
Program Analysis
CSCE 747 - Lecture 16 - 03/03/2016

Axiom of Testing

“Program testing can be used
to show the presence of
bugs, but never their
absence.”

- Dijkstra

Gregory Gay CSCE 747 - Spring 2016 2

Holy Grail of Verification

● Ability to prove whether any property holds
over the software.
○ Finite State Verification can do this as long as we

can abstract the software to a simple enough model.
○ Symbolic execution can form the basis of techniques

that analyze the real source code.
■ Can exhaustively check for particular properties.
■ Can extract and summarize information for

inspection and automated test generation.

Gregory Gay CSCE 747 - Spring 2016 3

Program Analysis

● Testing is weak at detecting faults that rarely
cause failures.
○ Program fails under difficult to control conditions.

■ Race conditions - thread synchronization.
■ Memory access and allocation faults.

● Program analysis can detect these by
abstracting the program down to a relevant
finite model.

Gregory Gay CSCE 747 - Spring 2016 4

Concurrency Faults

Two types of subtle faults:
● Deadlock - threads are blocked, waiting for

another thread to release the lock.
● Data Races - threads access a shared

resource while other threads are modifying
that resource.

● Concurrent threads can execute non-
deterministically.
○ Same execution sequence may not result in the

same failure.

Gregory Gay CSCE 747 - Spring 2016 5

Concurrency Faults

Can be prevented through
safe programming:
● In critical regions, do not

allow more than one
thread to write to shared
memory.

● In Java, synchronized
blocks protect shared
variables.
○ Threads entering the

block are locked out until
the thread in the block
exits.

Gregory Gay CSCE 747 - Spring 2016 6

public synchronized void
add(int value){

 this.count += value;
}

● Synchronized Method
○ One thread at a time.

public void add(int value){

 synchronized(this){
 this.count += value;
 }
 }

● Synchronized Block
○ One thread can execute

that block at a time.

Synchronized Example
public class Counter{

long count = 0;

public synchronized void
add(long value){

 this.count += value;
 }
}

public class CounterThread extends Thread{

protected Counter counter = null;

public CounterThread(Counter counter){
 this.counter = counter;
 }

public void run() {
for(int i=0; i<10; i++){

 counter.add(i);
 }
 }
}

Gregory Gay CSCE 747 - Spring 2016 7

public class Example {

public static void main(String[] args){

Counter counter = new Counter();

Thread threadA = new

CounterThread(counter);

Thread threadB = new
CounterThread(counter);

threadA.start();

threadB.start();

}

}

Memory Faults

● Dynamic memory access and allocation can
cause particular types of faults.
○ Null pointer dereferencing
○ Illegal access
○ Memory leaks

● Can lead to memory corruption, exhaustion,
incorrect results, or illegal access to data.

● Hard to detect when testing. May not cause
a failure immediately.

Gregory Gay CSCE 747 - Spring 2016 8

Memory Fault - Example
if(c==’+’){

*dptr = ‘ ‘;

}else if(c==’%’){

/* Case 2: ‘%xx’ is hex for
character xx */

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

...

}

Gregory Gay CSCE 747 - Spring 2016 9

● Increments pointer twice
without checking for
buffer termination.

● If ‘%x’ is fed as input,
program scans beyond
end of input string.

● Can corrupt memory.
○ Failure may not occur

until that memory is used.

Memory Faults

● If deallocation is required (or allowed):
○ Deallocating memory still accessible through

pointers may result in dangling pointers.
○ Failing to deallocate memory that has become

inaccessible can cause memory leaks.
● Many modern languages limit memory faults

by preventing explicit allocation and
deallocation, automatically checking for
array index and null pointer access.

Gregory Gay CSCE 747 - Spring 2016 10

Program Analysis

● Static Analysis
○ Exhaustively analyzes the source code and verify

properties over all possible executions.
○ Prone to false alarms.
○ Can include infeasible paths.

● Dynamic Analysis
○ Use execution traces to verify properties.
○ Do not include infeasible paths.
○ Cannot examine the execution space exhaustively.

Gregory Gay CSCE 747 - Spring 2016 11

Efficiency Vs. Accuracy

● Two directions of trade-off:
○ Examine a summary of all possible behaviors.

