
Test Execution and
Automation
CSCE 747 - Lecture 17 - 03/15/2016

Executing Tests

● We’ve covered many techniques to derive
test cases.

● How do you run them on the program?
○ You could run the code and check results by hand.
○ Please don’t do this.

■ Humans are slow, expensive, and error-prone.
○ Test design requires effort and creativity.
○ Test execution should not.

Gregory Gay CSCE 747 - Spring 2016 2

Test Automation

● Test Automation is the development of
software to separate repetitive tasks from the
creative aspects of testing.

● Automation allows control over how and when
tests are executed.
○ Control the environment and preconditions.
○ Automatic comparison of predicted and actual output.
○ Automatic hands-free reexecution of tests.

Gregory Gay CSCE 747 - Spring 2016 3

Testing Requires Writing Code

● Testing cannot wait for the system to be
complete.
○ The component to be tested must be isolated from

the rest of the system, instantiated, and driven using
method invocations.

○ Untested dependencies must be stubbed out with
reliable substitutions.

○ The deployment environment must be simulated by
a controllable harness.

Gregory Gay CSCE 747 - Spring 2016 4

Test Scaffolding

Test scaffolding is a set of programs written to
support test automation.
● Not part of the product
● Often temporary

Allows for:
● Testing before all components complete.
● Testing independent components.
● Control over testing environment.

Gregory Gay CSCE 747 - Spring 2016 5

Test Scaffolding

● A driver is a substitute for a main or calling
program.
○ Test cases are drivers.

● A harness is a substitute for all or part of the
deployment environment.

● A stub (or mock object) is a substitute for
system functionality that has not been
completed.

● Support for recording and managing test
execution.

Gregory Gay CSCE 747 - Spring 2016 6

Test Scaffolding

● Initializes objects
● Initializes parameter

variables
● Performs the test
● Performs any

necessary cleanup
steps.

● Simulates the execution
environment.

● Can control network
conditions, environmental
factors, operating
systems.

● Templates that provide
functionality and allow
testing in isolation

● Checks the correspondence
between the produced and

expected output and renders
a test verdict.

Gregory Gay CSCE 747 - Spring 2016 7

Writing an Executable Test Case

● Test Input
○ Any required input data.

● Expected Output (Test Oracle)
○ What should happen, i.e., values or exceptions.

● Initialization
○ Any steps that must be taken before test execution.

● Test Steps
○ Interactions with the system (such as method calls),

and output comparisons.
● Tear Down

○ Any steps that must be taken after test execution to
prepare for the next test.

Gregory Gay CSCE 747 - Spring 2016 8

Writing a Unit Test

JUnit is a Java-based toolkit
for writing executable tests.
● Choose a target from

the code base.
● Write a “testing class”

containing a series of
unit tests centered
around testing that
target.

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

Gregory Gay CSCE 747 - Spring 2016 9

Writing a Unit Test

public class Calculator {

 public int evaluate (String

expression) {

 int sum = 0;

 for (String summand:

expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

import static org.junit.Assert.

assertEquals;

import org.junit.Test;

public class CalculatorTest {

 @Test

 public void evaluatesExpression() {

 Calculator calculator =

new Calculator();

 int sum =

calculator.evaluate("1+2+3");

 assertEquals(6, sum);

calculator = null;

 }

}

Gregory Gay CSCE 747 - Spring 2016 10

Convention - name the test class
after the class it is testing or the
functionality being tested.

Each test is denoted with keyword
@test.

Initialization

Test Steps

Input

Oracle

Tear Down

Test Fixtures - Shared Initialization

@Before annotation defines a common test
initialization method:

@Before

public void setUp() throws Exception

{

this.registration = new Registration();

this.registration.setUser(“ggay”);

}

Gregory Gay CSCE 747 - Spring 2016 11

Test Fixtures - Teardown Method

@After annotation defines a common test tear
down method:

@After

public void tearDown() throws Exception

{

this.registration.logout();

this.registration = null;

}

Gregory Gay CSCE 747 - Spring 2016 12

More Test Fixtures

● @BeforeClass
defines initialization
to take place before
any tests are run.

