSCE 747 - Spring 2016 19

System Models as Oracles
Models could potentially serve as a “universal” test oracle

Test
Input

Model

Implementation

Compare
Results

Gregory Gay CSCE 747 - Spring 2016 20

● Like in finite state verification, models
require abstraction.
○ Models are useful for requirements analysis, but

may not reflect operating conditions.
○ May get “fail” verdict because the system’s behavior

does not match, but the system acted correctly.
● Can be overcome by steering the model

○ Situationally, override the model state.
■ Controlled by a set of constraints.

○ Search for a reachable state that matches the
system state.

Problem: Abstraction

Gregory Gay CSCE 747 - Spring 2016 21

Derived Oracles

Derived Oracles

If no specified oracle exists, oracles can be
derived from existing sources of information:
● Project Artifacts

○ Documentation
○ Existing tests
○ Other versions of the system

● Program Executions
○ Invariant detection
○ Specification mining

Often lowers costs significantly, but may suffer
from accuracy issues.

Gregory Gay CSCE 747 - Spring 2016 23

Pseudo Oracles
(N-Version Programming)

An alternate version of the program as an oracle.
Does output(V1) = output(V2)?
● Pseudo Oracle because we know the two don’t agree,

but don’t know which is wrong or why.

Also called N-Version programming, where multiple
designs are implemented, or same design is implemented
by independent teams.

Genetic programming can use search (through genetic
algorithms) to automatically produce multiple
implementations.

Gregory Gay CSCE 747 - Spring 2016 24

Regression Testing

When changes are made to a system, rerun your
tests. Any existing tests that passed previously
should still pass.

An older version of your program can be the
oracle.
● Do new features break working features?
● Do bug fixes break working features?
● If requirements have changed, you do NOT want the

output to match for features related to the requirement.

Gregory Gay CSCE 747 - Spring 2016 25

Metamorphic Relations

If you have test cases, you can generate partial
oracles for follow-up tests by deriving
metamorphic relations between tests.

● A metamorphic relation is a necessary property of a
function:
○ A property of a sin function is that sin(x) = sin (pi - x).
○ Thus, sin(x) and sin(pi - x) have the same expected

output.
● If these relationships are violated, then there is a bug.
● Can be an equation or more general properties

specified between inputs.

Gregory Gay CSCE 747 - Spring 2016 26

Invariant Detection

Invariants (pre/post-conditions) can be
specified as a form of test oracle. If they are not
known in advance, there are algorithms that
can detect them from program executions.
● Testers take a set of tests that the program

is known to produce correct behavior for.
● Properties true of all observed executions

are extracted for methods, loops, and
conditional statements.

Gregory Gay CSCE 747 - Spring 2016 27

Model Inference

From system executions, we can derive a state
machine model of system execution. As we
observe more executions, we refine the model.

Major problem of both invariant and model
detection: Accuracy!
● The more executions observed, the more

accurate, but requires much more effort.
● What do we do about this?

Gregory Gay CSCE 747 - Spring 2016 28

Implicit Oracles

Implicit Oracles

Implicit oracles require no domain knowledge
or specification, but instead can be applied to
check properties that are expected of any
runnable program.

Implicit oracles often detect particular
anomalies, such as network irregularities or
deadlock. These are faults that do not require
expected output to detect.

Gregory Gay CSCE 747 - Spring 2016 30

Uses of Implicit Oracles

Implicit oracles can be built to detect:
● Concurrency Issues

○ Deadlock, livelock, and race detection
● Violations of properties related to non-

functional attributes of the system
○ Performance properties
○ Robustness
○ Memory access and leaks

Gregory Gay CSCE 747 - Spring 2016 31

Fuzzing

Fuzzing is a way to find implicit anomalies.
● Generate random (or fuzz inputs).
● Attack the system with these inputs.

○ Generation and attacks guided by “attack profiles”
that reflect certain malicious use scenarios.

● Report anomalies with the test sequence
that caused them.

Used to detect security vulnerabilities.

Gregory Gay CSCE 747 - Spring 2016 32

Human Oracles

The Human Oracle

● If no automation is
possible or no
specification exists,
a human can
always judge
output manually.

● Not ideal, but
surprisingly
common in
practice.

Gregory Gay CSCE 747 - Spring 2016 34

Handling the Lack of Oracles

Even if there is no oracle, there are techniques
that can reduce the human oracle cost through:
● Quantitative reduction in the amount of work

the tester has to do for the same amount of
fault-detection potential.

● Qualitative increase in the ease of evaluating
testing results.

Gregory Gay CSCE 747 - Spring 2016 35

Quantitative Cost Reduction

Test suites can be unnecessarily large:
● Tests that cover too few testing goals or scenarios.
● Tests that are unnecessarily long, with redundant

method calls.

Human oracle cost can be reduced by cutting
out either of these.
● Test suite reduction techniques cut tests that cover

redundant code structure or do not penetrate deeply
into the code.

● Test case reduction techniques attempt to remove
unnecessary test steps.

Gregory Gay CSCE 747 - Spring 2016 36

Qualitative Cost Reduction

Not all test cases are equally understandable
by human testers. Automated test generation
often produces test inputs that do not match the
expected usage of a program, and humans
have trouble judging the results of such tests.

Some test generation approaches allow the
seeding of human knowledge or use usage
profiles to help generate input.

Gregory Gay CSCE 747 - Spring 2016 37

Crowdsourcing the Oracle

Recent development - outsource the oracle
problem to many different human oracles.

Several services exist for this now - Amazon
Mechanical Turk, Mob4Hire, MobTest, uTest.

Users cannot be expected to have much
domain knowledge, so understandability of test
inputs and documentation are very important.

Gregory Gay CSCE 747 - Spring 2016 38

Placing the Oracles

● Manual Specification
● Behavioral Model
● Self-Checks
● N-Version

Programming
● Metamorphic Testing
● Invariant Detection
● Implicit Oracles

Cost(T/O), Accuracy,Completeness
● L/H H L
● H/L M-H H
● L/M H M
● L-H/L L-H M-H

● L/M H M
● L/L L-H M
● L/L H L

Gregory Gay CSCE 747 - Spring 2016 39

We Have Learned

● Test Oracles judge the correctness of
sequences of stimuli and observations.

● Oracles are implementations of
specifications.

● Oracles can be:
○ specified (expected values, models, assertions)
○ derived from correct executions or project artifacts
○ built to detect implicit properties
○ humans asked to check results

Gregory Gay CSCE 747 - Spring 2016 40

Next Time

● Testing Object-Oriented Systems
○ Reading - Ch. 15

● Send in survey topic choices!
● Homework 2 due soon.

○ Any questions?

Gregory Gay CSCE 747 - Spring 2016 41