■ Pessimistic inaccuracy
■ Leads to false alarms
■ Common in static analysis

○ Examine a sampling of possible behaviors.
■ Optimistic inaccuracy
■ Leads to incomplete results
■ Common in dynamic analysis

Gregory Gay CSCE 747 - Spring 2016 12

Static Analysis

Symbolic Execution

● Bridge between complex program behavior
and analyzable logical structures.
○ Enables complex analyses of programs through

abstraction to a model of execution.

Gregory Gay CSCE 747 - Spring 2016 14

Symbolic Execution
● Execute the program with

symbolic values
● Statements compute new

symbolic expressions
● Program state can be

characterized by predicates
made of symbolic
expressions

Program Execution
● Execute the program with

actual values.
● Statements compute new

values for variables.
● Program state can be

characterized by the values
of variables.

Symbolic Execution in Analysis

● Can be used to form proofs of correctness.
○ Identify pre/post-conditions, invariants, and path

conditions.
○ Solve constraints over the gathered state predicates.
○ Very expensive and to difficult to apply widely.

● Very effective at finding limited classes of
faults - i.e., memory/concurrency issues.
○ Do not require complete specifications.
○ Fold the state space

Gregory Gay CSCE 747 - Spring 2016 15

Symbolic Testing

● Execution with symbolic values can be
applied like in testing.
○ Values of variables summarized to a symbolic set

based on context of analysis.
○ Values of a pointer: {null, not null, invalid, unknown}
○ Other variables may be represented by a constant.

■ Or left out entirely.
● Explore paths, searching for violations of the

property of interest.

Gregory Gay CSCE 747 - Spring 2016 16

Symbolic Testing

● Reduce number of possible paths by
exploring all paths to a pre-set depth or
pruning paths.
○ Heuristics based on likelihood that a path is

executable and leads to a potential failure.
● If not enough information is retained to

determine the outcome of a branch, either
choose one or take both.

Gregory Gay CSCE 747 - Spring 2016 17

Analysis Sensitivity

● Path-sensitive analysis
○ May obtain different symbolic state by reaching a

concrete state through different paths.
● May be context-sensitive.

○ Explores execution through different procedure call
and return sequences.

● Combination is a strength:
○ Can produce a detailed warning.
○ Cost can be reduced by memoizing entry and exit

conditions.

Gregory Gay CSCE 747 - Spring 2016 18

False Alarms

● Abstraction can lead to situations where a
“fault” is not possible.
○ Problem with 0 loop executions, but loop always

executes once.
● False alarms degrade trust in tool.
● To reduce issues:

○ Suppress warnings that have previously been
marked as false.

○ Prune execution paths whose conditions are too
complex.

○ Prioritize warnings by likelihood + severity.
Gregory Gay CSCE 747 - Spring 2016 19

Summarizing Execution Paths

● Pruning paths can lead to incompleteness.
● Alternative - fold the state space down to a

manageable size.
○ Build a FSM with states abstracting data values.
○ Operations cause transitions between states.

● Summarizes executions of the system.

Gregory Gay CSCE 747 - Spring 2016 20

Pointer Analysis Example

Gregory Gay CSCE 747 - Spring 2016 21

● Values:
○ invalid, may-be-null, not-null.

● Allocation transitions may-be-null, invalid to
not-null.

● Deallocation transitions not-null to invalid.
○ Deallocation in may-be-null is a potential misuse.
○ Dereference in may-be-null or invalid is a potential

misuse.
● Testing a pointer for not-null triggers

transition from may-be-null to not-null.

Summarizing Paths

● Important choice - whether to merge states
obtained along different execution paths.
○ Data flow techniques merge all states encountered

at a program location.
○ Finite state verification techniques are path sensitive

and do not merge states.
○ Merging shrinks state space, but loses context.

● Keeping context information reduces false
alarms, but increases cost of analysis.

Gregory Gay CSCE 747 - Spring 2016 22

Dynamic Analysis

Dynamic Analysis

● Analysis of actual program executions.
○ Execute test cases.
○ Monitor execution to analyze behavior with respect

to certain properties of interest.
■ Such as potential memory corruption.

○ Instruments the program with additional code to
collect information about the execution.