● @AfterClass
defines tear down
after all tests are
done.

Gregory Gay CSCE 747 - Spring 2016 13

@BeforeClass

 public static void setUpClass() {

myManagedResource = new

ManagedResource();

 }

 @AfterClass

 public static void tearDownClass()

throws IOException {

 myManagedResource.close();

 myManagedResource = null;

 }

Test Skeleton

@Test annotation defines a single test:

@Test

public void test<MethodName><TestingContext>() {

//Define Inputs

try{ //Try to get output.

}catch(Exception error){

fail("Why did it fail?");

}

//Compare expected and actual values through
assertions or through if statements/fails

}

Gregory Gay CSCE 747 - Spring 2016 14

Assertions

Assertions are a "language" of testing -
constraints that you place on the output.

● assertEquals, assertArrayEquals
● assertFalse, assertTrue
● assertNull, assertNotNull
● assertSame,assertNotSame
● assertThat

Gregory Gay CSCE 747 - Spring 2016 15

assertEquals
@Test

public void testAssertEquals() {

 assertEquals("failure - strings are not

equal", "text", "text");

}

@Test

public void testAssertArrayEquals() {

 byte[] expected = "trial".getBytes();

 byte[] actual = "trial".getBytes();

 assertArrayEquals("failure - byte arrays

not same", expected, actual);

}

Gregory Gay CSCE 747 - Spring 2016 16

● Compares two items for
equality.

● For user-defined classes,
relies on .equals method.
○ Compare field-by-field
○ assertEquals(studentA.getName(),

studentB.getName())
rather than
assertEquals(studentA, studentB)

● assertArrayEquals
compares arrays of items.

assertFalse, assertTrue
@Test

public void testAssertFalse() {

 assertFalse("failure - should be false",

(getGrade(studentA, “CSCE747”).equals(“A”));

}

@Test

public void testAssertTrue() {

assertTrue("failure - should be true",

(getOwed(studentA) > 0));

}

Gregory Gay CSCE 747 - Spring 2016 17

● Take in a string and a
boolean expression.

● Evaluates the expression
and issues pass/fail based
on outcome.

● Used to check
conformance of solution to
expected properties.

assertSame, assertNotSame
@Test

public void testAssertNotSame() {

 assertNotSame("should not be same Object",

studentA, new Object());

}

@Test

public void testAssertSame() {

 Student studentB = studentA;

 assertSame("should be same", studentA,

studentB);

}

Gregory Gay CSCE 747 - Spring 2016 18

● Checks whether two
objects are clones.

● Are these variables
aliases for the same
object?
○ assertEquals uses .

equals().
○ assertSame uses ==

assertNull, assertNotNull
@Test

public void testAssertNotNull() {

 assertNotNull("should not be null", new

Object());

}

@Test

public void testAssertNull() {

 assertNull("should be null", null);

}

Gregory Gay CSCE 747 - Spring 2016 19

● Take in an object and
checks whether it is
null/not null.

● Can be used to help
diagnose and void
null pointer
exceptions.

assertThat
@Test

public void testAssertThat{

 assertThat("albumen", both(containsString("a")).and(containsString("b")));

 assertThat(Arrays.asList("one", "two", "three"), hasItems("one", "three"));

 assertThat(Arrays.asList(new String[] { "fun", "ban", "net" }), everyItem(containsString("n")));

 assertThat("good", allOf(equalTo("good"), startsWith("good")));

 assertThat("good", not(allOf(equalTo("bad"), equalTo("good"))));

 assertThat("good", anyOf(equalTo("bad"), equalTo("good")));

 assertThat(7, not(CombinableMatcher.<Integer> either(equalTo(3)).or(equalTo(4))));

}

Gregory Gay CSCE 747 - Spring 2016 20

both - two properties must be met.
has items - a list contains an indicated subset
of items, but can also contain other items.everyItem - all items in list must
match a property.

allOf - all listed properties must be true
not(allOf(...)) - if all of these properties
are true, the test should fail.anyOf - at least one of the listed

properties must be trueeither - pass if one of these properties is true.