● Amplifies the usefulness of test execution
○ Can detect issues even if testing does not result in

failure.

Gregory Gay CSCE 747 - Spring 2016 24

Spot the Fault
int main (int argc, char *argv[]){

char pre[] = “2B2B2B2B2B”;

char subject[] =
“AndPlus+%26%2B+%0D%”;

char post[] = “26262626”;

char *outbuf = (char *) malloc(10);

int return_code =
cgi_decode(subject,outbuf);

return_code =
cgi_decode(argv[1], outbuf);

...

}

Gregory Gay CSCE 747 - Spring 2016 25

● C does not provide run-
time protection against
memory faults.

● Output buffer may be
overrun if input yields a
string longer than buffer.

● Corrupted memory does
not cause immediate
failure.

...

[E] ABWL: Late detect array bounds write
{1 occurrence}
Memory corruption detected, 14 bytes at
0x00e74b02
Address 0x00e74b02 is 1 byte past the end
of a 10 byte block at 0x00e74af8
Address 0x00e74b02 points to a malloc'd
block in heap 0x00e70000
63 memory operations and 3 seconds since
last-known good heap state

Detection location - error occurred before
the following function call
printf [MSVCRT.dll]

int main (int argc, char *argv[]){

char pre[] = “2B2B2B2B2B”;

char subject[] =
“AndPlus+%26%2B+%0D%”;

char post[] = “26262626”;

char *outbuf = (char *) malloc(10);

int return_code =
cgi_decode(subject,outbuf);

return_code =
cgi_decode(argv[1], outbuf);

...

}

Memory Analysis

● Instrument program to
detect memory access.

● Track status of memory
locations.

● Flag incompatible
accesses.
○ Write/read when memory

is unallocated.
○ Read when uninitialized.

● Can check array bounds
○ Add memory blocks

before/after array with
state “unallocated”.

Gregory Gay CSCE 747 - Spring 2016 26

Unallocated (unwritable
and unreadable)

Allocated and
uninitialized (writable, but

unreadable)

Allocated and initialized
(writable and readable)

allocate

deallocate

initialize
deallocate

Detecting Memory Leaks

● Garbage Detectors detect memory leaks.
○ Identify and free unused memory locations.

● Recursively follow pointers from the data
and stack segments into the memory heap.

● Mark all referenced blocks.
○ If a block is allocated, but no longer references, are

potential memory leaks.

Gregory Gay CSCE 747 - Spring 2016 27

Lockset Analysis

● Often too difficult to detect for testing and
static analysis, but can be handled with
dynamic analysis.

● Data races can be prevented using a locking
discipline.
○ Every shared variable must be protected by a mutual

exclusion lock.
● Lockset analysis reveals potential data races

by detecting violation of the locking discipline

Gregory Gay CSCE 747 - Spring 2016 28

Lockset Analysis

● Identifies the set of mutual exclusion locks.
○ At start: lockset for each variable associated with all

known locks.
○ At access: update lockset to be only those currently

also held by the accessing thread.
○ At end: lockset indicates the set of locks that were

always held by threads when accessing the variable.
■ Empty = locking violation

Gregory Gay CSCE 747 - Spring 2016 29

Example Lockset Analysis

Gregory Gay CSCE 747 - Spring 2016 30

Thread Program Trace Locks Held Lockset(x)

{} {lck1, lck2}

thread A lock(lck1)

{lck1}

x = x+1;

{lck1}

unlock(lck1)

{}

thread B lock(lck2)

{lck2}

x = x+1;

{}

unlock(lck2)

{}

Extending Lockset Analysis

● Delay analysis until
initialization is complete.
○ State not modified until a

second thread attempts
to read or write.

● Violations reported if
they occur in the shared-
modified state.
○ Multiple readers are

allowed.
○ Distinguish locks held in

all accesses from locks
held in write accesses.

Gregory Gay CSCE 747 - Spring 2016 31

New

Exclusive

Shared

Shared-
Modified

write
read/
write
[first
thread]

read
[new
thread]

read

write

write [new
thread]

Extracting Behavior Models

● Executing a test reveals information about
the program.
○ This information can be used to synthesize a model

that describes those - and other - executions.
● Models can be used:

○ As oracles (build a model from “correct” executions,
apply to future tests)

○ To evaluate thoroughness of testing (coverage)
○ For program analysis.
○ During debugging (fault localization)

Gregory Gay CSCE 747 - Spring 2016 32

Extracting Predicates

● Can extract predicates on the values of
variables at selected execution points.

● Example - AVL Tree insertion operation:
father > left
father < right
diffHeight is one of {-1,0,1}

● Allows us to examine and understand
program behaviors.
○ Checks thoroughness of the test suite.

Gregory Gay CSCE 747 - Spring 2016 33

Building Predicates

Start with initial predicates generated from templates.

Gregory Gay CSCE 747 - Spring 2016 34

Over any variable x:

constant x = a

uninitialized x = uninit

small value set x = {a,b,c} for a small set of values

Over two numeric variables, x and y:

linear relationship y = ax+b

ordering relationship x <= y, x < y, x = y, x !=y

functions x = fn(y)

Over the sum of two numeric variables, x and y:

in a range x + y >= a, x+y <= b, a <= x+y <= b

nonzero x + y != 0

Building Predicates

● Instantiating every
template for every
variable can get very
expensive.

● Can instead indicate
points in the program
where we want to
extract predicates, and
the variables we want to
examine at that point.

Gregory Gay CSCE 747 - Spring 2016 35

…

node.height = max(
height(node.left),
height(node.right))
+ 1;

recordData(node,
node.left,node.right);

return node;

}

Building Predicates
● Eliminate generated predicates

violated during test execution.

static void testCaseSingleVals(){

AvlTree t = new AvlTree();

t.insert(5);

t.insert(2);

t.insert(7);

}

static void testCaseRandom(int n){

AvlTree t = new AvlTree();

for(int i =1; i < n; i++){

t.insert((int) Math.round(
Math.random()*100));

}

}

Gregory Gay CSCE 747 - Spring 2016 36

Model: testCaseSingleVals
● father, one of {2,5,7}
● left == 2
● right == 7
● leftHeight == rightHeight == diffHeght
● leftHeight, rightHeight == 0
● fatherHeight, one of {0,1}

Model: testCaseRandom
● father, left >= 0
● right > father > left
● left < right
● fatherHeight >= 0
● leftHeight, rightHeight >= 0
● fatherHeight > leftHeight, rightHeight,

diffHeight
● rightHeight >= diffHeight
● diffHeight, one of {-1, 0, 1}
● leftHeight - rightHeight + diffHeight == 0

Building Predicates

● Representation of what has been observed.
○ More executions will refine the predicates.

● Some predicates are coincidental.
○ Associate probability of coincidence with predicates.

■ Estimated by number of executions where a
predicate is tested.
● Probability of 0.5 if verified by one execution.
● Probability of 0.5n if verified by n executions.

○ Omit predicates that do not meet a threshold.

Gregory Gay CSCE 747 - Spring 2016 37

Daikon Example

● Daikon is a tool that detects predicates from
Java, C, C++, C#, Perl, and Eiffel programs.
○ http://plse.cs.washington.edu/daikon/

● Follows the process outlined:
○ Form an initial set of predicates from templates.
○ Execute the code and take observations.
○ Learn the “likely” predicates from these executions.

Gregory Gay CSCE 747 - Spring 2016 38

http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/

We Have Learned

● Testing is not enough to find faults that are
only triggered under specific or non-
deterministic circumstances.
○ Memory leaks
○ Data races
○ Deadlock

● Program analysis can be used to ensure that
the SUT is free from certain types of faults.

Gregory Gay CSCE 747 - Spring 2016 39

We Have Learned

● Static Analyses
○ Based on symbolic execution.
○ Summarize execution paths.
○ Exhaustively examine a portion of the state space

for violations of properties.
● Dynamic Analyses

○ Observe executions of the system.
○ Compare collected information to a model of “ideal”

behavior for property of interest.
○ Augment testing with targeted analyses.

Gregory Gay CSCE 747 - Spring 2016 40

Next Time

● Spring Break next week!
● After… Execution and Automation
● Reading: Ch. 17

● Homework:
○ Reading Assignment 3 - due tonight
○ Assignment 3 - due Thursday after break.

■ Any questions?

Gregory Gay CSCE 747 - Spring 2016 41