Testing Exceptions

● When testing error handling, we expect
exceptions to be thrown.

● In JUnit, we can ensure that the right
exception is thrown.

@Test(expected = IndexOutOfBoundsException.class)

public void empty() {

 new ArrayList<Object>().get(0);

}

Gregory Gay CSCE 747 - Spring 2016 21

Testing Exceptions - Rules
● Rules can be used to

encapsulate repeated
test behavior.
○ Such as ensuring that the

right exception is thrown.
● In the test, state which

exception is expected
and examine its stack
trace.

Gregory Gay CSCE 747 - Spring 2016 22

@Rule

public ExpectedException thrown =

ExpectedException.none();

@Test

public void testExceptionMessage() throws

IndexOutOfBoundsException {

 List<Object> list = new ArrayList<Object>();

 thrown.expect

(IndexOutOfBoundsException.class);

 thrown.expectMessage("Index: 0, Size: 0");

 list.get(0);

}

Scaffolding

● Stubs and drivers are code written as
replacements other parts of the system.
○ May be required if pieces of the system do not exist.

● Scaffolding allows greater control over test
execution and greater observability to judge
test results.
○ Ability to simulate dependencies and test

components in isolation.
○ Ability to set up specialized testing scenarios.
○ Ability to replace part of the program with a version

more suited to testing.
Gregory Gay CSCE 747 - Spring 2016 23

Object Mocking

Components may depend on
other, unfinished (or untested)
components. You can mock
those components.
● Mock objects have the

same interface as the real
component, but are hand-
created to simulate the real
component.

● Can also be used to
simulate abnormal
operation or rare events.

WeatherData

temperature
windSpeed
windDirection
pressure
lastReadingTime

collect()
summarize(time)

Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

Mock_Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

get(){
return 98;

}

Gregory Gay CSCE 747 - Spring 2016 24

Replacing Interfaces

● Scaffolding can be complex - can replace
any portion of the system.

● If an interface does not allow control or
observability - write scaffolding to replace it.
○ Allow inspection of previously-private variables.
○ Replace a GUI with a machine-usable interface.
○ May be useful after testing.

■ Expose a command-line interface for scripting.

Gregory Gay CSCE 747 - Spring 2016 25

Generic vs Specific Scaffolding

● Simplest driver - one that runs a single
specific test case.

● More complex:
○ Common scaffolding for a set of similar tests cases,
○ Scaffolding that can run multiple test suites for the

same software (i.e., load a spreadsheet of inputs
and run then).

○ Scaffolding that can vary a number of parameters
(product family, OS, language).

● Balance of quality, scope, and cost.

Gregory Gay CSCE 747 - Spring 2016 26

Automation Trade-Offs

Some common strategies help guide automation.

Gregory Gay CSCE 747 - Spring 2016 27

Incremental Testing

Test pieces of the system as they
are completed. Use scaffolding
(stubs, drivers) to test in
isolation, then swap out for real
components to test integration.

Advantages:
● Easily test components in isolation.
● Discover faults earlier.

Disadvantage:
● Expensive to develop scaffolding.

A
T1

T2

T3
B

A
T1

T2

T3
B

C
T4

A
T1

T2

T3
B

C
T4

D
T5

Gregory Gay CSCE 747 - Spring 2016 28

Top-Down Testing

Level 1

Level 2 Stubs
Level 2 Level 2 Level 2

Level 3 Stubs

Level1

Testing Sequence

Gregory Gay CSCE 747 - Spring 2016 29

Top-Down Testing

● Start with the high levels of a system (based
on control-flow, data-flow, or architecture)
and work your way downwards.
○ Use in conjunction with top-down development.

● Very good for finding architectural or
integration errors.

● May need system infrastructure in place
before testing is possible.

● Requires large effort in developing stubs.

Gregory Gay CSCE 747 - Spring 2016 30

Bottom-Up Testing

Level N Level N Level N Level N

Level N
Drivers

Level N-1 Level N-1 Level N-1

Level N-1
Drivers

Testing Sequence

Gregory Gay CSCE 747 - Spring 2016 31

Bottom-Up Testing

● Start with the lower levels of a system
(based on control-flow, data-flow, or
architecture) and work your way upwards.
○ Use in conjunction with bottom-up development.

● Appropriate for object-oriented systems.
● Necessary for testing critical infrastructure.
● Does not find major design problems, but

very good at testing individual components.
● Requires high effort in developing drivers.

Gregory Gay CSCE 747 - Spring 2016 32

What About Graphical Interfaces?

● Graphical components of projects often
tested manually by real users.

● Heavily tested during alpha/beta testing.

Gregory Gay CSCE 747 - Spring 2016 33

Capture and Replay

1. Have a human interact
with the system,
walking through several
different scenarios.

2. Record their mouse
motions and clicks
during these scenarios.

3. Take these test cases
and modify them to
create additional tests.

Gregory Gay CSCE 747 - Spring 2016 34

Capture and Replay

● Common test automation method:
○ Have a human do something once.
○ Let the computer take the same actions.

■ Allows retesting without additional human
involvement as long as interface is unchanged.

● Often can be used to create additional tests:
○ Transform their actions into a script.
○ Encode a series of transformations that can be

automatically invoked on the script.
○ Requires an oracle, but can rely on generic oracles.

Gregory Gay CSCE 747 - Spring 2016 35

Continuous Integration

● Development practice that requires code be
frequently checked into a shared repository.

● Each check-in is then verified by an
automated build.
○ The system is compiled and subjected to an

automated test suite, then packaged into a new
executable.

● By integrating regularly, developers can
detect errors quickly, and locate them more
easily.

Gregory Gay CSCE 747 - Spring 2016 36

CI Practices

● Maintain a code repository.
● Automate the build.
● Make the build self-testing.
● Every commit should be built.
● Keep the build fast.
● Test in a clone of the production environment.
● Make it easy to get the latest executable.
● Everyone can see build results.
● Automate deployment.

Gregory Gay CSCE 747 - Spring 2016 37

How Integration is Performed

● Developers check out code to their machine.
● Changes are committed to the repository.
● The CI server:

○ Monitors the repository and checks out changes
when they occur.

○ Builds the system and runs unit/integration tests.
○ Releases deployable artefacts for testing.
○ Assigns a build label to the version of the code.
○ Informs the team of the successful build.

Gregory Gay CSCE 747 - Spring 2016 38

How Integration is Performed

● If the build or tests fail, the CI server alerts
the team.
○ The team fixes the issue at the earliest opportunity.
○ Developers are expected not to check in code they

know is broken.
○ Developers are expected to write and run tests on all

code before checking it in.
○ No one is allowed to check in while a build is broken.

● Continue to continually integrate and test
throughout the project.

Gregory Gay CSCE 747 - Spring 2016 39

We Have Learned

● Test automation can be used to lower the
cost and improve the quality of testing.

● Automation involves creating drivers,
harnesses, stubs, and oracles.

● Systems can be tested in a top-down or
bottom-up style.

● Automated testing enables continuous
integration and deployment.

Gregory Gay CSCE 747 - Spring 2016 40

Next Time

● Unit testing lab - we will work together to test
a system.
○ Bring a laptop with a Java IDE installed (and jUnit).

● Assignment 3
○ Due Thursday - any questions?

● Reading assignment 4 - due March 24.

Gregory Gay CSCE 747 - Spring 2016 41

